
OpenM++ wiki

Home

Table of contents

Getting Started

Windows: Quick Start for Model Users

Windows: Quick Start for Model Developers

Linux: Quick Start for Model Users

Linux: Quick Start for Model Developers

MacOS: Quick Start for Model Users

MacOS: Quick Start for Model Developers

Model Run: How to Run the Model

MIT License, Copyright and Contribution

Model development in OpenM++

Model Code: Programming a model

Windows: Create and Debug Models

Linux: Create and Debug Models

MacOS: Create and Debug Models

MacOS: Create and Debug Models using Xcode

Modgen: Convert case-based model to openM++

Modgen: Convert time-based model to openM++

Modgen: Convert Modgen models and usage of C++ in openM++ code

Model Localization: Translation of model messages

Using OpenM++

How To: Set Model Parameters and Get Results

Model Run: How model finds input parameters

Model Output Expressions

Model Run Options and ini-file

OpenM++ Compiler (omc) Run Options

OpenM++ ini-file format

UI: How to start user interface

UI: openM++ user interface

UI: Create new or edit scenario

UI: Upload input scenario or parameters

UI: Run the Model

UI: Compare model run results

UI: Disk space usage and cleanup

UI Localization: Translation of openM++

Model Development Topics

Authored Model Documentation

Censor Event Time

Create Import Set

Derived Tables

Entity Attributes in C++

Entity Function Hooks

Entity Member Packing

file:///tmp/authored-model-documentation

Entity Tables

Events

Event Trace

External Names

Generated Model Documentation

Illustrative Model Align1

Local Random Streams

Memory Use

Microdata Output

Model Code

Model Documentation

Model Languages

Model Localization

Model Metrics Report

Model Resource Use

Model Symbols

Parameter and Table Display and Content

Population Size and Scaling

Symbol Labels and Notes

Tables

Test Models

Time-like and Event-like Attributes

Use Modules

Weighted Tabulation

File-based Parameter Values

OpenM++ web-service: API and cloud setup

Oms: openM++ web-service

Oms: openM++ web-service API

Oms: How to prepare model input parameters

Oms: Cloud and model runs queue

Using OpenM++ from Python and R

Use R to save output table into CSV file

Use R to save output table into Excel

Run model from R: simple loop in cloud

Run RiskPaths model from R: advanced run in cloud

Run RiskPaths model in cloud from local PC

Run model from R and save results in CSV file

Run model from R: simple loop over model parameter

Run RiskPaths model from R: advanced parameters scaling

Run model from Python: simple loop over model parameter

Run RiskPaths model from Python: advanced parameters scaling

Docker

Windows: Use Docker to get latest version of OpenM++

Linux: Use Docker to get latest version of OpenM++

GET Model Metadata

GET Model Extras

GET Model Run results metadata

GET Model Workset metadata: set of input parameters

RedHat 8: Use Docker to get latest version of OpenM++

OpenM++ Development

Quick Start for OpenM++ Developers

Setup Development Environment

2018, June: OpenM++ HPC cluster: Test Lab

Development Notes: Defines, UTF-8, Databases, etc.

OpenM++ Design, Roadmap and Status

2012, December: OpenM++ Design

2012, December: OpenM++ Model Architecture, December 2012

2012, December: Roadmap, Phase 1

2013, May: Prototype version

2013, September: Alpha version

2014, March: Project Status, Phase 1 completed

2016, December: Task List

2017, January: Design Notes. Subsample As Parameter problem. Completed

OpenM++ web-service API

Oms: openM++ web-service

Oms: openM++ web-service API

GET model list

GET model list including text (description and notes)

GET model definition metadata

GET model metadata including text (description and notes)

GET model metadata including text in all languages

GET model languages

GET model language-specific strings

GET model profile

GET list of profiles

GET list of model runs

GET list of model runs including text (description and notes)

GET status of model run

GET status of model run list

GET status of first model run

GET status of last model run

GET status of last completed model run

GET model run metadata and status

GET model run including text (description and notes)

GET model run including text in all languages

Read Parameters, Output Tables or Microdata values

GET Parameters, Output Tables or Microdata values

GET Parameters, Output Tables or Microdata as CSV

GET list of model worksets

GET list of model worksets including text (description and notes)

GET workset status

GET model default workset status

GET workset including text (description and notes)

GET workset including text in all languages

Read parameter values from workset

Read parameter values from workset (enum id's)

Read parameter values from model run

Read parameter values from model run (enum id's)

Read output table values from model run

Read output table values from model run (enum id's)

Read output table calculated values from model run

Read output table calculated values from model run (enum id's)

Read output table values and compare model runs

Read output table values and compare model runs (enun id's)

Read microdata values from model run

Read microdata values from model run (enum id's)

Read aggregated microdata from model run

Read aggregated microdata from model run (enum id's)

Read microdata run comparison

Read microdata run comparison (enum id's)

GET parameter values from workset

GET parameter values from model run

GET output table expression(s) from model run

GET output table calculated expression(s) from model run

GET output table values and compare model runs

GET output table accumulator(s) from model run

GET output table all accumulators from model run

GET microdata values from model run

GET aggregated microdata from model run

GET microdata run comparison

GET csv parameter values from workset

GET csv parameter values from workset (enum id's)

GET csv parameter values from model run

GET csv parameter values from model run (enum id's)

GET csv output table expressions from model run

GET csv output table expressions from model run (enum id's)

GET csv output table accumulators from model run

GET csv output table accumulators from model run (enum id's)

GET csv output table all accumulators from model run

GET Modeling Task metadata and task run history

Update Model Profile: set of key-value options

Update Model Workset: set of input parameters

Update Model Runs

GET csv output table all accumulators from model run (enum id's)

GET csv calculated table expressions from model run

GET csv calculated table expressions from model run (enum id's)

GET csv model runs comparison table expressions

GET csv model runs comparison table expressions (enum id's)

GET csv microdata values from model run

GET csv microdata values from model run (enum id's)

GET csv aggregated microdata from model run

GET csv aggregated microdata from model run (enum id's)

GET csv microdata run comparison

GET csv microdata run comparison (enum id's)

GET list of modeling tasks

GET list of modeling tasks including text (description and notes)

GET modeling task input worksets

GET modeling task run history

GET status of modeling task run

GET status of modeling task run list

GET status of modeling task first run

GET status of modeling task last run

GET status of modeling task last completed run

GET modeling task including text (description and notes)

GET modeling task text in all languages

PATCH create or replace profile

DELETE profile

POST create or replace profile option

DELETE profile option

POST update workset read-only status

PUT create new workset

PUT create or replace workset

PATCH create or merge workset

DELETE workset

POST delete multiple worksets

DELETE parameter from workset

PATCH update workset parameter values

PATCH update workset parameter values (enum id's)

PATCH update workset parameter(s) value notes

PUT copy parameter from model run into workset

PATCH merge parameter from model run into workset

PUT copy parameter from workset to another

PATCH merge parameter from workset to another

Update Modeling Tasks

Run Models: run models and monitor progress

Download model, model run results or input parameters

Upload model runs or worksets (input scenarios)

User: manage user settings and data

Model run jobs and service state

PATCH update model run text (description and notes)

DELETE model run

POST delete model runs

PATCH update run parameter(s) value notes

PUT create or replace modeling task

PATCH create or update modeling task

DELETE modeling task

POST a request to run the model

GET state of current model run

PUT stop model run

GET download log file

GET model download log files

GET all download log files

GET download files tree

POST initiate entire model download

POST initiate model run download

POST initiate model workset download

DELETE download files

DELETE all download files

GET upload log file

GET all upload log files for the model

GET all upload log files

GET upload files tree

POST initiate model run upload

POST initiate workset upload

DELETE upload files

DELETE all upload files

GET user views for the model

PUT user views for the model

DELETE user views for the model

GET service configuration

GET job service state

GET disk usage state

POST refresh disk space usage info

GET state of active model run job

GET state of model run job from queue

file:///tmp/Oms-API-GET-disk-use

Administrative: manage web-service state

GET state of model run job from history

PUT model run job into other queue position

DELETE state of model run job from history

POST a request to refresh models catalog

POST a request to close models catalog

POST a request to close model database

POST a request to open database file

POST a request to cleanup database file

GET the list of database cleanup log(s)

GET database cleanup log file(s)

POST a request to pause model run queue

POST a request to pause all model runs queue

PUT a request to shutdown web-service

This is the home of the OpenM++ wiki. It consists mostly of links to other topics, organized into sections. For a brief description of what OpenM++
can bring to a micro-simulation or agent-based modelling project please see the Features section. Our Glossary contains brief explanations of
some of the terms used in this wiki.

Table of Contents

Glossary

Contact us

Introduction to OpenM++

Getting started

Model development

Model use

Model API and how to run models in cloud

Model scripting

Docker

Features

for programmers: OpenM++ development

for programmers: OpenM++ design

for programmers: OpenM++ source code

Contact us

OpenM++ is an open source platform to develop, use, and deploy micro-simulation or agent-based models. OpenM++ was designed to enable
non-programmers to develop simple or complex models. Click here for an overview of OpenM++ features.

[back to contents]

This section describes how to get OpenM++ installed and working on Windows, Linux, or MacOS, for model users or for model developers. The
installation kits include a collection of simple illustrative models. That same collection of models is also present in the cloud, where it can be
accessed from any web browser, with no installation required. For more information on the OpenM++ cloud collection, please Contact us.

Download OpenM++ for Windows, Linux or MacOS↗

Windows: Quick Start for Model Users

Windows: Quick Start for Model Developers

Linux: Quick Start for Model Users

Linux: Quick Start for Model Developers

MacOS: Quick Start for Model Users

MacOS: Quick Start for Model Developers

Model Run: How to Run the Model

Home

Quick links

Contents

Introduction to OpenM++

Getting started

https://github.com/openmpp/main/releases/latest

[back to contents]

Platform-independent information:

Model Development Topics: A list of topics related to model development in OpenM++

Platform-specific information:

Windows: Create and Debug Models

Linux: Create and Debug Models

MacOS: Create and Debug Models

MacOS: Create and Debug Models using Xcode

Modgen-specific information:

Modgen: Convert case-based model to openM++

Modgen: Convert time-based model to openM++

Modgen: Convert Modgen models and usage of C++ in openM++ code

[back to contents]

This section describes how to use a model once built.

How To: Set Model Parameters and Get Results

Model Data Import-Export: How to Use dbcopy↗

Model Run: How model finds input parameters

Model Output Expressions

Model Run Options and ini-file

OpenM++ ini-file format

UI: How to start user interface

UI: openM++ user interface

UI: Create new or edit scenario

UI: Upload input scenario or parameters

UI: Run the Model

UI: Compare model run results

UI Localization: Translation of openM++

Modgen-specific information:

Modgen: CsvToDat utility: Command-line utility to convert CSV parameters to DAT format

[back to contents]

The model API provides programmatic access to scenario management, model inputs, model runs, and model outputs. It is implemented by the
OpenM++ oms web service, which uses standard JSON to communicate with a controlling application. The worked examples in Model scripting
provide practical illustrations of how to use the model API and the oms service to automate an analysis. Incidentally, the browser-based
OpenM++ user interface uses the model API and the oms service for all model-specific operations. It is also possible to create workspace for

Model development

Model use

Model API and how to run models in cloud

https://godoc.org/github.com/openmpp/go/dbcopy

model users in cloud using oms web-service.

Oms: openM++ web-service

Oms: openM++ web-service API

Oms: How to prepare model input parameters

Oms: Cloud and model runs queue

Documentation and source code: Go library and tools↗

[back to contents]

The topics in this section illustrate model-based analysis in two different scripting environments: Python and R. The Model API is used in these
environments to create scenarios, run the model iteratively, and retrieve results for graphical presentation in the scripting environment.

Use R to save output table into CSV file

Use R to save output table into Excel

Run model from R: simple loop in cloud

Run RiskPaths model from R: advanced run in cloud

Run RiskPaths model in cloud from local PC

Run model from R and save results in CSV file

Run model from R: simple loop over model parameter

Run RiskPaths model from R: advanced parameters scaling

Run model from Python: simple loop over model parameter

Run RiskPaths model from Python: advanced parameters scaling

OpenMpp R package documentation↗

[back to contents]

Docker is a technology used here to quickly replicate preconfigured operating system environments containing OpenM++ functionality.

Windows: Use Docker to get latest version of OpenM++

Linux: Use Docker to get latest version of OpenM++

RedHat 8: Use Docker to get latest version of OpenM++

DockerHub: image to run openM++ models↗

DockerHub: image to build latest openM++ version↗

[back to contents]

Here is a summary of some OpenM++ features:

General features:

open source: OpenM++ and all components are licensed under the very broad MIT license.

cross-platform: Model development and use on Windows, Linux, or MacOS.

standards-based: Uses industry standard formats and technologies.

Model scripting

Docker

Features

https://godoc.org/github.com/openmpp/go
https://openmpp.org/r/html/00Index.html
https://hub.docker.com/r/openmpp/openmpp-run
https://hub.docker.com/r/openmpp/openmpp-build

zero-footprint: File-based installation requires no elevation of privileges.

Model developer features:

high-level language: Model types, parameters, entities, events, tables, etc. are specified using a compact domain-specific language targeted
to microsimulation.

scalable complexity: From simple 'toy' models to highly complex models.

modularity: New events and processes can be added to a model in a new module, often with little or no modification to existing modules.

continuous or discrete time, or a mixture.

supports multiple versions: Multiple OpenM++ versions can be installed and a single environment variable used to choose among them.

result compare: Supports rapid comparison of all model outputs during incremental model development.

Computational features:

scalable computation: Designed to scale linearly with population size or replicates when possible, N log N scaling for typical interacting
populations.

grid-enabled, cloud-enabled: Supports MPI for multi-processing to distribute execution of replicates to a small or large computational grid or
to the cloud, with automatic result assembly.

multi-threaded: Supports multi-threading for parallel execution of replicates on desktop or server.

on-the-fly tabulation: Tables are computed during the simulation, eliminating the need to output voluminous microdata for subsequent
tabulation.

computationally efficient: The model specification is transformed to C++ which is processed by an optimizing C++ compiler to produce a
highly efficient executable program.

Usability features:

generated UI: A model-specific UI is generated from the model specification.

browser-based UI: The UI requires only a browser, and runs on almost any modern browser.

cloud-enabled: Models can be deployed to a cloud and accessed remotely over the web, from a browser.

multilingual support: For UI and for model, with real-time language switching

Analyst features:

continuous time tabulation: Powerful but easy to use language constructs to tabulate time-in-state, empirical hazards, transitions counts,
state changes, etc.

replicate support: All tables can have underlying replicate simulations to assess the uncertainty of any cell of any output table. Statistical
measures of uncertainty are computed for all cells of all tables.

automation: Models can be controlled by scripts, eg Python or R.

import/export: Models and runs can be moved between databases, or to standard formats for upstream preparation of inputs or for
downstream analysis of outputs.

dynamic run control: A computational grid can process runs dynamically to enable whole-model estimation or calibration, with a controlling
script reading run results and preparing new runs for execution.

The OpenM++ language is based on the Modgen↗ language developed at Statistics Canada. With minor modifications to model source code,
existing Modgen models can work with either Modgen or OpenM++.

[back to contents]

This section contains technical information for programmers interested in OpenM++ itself, as opposed to model developers or model users. It
describes how to set up a programming environment to build and modify OpenM++.

OpenM++ development

http://www.statcan.gc.ca/microsimulation/modgen/modgen-eng.htm

Quick Start for OpenM++ Developers

Setup Development Environment

2018, June: OpenM++ HPC cluster: Test Lab

Development Notes: Defines, UTF-8, Databases, etc.

[back to contents]

This section contains technical and project information of interest to programmers or system architects. It dates from the inception and 'alpha'
days of the OpenM++ project. The road map diagram remains somewhat relevant and may be useful for a broad overview of the major
components of OpenM++ from the perspective of a programmer or system architect.

Project Status: production stable since February 2016

2012, December: OpenM++ Design

2012, December: OpenM++ Model Architecture, December 2012

2012, December: Roadmap, Phase 1

2013, May: Prototype version

2013, September: Alpha version

2014, March: Project Status, Phase 1 completed

2016, December: Task List

2017, January: Design Notes. Subsample As Parameter problem. Completed

[back to contents]

This section contains technical information for programmers interested in OpenM++ itself, as opposed to model developers or model users. It
contains links to the OpenM++ source code and to the documentation of that source code.

GitHub: Run-time and compiler c++ Source code↗

Source code documentation: Runtime library↗

Source code documentation: Compiler↗

GitHub: Go library, web-service and db tools Source Code↗

Source code documentation: Go library and tools↗

GitHub: openMpp R package↗

Source code documentation: openMpp R package↗

GitHub: Source code to build Docker images↗

GitHub: OpenM++ UI frontend↗

[back to contents]

OpenM++ web-site↗

E-mail: openmpp dot org at gmail dot com

License, Copyright and Contribution: OpenM++ is Open Source and Free

MIT License↗

OpenM++ design

OpenM++ source code

Contact Us

https://github.com/openmpp/main
https://openmpp.org/libopenm_doxygen/html/index.html
https://openmpp.org/omc_doxygen/html/index.html
https://github.com/openmpp/go
https://godoc.org/github.com/openmpp/go
https://github.com/openmpp/R
https://openmpp.org/r/html/00Index.html
https://github.com/openmpp/docker
https://github.com/openmpp/UI
https://openmpp.org
https://openmpp.org/LICENSE.txt

OpenM++ on GitHub↗

OpenM++ on DockerHub↗

[back to contents]

https://github.com/openmpp
https://hub.docker.com/u/openmpp

Download:
desktop version: binary files and source code openmpp_win_YYYYMMDD.zip

cluster version: binary files and source code openmpp_win_mpi_YYYYMMDD.zip

Docker image to run openM++ models: openmpp/openmpp-run

Documentation: this wiki

It is recommended to start from desktop version of openM++.

You need to use cluster version of openM++ to run the model on multiple computers in your network, in cloud or HPC cluster environment.
OpenM++ is using MPI to run the models on multiple computers. Please check Model Run: How to Run the Model page for more details.

You can use Docker containers to avoid installation of multiple additional components in your host computer. Because all necessary software will
be installed in container your host system will be clean.

You may need to install Microsoft Visual C++ redistributable runtime, unless it is already installed as a part of some other software package:

If it is not present then please follow Microsoft instructions about: Visual C++ Redistributable.

download and unzip Windows desktop binaries openmpp_win_YYYYMMDD.zip into C:\SomeDir\

run modelOne model with single subsample on local machine:

C:
cd \SomeDir\openmpp_win_20180205\models\bin
modelOne.exe

2014-03-17 17:14:24.0023 Model: modelOne
2014-03-17 17:14:24.0070 Reading Parameters
2014-03-17 17:14:24.0085 Running Simulation
2014-03-17 17:14:24.0101 Writing Output Tables
2014-03-17 17:14:24.0179 Done.

run modelOne model with 16 subsamples and 4 threads:

modelOne.exe -OpenM.Subvalues 16 -OpenM.Threads 4

2017-06-06 17:35:29.0421 modelOne
2017-06-06 17:35:29.0435 One-time initialization
2017-06-06 17:35:29.0454 Run: 106
2017-06-06 17:35:29.0456 Reading Parameters
2017-06-06 17:35:29.0460 Running Simulation
2017-06-06 17:35:29.0464 Writing Output Tables
........................
2017-06-06 17:35:29.0870 Done.

run other models (i.e. NewCaseBased, NewTimeBased, RiskPaths):

NewCaseBased.exe -OpenM.Subvalues 8 -OpenM.Threads 2

run RiskPaths model with new parameter value CanDie = true and all other parameter values the same as in previous model run:

Windows: Quick Start for Model Users
Where is OpenM++

Prerequisites

Run on Windows computer

https://github.com/openmpp/main/releases/latest
https://github.com/openmpp/main/releases/latest
https://hub.docker.com/r/openmpp/openmpp-run
http://www.open-mpi.org/
https://docs.microsoft.com/en-US/cpp/windows/latest-supported-vc-redist
https://github.com/openmpp/main/releases/latest

RiskPaths.exe -Parameter.CanDie true -OpenM.BaseRunId 102

2020-08-14 17:27:48.574 RiskPaths
2020-08-14 17:27:48.610 Run: 103
2020-08-14 17:27:48.618 Sub-value: 0
2020-08-14 17:27:48.628 member=0 Simulation progress=0% cases=0
........................
2020-08-14 17:27:54.883 Done.

run modelOne to compute modeling task "taskOne":

modelOne.exe -OpenM.Subvalues 16 -OpenM.Threads 4 -OpenM.TaskName taskOne

2017-06-06 17:39:24.0757 modelOne
2017-06-06 17:39:24.0782 One-time initialization
2017-06-06 17:39:24.0800 Run: 107
2017-06-06 17:39:24.0802 Reading Parameters
2017-06-06 17:39:24.0807 Running Simulation
........................
2017-06-06 17:39:25.0232 Run: 108
2017-06-06 17:39:25.0234 Reading Parameters
........................
2017-06-06 17:39:25.0661 Done.

in case if previous model run fail, for example, due to power outage, then it can be "restarted":

modelOne.exe -OpenM.RestartRunId 1234

output may vary depending on the stage where previous modelOne run failed, but still similar to above.

Note: We recommend to use normal Windows command line cmd.exe. If you are using Windows PowerShell then it may be necessary to put
"quotes" around command line options, e.g:

model.exe "-OpenM.Subvalues" 16

download and unzip Windows cluster binaries openmpp_win_mpi_YYYYMMDD.zip into C:\AnyDir. Please notice name of cluster version
archive has mpi in it, i.e. openmpp_win_mpi_20180205.zip and is located in a subdirectory mpi.

if you are using regular Windows computers in your organization network (like Windows 7 or 10 and not MS HPC servers or Azure) then:

make sure you have latest version of Microsoft MPI Redistributable installed.

or pull Docker image docker pull openmpp/openmpp-run:windows-1903 to run models inside the container (see below).

run modelOne model with single subsample on local machine:

C:
cd \AnyDir\openmpp_win_mpi_20180205\models\bin
modelOne_mpi.exe

2014-03-17 17:14:24.0023 Model: modelOne
2014-03-17 17:14:24.0070 Reading Parameters
2014-03-17 17:14:24.0085 Running Simulation
2014-03-17 17:14:24.0101 Writing Output Tables
2014-03-17 17:14:24.0179 Done.

run two instances of modelOne to compute 16 subsamples and 4 threads:

mpiexec -n 2 modelOne_mpi.exe -OpenM.Subvalues 16 -OpenM.Threads 4

Run on multiple computers over network, in HPC cluster or cloud

https://github.com/openmpp/main/releases/latest
https://docs.microsoft.com/en-us/message-passing-interface/microsoft-mpi

2017-06-06 17:52:06.0143 modelOne
2017-06-06 17:52:06.0145 modelOne
2017-06-06 17:52:06.0179 Parallel run of 2 modeling processes, 4 thread(s) each
2017-06-06 17:52:06.0179 One-time initialization
2017-06-06 17:52:06.0179 One-time initialization
2017-06-06 17:52:06.0192 Run: 106
2017-06-06 17:52:06.0192 Run: 106
2017-06-06 17:52:06.0192 Reading Parameters
........................
2017-06-06 17:52:06.0532 Writing Output Tables
2017-06-06 17:52:06.0599 Done.
2017-06-06 17:52:06.0599 Done.

run other models (i.e. NewCaseBased, NewTimeBased, RiskPaths):

mpiexec -n 8 NewCaseBased_mpi.exe -OpenM.Subvalues 64 -OpenM.Threads 4

Microsoft recommends to install HPC Pack which simplifies your computational resources management rather than using mpiexec as above. It is
also possible to use Microsoft Azure cloud where compute nodes available for you on demand.

download and unzip openmpp_win_YYYYMMDD.zip into C:\AnyDir.

make sure you have Docker for Windows installed, see Microsoft documentation for more details.

pull Docker image:

docker pull openmpp/openmpp-run:windows-1903

run modelOne model with single subsample:

docker run -v C:\AnyDir\models\bin:C:\ompp openmpp/openmpp-run:windows-1903 modelOne.exe

2014-03-17 17:14:24.0023 Model: modelOne
2014-03-17 17:14:24.0070 Reading Parameters
2014-03-17 17:14:24.0085 Running Simulation
2014-03-17 17:14:24.0101 Writing Output Tables
2014-03-17 17:14:24.0179 Done.

run two instances of modelOne to compute 16 subsamples and 4 threads:

docker run -v C:\AnyDir\models\bin:C:\ompp openmpp/openmpp-run:windows-1903 mpiexec -n 2 modelOne_mpi.exe -OpenM.Subvalues 16 -OpenM.Threads 4

2017-06-06 17:52:06.0143 modelOne
2017-06-06 17:52:06.0145 modelOne
2017-06-06 17:52:06.0179 Parallel run of 2 modeling processes, 4 thread(s) each
2017-06-06 17:52:06.0179 One-time initialization
2017-06-06 17:52:06.0179 One-time initialization
2017-06-06 17:52:06.0192 Run: 106
2017-06-06 17:52:06.0192 Run: 106
2017-06-06 17:52:06.0192 Reading Parameters
........................
2017-06-06 17:52:06.0532 Writing Output Tables
2017-06-06 17:52:06.0599 Done.
2017-06-06 17:52:06.0599 Done.

run other models (i.e. NewCaseBased, NewTimeBased, RiskPaths):

docker run -v C:\AnyDir\models\bin:C:\ompp openmpp/openmpp-run:windows-1903 mpiexec -n 8 NewCaseBased_mpi.exe -OpenM.Subvalues 64 -OpenM.Threads 4

Run models using Docker container

https://github.com/openmpp/main/releases/latest
https://docs.docker.com/docker-for-windows/install/
https://docs.microsoft.com/en-us/virtualization/windowscontainers/manage-docker/configure-docker-daemon

Download desktop version zip archive: openmpp_win_YYYYMMDD.zip binary files and source code

Extract zip archive to C:\openmpp_win_20210112\

Build the example RiskPaths model and run the Default scenario
Open C:\openmpp_win_20210112\models\RiskPaths\RiskPaths-ompp.sln using Visual Studio 2022

'Rebuild' in Visual Studio 2022 to build the model and run the Default scenario

(optional) Enable in project Properties -> OpenM++ -> "Run scenario after build" to examine model run results

(optional) Enable "Export model run results into csv files" to create CSV files containing values of model parameters and output tables

(optional) Enable "Open model web UI" to modify parameters, run the model and view model results

(optional) to enable model development from any directory, independent of C:\openmpp_win_20210112 location, do any of:

open a Command Prompt window and type the command: setx OM_ROOT C:\openmpp_win_20210112

open your model Model.vcrproj file in Notepad and update line:

<OM_ROOT>C:\openmpp_win_20210112</OM_ROOT>

How to: create and debug models on Windows

It is recommended to start from desktop version of openM++.

You need to use cluster version of openM++ to run the model on multiple computers in your network, in cloud or HPC cluster environment.
OpenM++ is using MPI to run the models on multiple computers. Please check Model Run: How to Run the Model page for more details.

Tested platforms:

Windows 10, 11

Visual Studio 2022, including Community Edition, Visual Studio 2019 also works, but not tested regularly

(optional) Microsoft MPI SDK Redistributable Package

Note: It may work on any Windows 7 and above or 2008R2 and above, 32 and 64 bits, with Visual Studio 2017. However we are not testing it on
older versions of Windows or Visual Studio.

You can use any of test models solution, except of modelOne, as starting point to develop your own model. Below we are using NewCaseBased
model as example.

To build and run debug version of the model use desktop (non-MPI) version of openM++:

download and unzip openmpp_win_YYYYMMDD.zip Windows desktop binaries into C:\openmpp_win_20210112\

build Debug version of the model using solution: C:\openmpp_win_20210112\models\NewCaseBased\NewCaseBased-ompp.sln

(optional) Rebuild the model and run it:
go to menu: Project -> Properties -> Configuration Properties -> OpenM++

change: Run Options -> Run the scenario after build -> Yes

Rebuild project

At bottom Output window of Visual Studio you will see something like:

Windows: Quick Start for Model Developers
Step by Step

OpenM++ Models: desktop? clusters? MPI?

Build on Windows

Build debug version of the model

https://github.com/openmpp/main/releases/latest
http://www.open-mpi.org/
https://github.com/openmpp/main/releases/latest

1>Model.vcxproj -> C:\openmpp_win_20210112\models\NewCaseBased\ompp\bin//NewCaseBasedD.exe
1>2017-06-06 18:21:08.0092 NewCaseBased
1>2017-06-06 18:21:08.0160 Run: 102
1>2017-06-06 18:21:08.0163 Get fixed and missing parameters
1>2017-06-06 18:21:08.0166 Get scenario parameters
1>2017-06-06 18:21:08.0172 Sub-value 0
1>2017-06-06 18:21:08.0175 compute derived parameters
1>2017-06-06 18:21:08.0177 Initialize invariant entity data
1>2017-06-06 18:21:08.0180 Member=0 simulation progress=0%
........
1>2017-06-06 18:21:08.0688 member=0 write output tables - finish
1>2017-06-06 18:21:08.0697 Writing Output Tables Expressions
1>2017-06-06 18:21:08.0727 Done.
1>Done building project "Model.vcxproj".
======= Build: 1 succeeded, 0 failed, 0 up-to-date, 0 skipped =======

Make sure you have latest version of Microsoft MPI SDK and MPI Redistributable installed.

download and unzip openmpp_win_mpi_YYYYMMDD.zip Windows cluster binaries into C:\openmpp_win_mpi_20180205. Please notice
name of cluster version archive has mpi in it, i.e. openmpp_win_mpi_20180205.zip .

Rebuild the model and run it:

go to menu: Project -> Properties -> Configuration Properties -> OpenM++

change: Build Options -> Grid computing (MPI) -> MPI-enabled Executable (MPI)

Build cluster version of the model to run on multiple computers over network

https://docs.microsoft.com/en-us/message-passing-interface/microsoft-mpi
https://github.com/openmpp/main/releases/latest

change: Run Options -> Number of processes to launch -> use 2 or more (depends on your cluster configuration)

change: Run Options -> Run the scenario after build -> Yes

Rebuild Model project

At bottom Output window of Visual Studio you will see something like:

1>Model.vcxproj -> C:\openmpp_win_mpi_20180205\models\RiskPaths\ompp\bin\RiskPaths_mpi.exe
1>2021-06-01 20:57:28.146 RiskPaths
1>2021-06-01 20:57:28.146 RiskPaths
1>2021-06-01 20:57:28.146 RiskPaths
1>2021-06-01 20:57:28.163 RiskPaths
........
1>2021-06-01 20:57:28.366 OpenM++ build : Windows 64 bit Release MPI
1>2021-06-01 20:57:28.367 Parallel run of 4 modeling processes, 1 thread(s) each
........
1>2021-06-01 20:57:28.859 member=3 Simulation progress=100% cases=2000
1>2021-06-01 20:57:28.867 member=3 Simulation summary: cases=2000, events/case=112.9, entities/case=1.0, elapsed=0.453989s
1>2021-06-01 20:57:28.868 member=3 Write output tables - start
1>2021-06-01 20:57:28.873 member=3 Write output tables - finish
1>2021-06-01 20:57:29.233 member=0 Write output tables - finish
1>2021-06-01 20:57:29.919 Writing into aggregated output tables, run: 102
1>2021-06-01 20:57:32.607 Done.
1>2021-06-01 20:57:32.607 Done.
1>2021-06-01 20:57:32.607 Done.
1>2021-06-01 20:57:32.607 Done.
1>Done building project "Model.vcxproj".
========== Rebuild All: 1 succeeded, 0 failed, 0 skipped ==========

Note: you can build Debug version of the model and run it on cluster, but actual debuging on cluster is far from being trivial.

OpenM++ tested on current version of Windows 10 and Visual Studio and it is likely works on previous versions too, but it is not tested. If you
experiencing an issues with model build please try below recepies.

If you getting link unresolved external symbol errors:

You may get linkage errors if your model .obj files incompatible with object files in openM++ library or Microsoft VC++ libraries. For example,
build error messages may look like:

1>libopenm.lib(main.obj) : error LNK2001: unresolved external symbol __imp____std_init_once_begin_initialize@16
1>libopenm.lib(main.obj) : error LNK2001: unresolved external symbol __imp____std_init_once_complete@12
1>libopenm.lib(file.obj) : error LNK2001: unresolved external symbol ___std_system_error_allocate_message@8
1>libopenm.lib(file.obj) : error LNK2001: unresolved external symbol ___std_system_error_deallocate_message@4
1>C:\openmpp_win_20210304\models\RiskPaths\ompp\bin\RiskPaths.exe : fatal error LNK1120: 4 unresolved externals

1. Clean existing model intermediate files and build model again. Assuming your model directory is C:\openmpp_win_20210304\models\RiskPaths then
remove following directories:

C:\openmpp_win_20210304\models\RiskPaths\ompp\bin\
C:\openmpp_win_20210304\models\RiskPaths\ompp\build\
C:\openmpp_win_20210304\models\RiskPaths\ompp\src\

2. If you are using Visual Studio 2019 or 2017 then recepie above may not solve the problem. In that case you need to rebuild libopenm

openM++ model run-time libarary.

3. Open solution C:\openmpp_win_20210304\openm\openm.sln :

Rebuild libopenm library:

Visual Studio menu -> Build -> Batch Build...

select all libopenm projects: Debug / Release / x64 / Win32

click on Rebuild

Using older versions of Visual Studio

Open your model solution and do rebuild. It is expected to work and you should be able to debug your model even with Visual Studio 2017:

If you getting build error MSB8036:

C:\Program Files (x86)\Microsoft Visual Studio\2017\Community\Common7\IDE\VC\VCTargets\Platforms\Win32\PlatformToolsets\v141\Toolset.targets(34,5):
error MSB8036: The Windows SDK version 10.0.14393.0 was not found.
Install the required version of Windows SDK or change the SDK version in the project property pages or by right-clicking the solution and selecting "Retarget solution".

then do one of:

"Retarget solution"

use Visual Studio 2019

install Windows 8.1 SDK and UCRT SDK:

Download:
desktop version: binary files and source code openmpp_debian_YYYYMMDD.tar.gz

cluster version: binary files and source code openmpp_debian_mpi_YYYYMMDD.tar.gz

Docker image to run openM++ models: openmpp/openmpp-run:debian

Documentation: this wiki

It is recommended to start from desktop version of openM++.

You need to use cluster version of openM++ to run the model on multiple computers in your network, in cloud or HPC cluster environment.
OpenM++ is using MPI to run the models on multiple computers. Please check Model Run: How to Run the Model page for more details.

You can use Docker containers to avoid installation of multiple additional components in your host computer. Because all necessary software will
be installed in container your host system will be clean.

download and unpack openM++, i.e.:

wget https://github.com/openmpp/main/releases/download/v1.2.0/openmpp_debian_20190508.tar.gz
tar xzf openmpp_debian_20190508.tar.gz

run modelOne model with single subsample on local machine:

cd openmpp_debian_20190508/models/bin/
./modelOne

2017-06-06 19:24:53.0747 modelOne
2017-06-06 19:24:53.0763 Run: 105
2017-06-06 19:24:53.0763 Reading Parameters
2017-06-06 19:24:53.0764 Running Simulation
2017-06-06 19:24:53.0765 Writing Output Tables
2017-06-06 19:24:53.0790 Done.

run modelOne model with 16 subsamples and 4 threads:

./modelOne -OpenM.Subvalues 16 -OpenM.Threads 4

2017-06-06 19:25:38.0721 modelOne
2017-06-06 19:25:38.0735 Run: 106
2017-06-06 19:25:38.0735 Reading Parameters
........................
2017-06-06 19:25:38.0906 Done.

run other models (i.e. NewCaseBased, NewTimeBased, RiskPaths):

./NewCaseBased -OpenM.Subvalues 32 -OpenM.Threads 4

run RiskPaths model with new parameter value CanDie = true and all other parameter values the same as in previous model run:

RiskPaths -Parameter.CanDie true -OpenM.BaseRunId 102

2020-08-14 17:27:48.574 RiskPaths
2020-08-14 17:27:48.610 Run: 103
2020-08-14 17:27:48.618 Sub-value: 0
2020-08-14 17:27:48.628 member=0 Simulation progress=0% cases=0
........................
2020-08-14 17:27:54.883 Done.

Linux: Quick Start for Model Users
Where is OpenM++

Run on Linux computer

https://github.com/openmpp/main/releases/latest
https://github.com/openmpp/main/releases/latest
https://hub.docker.com/r/openmpp/openmpp-run
http://www.open-mpi.org/

run modelOne to compute modeling task "taskOne":

./modelOne -OpenM.Subvalues 16 -OpenM.Threads 4 -OpenM.TaskName taskOne

2017-06-06 19:27:08.0401 modelOne
2017-06-06 19:27:08.0421 Run: 107
2017-06-06 19:27:08.0421 Reading Parameters
........................
2017-06-06 19:27:08.0593 Run: 108
2017-06-06 19:27:08.0593 Reading Parameters
........................
2017-06-06 19:27:08.0704 Writing Output Tables
2017-06-06 19:27:08.0812 Done.

in case if previous model run fail, for example, due to power outage, then it can be "restarted":

./modelOne -OpenM.RestartRunId 1234

output may vary depending on the stage where previous modelOne run failed, but still similar to above.

make sure you have MPI run-time installed and ready to use. For example, on RedHat you may need to load it by following commands:

module load mpi/openmpi-x86_64

As an alternative to MPI installation you can pull Docker image docker pull openmpp/openmpp-run:debian to run models inside the container (see
below).

download and unpack cluster version of openM++, i.e.:

wget https://github.com/openmpp/main/releases/download/v1.2.0/openmpp_debian_mpi_20190508.tar.gz
tar xzf openmpp_debian_mpi_20190508.tar.gz

please notice name of cluster version archive has mpi in it, i.e. openmpp_debian_mpi_20190508.tar.gz

run modelOne model with single subsample on local machine:

cd openmpp_debian_mpi_20190508/models/bin/
./modelOne_mpi

2017-06-06 19:30:52.0690 Run: 105
2017-06-06 19:30:52.0690 Reading Parameters
2017-06-06 19:30:52.0691 Running Simulation
2017-06-06 19:30:52.0691 Writing Output Tables
2017-06-06 19:30:52.0716 Done.

run two instances of modelOne to compute 16 subsamples and 4 threads:

mpiexec -n 2 modelOne_mpi -OpenM.Subvalues 16 -OpenM.Threads 4

2017-06-06 19:43:01.0486 modelOne
2017-06-06 19:43:01.0487 modelOne
2017-06-06 19:43:01.0742 Parallel run of 2 modeling processes, 4 thread(s) each
2017-06-06 19:43:01.0750 Run: 106
2017-06-06 19:43:01.0750 Reading Parameters
2017-06-06 19:43:01.0750 Run: 106
2017-06-06 19:43:01.0750 Reading Parameters
..........
2017-06-06 19:43:01.0800 Writing Output Tables
2017-06-06 19:43:01.0878 Done.
2017-06-06 19:43:01.0880 Done.

run other models (i.e. NewCaseBased, NewTimeBased, RiskPaths):

Run on multiple computers over network, in HPC cluster or cloud

mpiexec -n 8 NewCaseBased_mpi -OpenM.Subvalues 64 -OpenM.Threads 4

It is recommended to install SLURM or Torque to simplify your computational resources management rather than using mpiexec as above. It is
also possible to use Google Cloud, Amazon or even Microsoft Azure cloud where compute nodes available for you on demand.

make sure you have Docker installed, for example, on Ubuntu: sudo apt-get install docker .

pull Docker image:

docker pull openmpp/openmpp-run:debian

image build for user ompp, UID=1999, GID=1999 and you may need to do one of:

add same user ompp, UID=1999, GID=1999 to your host system and login as user ompp

or as shown below use environment variables OMPP_* to map your current user name, UID, GID, HOME to container user

download and unpack cluster version of openM++, i.e.:

wget https://github.com/openmpp/main/releases/download/v1.2.0/openmpp_debian_mpi_20200621.tar.gz
tar xzf openmpp_debian_mpi_20200621.tar.gz

please notice name of cluster version archive has mpi in it, i.e. openmpp_debian_mpi_20200621.tar.gz

run modelOne model with single subsample on local machine:

docker run \
-v $HOME/models/bin:/home/models \
-e OMPP_USER=models -e OMPP_GROUP=models -e OMPP_UID=$UID -e OMPP_GID=`id -g` \
openmpp/openmpp-run:debian \
./modelOne_mpi

2017-06-06 19:30:52.0690 Run: 105
2017-06-06 19:30:52.0690 Reading Parameters
2017-06-06 19:30:52.0691 Running Simulation
2017-06-06 19:30:52.0691 Writing Output Tables
2017-06-06 19:30:52.0716 Done.

For explanation of:

-v $HOME/models/bin:/home/models \
-e OMPP_USER=models -e OMPP_GROUP=models -e OMPP_UID=$UID -e OMPP_GID=`id -g` \

please take a look at User, group, home_directory topic.

run two instances of modelOne to compute 16 subsamples and 4 threads:

docker run \
-v $HOME/models/bin:/home/models \
-e OMPP_USER=models -e OMPP_GROUP=models -e OMPP_UID=$UID -e OMPP_GID=`id -g` \
openmpp/openmpp-run:debian \
mpiexec -n 2 modelOne_mpi -OpenM.Subvalues 16 -OpenM.Threads 4

2017-06-06 19:43:01.0486 modelOne
2017-06-06 19:43:01.0487 modelOne
2017-06-06 19:43:01.0742 Parallel run of 2 modeling processes, 4 thread(s) each
2017-06-06 19:43:01.0750 Run: 106
2017-06-06 19:43:01.0750 Reading Parameters
2017-06-06 19:43:01.0750 Run: 106
2017-06-06 19:43:01.0750 Reading Parameters
..........
2017-06-06 19:43:01.0800 Writing Output Tables
2017-06-06 19:43:01.0878 Done.
2017-06-06 19:43:01.0880 Done.

Run models using Docker container

run other models (i.e. NewCaseBased, NewTimeBased, RiskPaths):

docker run \
....user, UID, GID, HOME.... \
openmpp/openmpp-run:debian \
mpiexec -n 8 NewCaseBased_mpi -OpenM.Subvalues 64 -OpenM.Threads 4

Download:
desktop version: binary files and source code openmpp_debian_YYYYMMDD.tar.gz

cluster version: binary files and source code openmpp_debian_mpi_YYYYMMDD.tar.gz

How to: create and debug models on Linux

It is recommended to start from desktop version of openM++.

You need to use cluster version of openM++ to run the model on multiple computers in your network, in cloud or HPC cluster environment.
OpenM++ is using MPI to run the models on multiple computers. Please check Model Run: How to Run the Model page for more details.

Tested platforms:

Debian stable (12) 11 and 10, MX Linux 23, 21 and 19, Ubuntu 22.04, RedHat 9+

g++ >= 8.3

(optional) MPI, i.e.: OpenMPI >= 3.1 or MPICH (other MPI implementations expected to work but not tested)

(optional) OpenMPI >= 4.0 on RedHat >= 8.3 (OpenMPI was broken on RedHat 8.1)

Note: It does work on most of latest Linux distributions, we just not testing regularly on every Linux version.

It is also occasionally tested on openSUSE, Mint, Manjaro, Solus and others.

It is not supported, but may also work on older versions, for example Ubuntu 20.04, Ubuntu 18.04 and RedHat 8.

There is a minor incompatibility of shared libraries between Ubuntu 20.04 and Debian 10. As result you need to rebuild our model run-time
libraries before building you own model:

download and unpack openM++ into any folder:

wget https://github.com/openmpp/main/releases/download/v1.8.6/openmpp_debian_20210415.tar.gz
tar xzf openmpp_debian_20210415.tar.gz

rebuild model run-time libraries:

cd openmpp_debian_20210415/openm
wget https://github.com/openmpp/main/releases/download/v1.8.6/openmpp_debian_20210415.tar.gz
tar xzf openmpp_debian_20210415.tar.gz

You can use any of test models makefile, except of modelOne, as starting point to develop your own model. Below we are using NewCaseBased
model as example.

To build and run debug version of the model use desktop (non-MPI) version of openM++:

check your g++ --version:

g++ (Debian 8.3.0-6) 8.3.0
g++ (Ubuntu 9.3.0-10ubuntu2) 9.3.0
g++ (GCC) 8.3.1 20191121 (Red Hat 8.3.1-5)

download and unpack openM++

wget https://github.com/openmpp/main/releases/download/v1.8.3/openmpp_debian_20210304.tar.gz
tar xzf openmpp_debian_20210304.tar.gz

Linux: Quick Start for Model Developers
Where is OpenM++

Build on Linux

Build on Ubuntu 20.04

Build debug version of the model

https://github.com/openmpp/main/releases/latest
https://github.com/openmpp/main/releases/latest
http://www.open-mpi.org/

build debug version of NewCaseBased model and "publish" it ("publish" do create NewCaseBased.sqlite database with default input data
set)

cd openmpp_debian_20210304/models/NewCaseBased/
make all publish

run the model

cd ompp-linux/bin
./NewCaseBasedD

2017-06-06 19:59:12.0429 NewCaseBased
2017-06-06 19:59:12.0449 Run: 103
2017-06-06 19:59:12.0449 Get fixed and missing parameters
2017-06-06 19:59:12.0449 Get scenario parameters
2017-06-06 19:59:12.0450 Sub-value 0
2017-06-06 19:59:12.0450 compute derived parameters
2017-06-06 19:59:12.0450 Initialize invariant entity data
2017-06-06 19:59:12.0450 Member=0 simulation progress=0%
..........
2017-06-06 19:59:12.0505 member=0 write output tables - finish
2017-06-06 19:59:12.0508 Writing Output Tables Expressions
2017-06-06 19:59:12.0520 Done.

Make executable, "publish" and run NewCaseBased test model:

cd openmpp_debian_20210304/models/NewCaseBased/
make RELEASE=1 clean-all
make RELEASE=1 all publish
cd ompp-linux/bin
./NewCaseBased

Make executables, "publish" (create model.sqlite database file) and run all test models:

cd openmpp_debian_20210304/models/
make RELEASE=1 clean-all
make RELEASE=1 all publish run publish-all

results are in openmpp_debian_20210304/models/bin directory

If you want to keep model development folder(s) outside of openM++ release directory then set OM_ROOT environment variable to specify
openM++ release location. For example if your model is in $HOME/my-models/BestModel then to build it do any of:

cd my-models/BestModel
OM_ROOT=openmpp_debian_20210304 make all publish run

Or edit $HOME/my-models/BestModel/makefile to set OM_ROOT :

ifndef OM_ROOT
 OM_ROOT = $(HOME)/openmpp_debian_20210304
endif

Or add export OM_ROOT=$HOME/openmpp_debian_20210304 into your .bash_profile

Make sure you have MPI installed and configured. For example, on RedHat you may need to load MPI module: module load mpi/openmpi-x86_64

download and unpack cluster version of openM++, i.e.:

Build release version of the model

Rebuild all test models

OM_ROOT: How to separate model folder and openM++ release folder

Build cluster version of the model to run on multiple computers over network

wget https://github.com/openmpp/main/releases/download/v1.8.3/openmpp_debian_mpi_20210304.tar.gz
tar xzf openmpp_debian_mpi_20210304.tar.gz

please notice name of cluster version archive has mpi in it, i.e. openmpp_debian_mpi_20210304.tar.gz

make executable and "publish" (create model.sqlite database file) of NewCaseBased test model:

cd openmpp_debian_mpi_20210304/models/NewCaseBased/
make RELEASE=1 OM_MSG_USE=MPI all publish

run 3 instances of NewCaseBased on 3 hosts to compute 16 subsamples using 4 threads

cd ompp-linux/bin
mpirun -n 3 -H omm,om1,om2 NewCaseBased_mpi -OpenM.Subvalues 16 -OpenM.Threads 4

2017-06-06 20:15:12.0050 NewCaseBased
2017-06-06 20:15:12.0173 NewCaseBased
2017-06-06 20:15:12.0200 NewCaseBased
2017-06-06 20:15:13.0148 Parallel run of 3 modeling processes, 4 thread(s) each
2017-06-06 20:15:13.0162 Run: 102
2017-06-06 20:15:13.0163 Get fixed and missing parameters
2017-06-06 20:15:13.0163 Get scenario parameters
2017-06-06 20:15:13.0164 compute derived parameters
2017-06-06 20:15:13.0164 Initialize invariant entity data
2017-06-06 20:15:13.0161 Run: 102
..........
2017-06-06 20:15:13.0224 member=0 write output tables - finish
2017-06-06 20:15:13.0354 Done.
2017-06-06 20:15:13.0352 Done.
2017-06-06 20:15:13.0353 Done.

You can use any of test models makefile, except of modelOne, as starting point to develop your own model.

Download latest binary files and source code: openmpp_mac_YYYYMMDD.tar.gz

Documentation: this wiki

You can have multiple versions of openM++ installed on your computer. OpenM++ distributed as tar.gz archive, you can unpack into any directory
and it is ready to use. In the documentation that directory called OM_ROOT.

OpenM++ does not update any system shared resources and you can remove it any time by simply deleting openM++ directory.

It is possible to run openM++ models:

from terminal command line as described below

using openM++ UI on your local computer: UI: openM++ user interface

from Xcode model debug session: MacOS: Quick Start for Model Developers

On Linux and/or Windows you also can run model in cloud or on high perfomance cluster (HPC). Please also check Model Run: How to Run the
Model page for more details.

download and unpack openM++ using Safari or, for example, curl:

curl -L -o om.tar.gz https://github.com/openmpp/main/releases/download/v1.6.0/openmpp_mac_20200621.tar.gz
tar xzf om.tar.gz

run modelOne model with single sub-sample on local machine:

cd openmpp_mac_20200621/models/bin/
./modelOne

2017-06-06 19:24:53.0747 modelOne
2017-06-06 19:24:53.0763 Run: 105
2017-06-06 19:24:53.0763 Reading Parameters
2017-06-06 19:24:53.0764 Running Simulation
2017-06-06 19:24:53.0765 Writing Output Tables
2017-06-06 19:24:53.0790 Done.

run modelOne model with 16 sub-samples and 4 threads:

./modelOne -OpenM.Subvalues 16 -OpenM.Threads 4

2017-06-06 19:25:38.0721 modelOne
2017-06-06 19:25:38.0735 Run: 106
2017-06-06 19:25:38.0735 Reading Parameters
........................
2017-06-06 19:25:38.0906 Done.

run other models (i.e. NewCaseBased, NewTimeBased, RiskPaths):

./NewCaseBased -OpenM.Subvalues 32 -OpenM.Threads 4

run RiskPaths model with new parameter value CanDie = true and all other parameter values the same as in previous model run:

RiskPaths -Parameter.CanDie true -OpenM.BaseRunId 102

MacOS: Quick Start for Model Users
Where is OpenM++

Run openM++ models from terminal command line

https://github.com/openmpp/main/releases/latest

2020-08-14 17:27:48.574 RiskPaths
2020-08-14 17:27:48.610 Run: 103
2020-08-14 17:27:48.618 Sub-value: 0
2020-08-14 17:27:48.628 member=0 Simulation progress=0% cases=0
........................
2020-08-14 17:27:54.883 Done.

run modelOne to compute modeling task "taskOne":

./modelOne -OpenM.Subvalues 16 -OpenM.Threads 4 -OpenM.TaskName taskOne

2017-06-06 19:27:08.0401 modelOne
2017-06-06 19:27:08.0421 Run: 107
2017-06-06 19:27:08.0421 Reading Parameters
........................
2017-06-06 19:27:08.0593 Run: 108
2017-06-06 19:27:08.0593 Reading Parameters
........................
2017-06-06 19:27:08.0704 Writing Output Tables
2017-06-06 19:27:08.0812 Done.

in case if previous model run fail, for example, due to power outage, then it can be "restarted":

./modelOne -OpenM.RestartRunId 1234

output may vary depending on the stage where previous modelOne run failed, but still similar to above.

Download: latest binary files and source code

How to: create and debug models on MacOS

Also, please check Model Run: How to Run the Model page for more details.

Tested on: tested on MacOS latest, may work starting from Catalina 10.15 and Big Sur 11.1+

Install Xcode and command line developer tools, if not installed already by Xcode: xcode-select --install .

(optional) Install Visual Studio Code for cross-platform development: https://code.visualstudio.com/docs/?dv=osx

Check if clang, make and sqlite3 are installed on your computer:

g++ --version
....
Apple clang version 11.0.0 (clang-1100.0.33.12)

make --version
....
GNU Make 3.81

sqlite3 --version
....
3.28.0 2019-04-15 14:49:49

Make sure you are using tight security settings on your Mac and antivirus software, if necessary. We are trying our best to keep
development machines clean, but cannot provide any guarantee.

On Big Sur it is very likely to get an security error when you are trying to run any downloaded executable:

please reply "Cancel" to that question (click "Cancel" button).

remove quarantine attribute from openM++ installation directory, for example:

xattr -r -d com.apple.quarantine ~/openmpp_mac_20200621

You can use any of test models makefile, except of modelOne, as starting point to develop your own model. Below we are using NewCaseBased
model as example.

To build and run debug version of the model:

download and unpack latest openM++ release using Safari or curl:

MacOS: Quick Start for Model Developers
Where is OpenM++

Prerequisites

MacOS security issue

Build debug version of the model from terminal command line

https://github.com/openmpp/main/releases/latest
https://code.visualstudio.com/docs/?dv=osx

curl -L -o om.tar.gz https://github.com/openmpp/main/releases/download/v1.6.0/openmpp_mac_20200621.tar.gz
tar -xzf om.tar.gz

remove quarantine attribute from openM++ installation directory:

xattr -r -d com.apple.quarantine openmpp_mac_20200621

build debug version of NewCaseBased model and "publish" it ("publish" do create NewCaseBased.sqlite database with default input data
set)

cd openmpp_mac_20200621/models/NewCaseBased/
make all publish

run the model

cd ompp-mac/bin
./NewCaseBasedD

2017-06-06 19:59:12.0429 NewCaseBased
2017-06-06 19:59:12.0449 Run: 103
2017-06-06 19:59:12.0449 Get fixed and missing parameters
2017-06-06 19:59:12.0449 Get scenario parameters
2017-06-06 19:59:12.0450 Sub-value 0
2017-06-06 19:59:12.0450 compute derived parameters
2017-06-06 19:59:12.0450 Initialize invariant entity data
2017-06-06 19:59:12.0450 Member=0 simulation progress=0%
..........
2017-06-06 19:59:12.0505 member=0 write output tables - finish
2017-06-06 19:59:12.0508 Writing Output Tables Expressions
2017-06-06 19:59:12.0520 Done.

you can also build and run the model using make:

make all publish run
..........
2017-06-06 19:59:12.0429 NewCaseBased
2017-06-06 19:59:12.0449 Run: 103
..........
2017-06-06 19:59:12.0508 Writing Output Tables Expressions
2017-06-06 19:59:12.0520 Done.

Make executable, "publish" and run NewCaseBased test model:

cd openmpp_mac_20200621/models/NewCaseBased/
make RELEASE=1 clean-all
make RELEASE=1 all publish
cd ompp-mac/bin
./NewCaseBased

Make executables, "publish" (create model.sqlite database file) and run all test models:

cd openmpp_mac_20200621/models/
make RELEASE=1 clean-all
make RELEASE=1 all publish run publish-all

results are in openmpp_mac_20200621/models/bin directory

If you want to keep model development folder(s) outside of openM++ release directory then set OM_ROOT environment variable to specify
openM++ release location. For example if your model is in $HOME/my-models/BestModel then to build it do any of:

Build release version of the model from terminal command line

Rebuild all test models

OM_ROOT: How to separate model folder and openM++ release folder

cd my-models/BestModel
OM_ROOT=openmpp_mac_20200621 make all publish run

Or edit $HOME/my-models/BestModel/makefile to set OM_ROOT :

ifndef OM_ROOT
 OM_ROOT = $(HOME)/openmpp_mac_20200621
endif

Or add export OM_ROOT=$HOME/openmpp_mac_20200621 into your .zprofile

Download and unpack latest openM++ release using Safari or curl:

curl -L -o om.tar.gz https://github.com/openmpp/main/releases/download/v1.6.0/openmpp_mac_20200621.tar.gz
tar xzf om.tar.gz

Start Xcode and open any example model workspace, for example: ~/openmpp_mac_20200621/models/NewCaseBased/Model.xcworkspace

Use menu to select Product -> Scheme -> NewCaseBased:

Known issue: Xcode UI may not update check mark on selected scheme. To fix it go to Product -> Scheme -> Manage Schemes and use mouse
to drag any scheme to move it up or down.

Build openM++ sample model using Xcode

Build, debug and run openM++ example model(s) using Xcode.

Open model UI (beta) to update parameters, run the model and view results. To start model UI after build completed please change
Model.xcconfig variable START_OMPP_UI to "1" or "true" or "yes" (case-sensitive). Please see details at: Start model UI on MacOS from Xcode

It is convenient to use the same Visual Studio Code IDE if you need to develop on openM+++ models on multiple platforms (Linux, MacOS and
Windows). To install VSCode on MacOS and configure for openM++ development do following:

Download it from: https://code.visualstudio.com/docs/?dv=osx

Start Visual Studio Code.app and install extension ms-vscode.cpptools : C/C++ for Visual Studio Code (Microsoft)

Install VSCode

https://code.visualstudio.com/docs/?dv=osx

Define .ompp and .mpp file extensions as c++ files by using menu: Code -> Preferences -> Settings -> Text Editor -> Files -> Associations ->
Edit in settings.json:

{
 "files.associations": {
 "*.mpp": "cpp",
 "*.ompp": "cpp"
 }
}

It is recommended to start from single desktop version of openM++.

OpenM++ models can be run on Windows and Linux platforms, on single desktop computer, on multiple computers over network, in HPC cluster
or cloud environment (i.e. Google Cloud, Microsoft Azure, Amazon,...).

You need to use cluster version of openM++ to run the model on multiple computers in your network, in cloud or HPC cluster environment.
OpenM++ is using MPI to run the models on multiple computers.

By default openM++ model runs with one sub-value and in single thread, which is convenient to debug or study your model. There are following
options to run openM++ model:

"default" run: one sub-value and single thread

"desktop" run: multiple sub-values and multiple threads

"restart" run: finish model run after previous failure (i.e. power outage)

"task" run: multiple input sets of data (a.k.a. multiple "scenarios" in Modgen), multiple sub-values and threads

"cluster" run: multiple sub-values, threads and model process instances runs on LAN or cloud (required MPI)

"cluster task" run: same as "cluster" plus multiple input sets of data (required MPI)

Please also check Model Run: How model finds input parameters for more details.

Following terms: "simulation member", "replica", "sub-sample" are often used in micro-simulation conversations interchangeably, depending on
context. To avoid terminology discussion openM++ uses "sub-value" as equivalent of all above and some older pages of that wiki may contain
"sub-sample" in that case.

If no any options specified to run the model then

all parameters are from default input data set

single thread is used for modeling

only one sub-value calculated

modelOne.exe

It is most simple way to debug your model.

Model Run: How to Run the Model
OpenM++ model run overview

Sub-values: sub-samples, members, replicas

Default run: simplest

Desktop run: model run on single computer

http://www.open-mpi.org/

If only single computer available then

user can specify which set of input data to use (by set name or id)

number of sub-values to calculate

number of modeling threads to use

modelOne.exe -OpenM.SetName modelOne -OpenM.SubValues 16 -OpenM.Threads 4

After model run completed user can repeat it with modified parameter(s) values:

model.exe -Parameter.Ratio 0.7 -OpenM.BaseRunId 7 -OpenM.SubValues 16 -OpenM.Threads 4

Command above will run the model with new value for parameter Ratio = 0.7 and use the rest of parameters from previous model run (a.k.a.
"base" run). Base run can be identified by run id, which is 7 in example above, by run digest or run name. Please see Model Run: How model
finds input parameters for more details.

If previous model run was not completed (i.e. due to power failure or insufficient disk space) you can restart it by specifying run id:

modelOne.exe -OpenM.RestartRunId 11

Restart run: finish model run after previous failure

Task run: multiple sets of input data

Modeling task consists of multiple sets of input data and can be run in batch mode. For example, it is make sense to create modeling task to Run
RiskPaths model from R with 800 sets of input data to study Childlessness by varying

Age baseline for first union formation

Relative risks of union status on first pregnancy

RiskPaths.exe -OpenM.TaskName Childlessness -OpenM.SubValues 8 -OpenM.Threads 4

Run of such modeling task will read 800 input sets with set id [1, 800] and produce 800 model run outputs with run id [801, 1600]
respectively.

It is possible to append new sets of input data to the task as it runs. That allow you to use some optimization methods rather than simply
calculate all possible combinations of input parameters. In that case modeling task does not completed automatically but wait for external "task
can be completed" signal. For example:

#
pseudo script to run RiskPaths and find optimal solution for Childlessness problem
you can use R or any other tools of your choice
#
create Childlessness task
run loop until you satisfied with results

RiskPaths.exe -OpenM.TaskName Childlessness -OpenM.TaskWait true

find your modeling task run id, i.e.: 1234
analyze model output tables
if results not optimal
then append new set of input data into task "Childlessness" and continue loop
else signal to RiskPaths model "task can be completed":
UPDATE task_run_lst SET status = 'p' WHERE task_run_id = 1234;
#
Done.
#

Dynamic task run: wait for input data

Cluster run: model run on multiple computers

You use MPI to run the model on multiple computers over network or in cloud or on HPC cluster. For example, to run 4 instances of
modelOne.exe with 2 threads each and compute 16 sub-values:

mpiexec -n 4 modelOne.exe -OpenM.Threads 2 -OpenM.SubValues 16

Please notice, usage of "mpiexec -n 4" as above is suitable for test only and you should use your cluster tools for real model run.

Modeling task with 1000x input data sets can take long time to run and it is recommended to use cluster (multiple computers over network) or
cloud, such as Google Compute Engine, to do that. For example, RiskPaths task above can be calculated much faster if 200 servers available to
run it:

mpiexec -n 200 RiskPaths.exe -OpenM.TaskName Childlessness -OpenM.SubValues 16 -OpenM.Threads 4

Please notice, usage of "mpiexec -n 200" as above is suitable for test only and you should use your cluster tools for real model run.

Dynamic task: you can use -OpenM.TaskWait true argument as described above to dynamically change task as it runs.

Cluster task: run modeling task on multiple computers

http://www.open-mpi.org/

OpenM++ is a free and open source software, licensed under MIT License.

It is free to use, copy, modify, merge, publish, distribute, sublicense, and/or sell this software, for any purpose, commercial or non-
commercial.

All openM++ code has been written from scratch and not been taken from other projects.

To find out more about openM++ license please refer:

MIT License

open source licenses

Wiki article on MIT License

The MIT License (MIT)

Copyright (c) 2013 OpenM++ Contributors

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

OpenM++ includes contributions by various people and organizations. All OpenM++ contributors retain copyright on their contributions, but agree
to release it under the same license as OpenM++.

OpenM++ is currently in an intensive foundational development phase of (mostly) full-time developers, which precludes most independent
incremental fixes or enhancements. Nevertheless, if you or your organization would like to join and contribute to OpenM++ in this phase, please
contact us at openmpp99@gmail.com.

To contribute to OpenM++, we also require that you send us an email indicating that you accept the Developer’s Certificate of Origin (DCO).
Basically, the DCO affirms that you have the right to make contributions under the open source license of OpenM++. For more information on
DCO's see Contributor Agreements. Here's the text of the DCO used for OpenM++ (taken from the Linux DCO).

MIT License, Copyright and Contribution
OpenM++ is a Free and Open Source Software

OpenM++ License

Copyright Holders for OpenM++

Contribute to OpenM++

http://opensource.org/licenses/MIT
http://opensource.org/
http://simple.wikipedia.org/wiki/MIT_License
mailto:openmpp99@gmail.com
http://producingoss.com/en/contributor-agreements.html
http://developercertificate.org

Developer Certificate of Origin
Version 1.1

Copyright (C) 2004, 2006 The Linux Foundation and its contributors.
660 York Street, Suite 102,
San Francisco, CA 94110 USA

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

Developer's Certificate of Origin 1.1

By making a contribution to this project, I certify that:

(a) The contribution was created in whole or in part by me and I
 have the right to submit it under the open source license
 indicated in the file; or

(b) The contribution is based upon previous work that, to the best
 of my knowledge, is covered under an appropriate open source
 license and I have the right under that license to submit that
 work with modifications, whether created in whole or in part
 by me, under the same open source license (unless I am
 permitted to submit under a different license), as indicated
 in the file; or

(c) The contribution was provided directly to me by some other
 person who certified (a), (b) or (c) and I have not modified
 it.

(d) I understand and agree that this project and the contribution
 are public and that a record of the contribution (including all
 personal information I submit with it, including my sign-off) is
 maintained indefinitely and may be redistributed consistent with
 this project or the open source license(s) involved.

The email must contain the DCO text above and indicate your acceptance. Also include the Source Forge user name you will be using for your
contributions to OpenM++. If you are contributing as an employee, use your organizational email address and ensure that your hierarchical
supervisor(s) are on the CC. If you are not the IP owner of your contributions, provide the name of the organization which is, e.g. Government of
Canada.

Your email will be archived and a copy will be placed in the project repository to document the provenance of the contributions you make using
your GitHub user ID. Your name will be added to the AUTHORS.txt file of the project. If applicable, the AUTHORS.txt will also indicate that your
organization is a contributor and holds copyright to portions of OpenM++.

As any other product openM++ is using software libraries licensed under different terms. For example, if you choose to use SQLite as openM++
embedded database then SQLite Public Domain license is applied to SQLite portion of openM++. Or, in case of libiconv library, openM++ is using
it under LGPL v3.0 license.

Some intermediate development files used as part of openM++ build process also fall under other licenses. For example, Microsoft Visual Studio
project files or GNU make files. Nothing from such intermediate files ever reaches the final openM++ deliverable and the licenses associated with
those building tools should not be a factor in assessing your rights to copy and use openM++.

Usage of other software in OpenM++

Build Files

http://www.gnu.org/software/libiconv/

Home > Model Development Topics > Model Code

This topic contains general information about the source code of an OpenM++ model. It describes model source code in broad terms, the
contents of the model source code folder, and the Default scenario. It also briefly outlines the build process which transforms model source code
and a Default scenario into an executable and accompanying database.

Coding a model

Code folder and source files

Doc folder and documentation files

Source file content

Default scenario

Model build

Hiding syntactic islands

Modgen-specific: References to Modgen in this documentation refer to the Statistics Canada Modgen↗ platform. In this wiki, a model with
common source code from which either a Modgen executable or an OpenM++ executable can be built is called a cross-compatible model. Wiki
content apecific to existing Modgen users, cross-compatible models, or models originally developed in Modgen is highlighted Modgen-specific in
the text.

OpenM++ models are written in two languages: the OpenM++ language and the C++ language. The OpenM++ language is used to specify the
declarative aspects of a model, for example the model's classifications, parameters, entities, attributes, events, tables, labels, and notes. The
C++ language is used to specify the procedural aspects of a model, for example the sequentially executed statements which change an entity's
attributes when an event occurs in the simulation.

The OpenM++ language consists of declarative statements. The location and ordering of those statements in model source code files is arbitrary
and has no effect on the model specification. This provides a high level of modularity in model source code which can be particularly useful in
large and complex models.

A statement in the OpenM++ language starts with an opening keyword which specifies the nature of the declaration and ends with a closing ; .
The syntax between the opening keyword and the closing ; depends on the nature of the declaration.

For example, the classification keyword is used to declare a named ordered list of symbolic values:

classification SEX //EN Sex
{
 //EN Male
 MALE,

 //EN Female
 FEMALE
};

This example declares an OpenM++ classification named SEX . It has two possible values MALE and FEMALE . The declaration of SEX means that
SEX can be used as the dimension of a parameter or table, or as the type (characteristic) of an attribute of an entity in the simulation.

The OpenM++ language also recognizes specially formatted // and /* ... */ comments. Recognized comments are optional and do not affect the
model specification. They contain textual information stored with the model which can be used to produce more human-readable input and output
and a generated user interface for the model. OpenM++ is multilingual, and the human language of the textual information is specified inside the
comment using a two-letter code.

The //EN comments in the example provide English-language labels for the SEX classification and its values. These labels will appear in the user
interface of the model, for example as row or column headings and labels of multi-dimensional parameters and tables.

Model Code: Programming a model

Topic contents

Coding a model

The OpenM++ language

https://www.statcan.gc.ca/eng/microsimulation/modgen/modgen

The C++ language portion of model code consists mostly or entirely of C++ function definitions. Here's an example:

// The implement function of MortalityEvent
void Person::MortalityEvent()
{
 alive = false;

 // Remove the entity from the simulation.
 Finish();
}

This C++ model code defines the function which implements mortality in the simulation. The Person entity, its attribute alive , its event
MortalityEvent , and the helper function Finish are all declared elsewhere in the OpenM++ language code of the model.

Typically only a small, limited portion of the C++ language is used in model code. Note that it is usually neither useful nor recommended for a
model developer to create C++ classes and class hierarchies in model code. The C++ classes and objects required for simulation are pre-
generated by OpenM++ from the model specification given in the OpenM++ language.

The C++ language elements most used in model code are expressions↗ to compute values, assignments↗ to store those values, if statements↗
to implement branching logic, and for statements↗ or range for↗ statements for iteration. C++ functions↗ are used to specify when events occur
and what happens when they do. Functions are also used to compute derived parameters and derived tables. Functions can also be used
facultatively to organize code in complex models.

The C++ standard library can be used in model code. It includes useful and powerful components such as array↗ and vector↗ in the containers↗
library, and supports string operations.

The limited dialect of C++ used for coding models can be explored by perusing the source code of existing models and referring to
comprehensive C++ documentation↗ when necessary, or to the many C++ tutorials available on the web.

Modgen-specific: Unlike Modgen, OpenM++ does not modify the C++ language portions of model code. This provides logical clarity and allows an
IDE and other tools to function correctly with the C++ code of a model.

Many of the named symbols declared in the OpenM++ code of a model are transformed by OpenM++ into identically named C++ symbols for use
in the C++ code of the model. The alive attribute of the Person entity in the previous example is such a symbol. These C++ symbols can usually
be used transparently in C++ model code even though they may be implemented as more complex C++ objects 'under the hood'. So, when alive

is assigned the value false in the example, the C++ symbol alive will silently implement side-effects to update any tables, derived attributes, or
events which depend on the change in its value. Incidentally, these wrapped objects have no memory overhead (the alive attribute consumes a
single byte of memory) and little computational overhead.

There are some situations where the objects which implement entity attributes can produce unexpected C++ compiler error messages in C++
model code. For more on this issue and how to address it, see Entity Attributes in C++.

OpenM++ ignores function definitions in the C++ language portions of model code, with several exceptions:

Event time function definitions in model code are parsed by OpenM++ to determine which attributes can affect the event time. An event time
function will be called to recompute the event time if any of those attributes change value.

PreSimulation function definitions are recognized by OpenM++ and will be called before the simulation starts. PreSimulation functions are used
to validate input parameters and assign values to derived parameters.

UserTables function definitions are recognized by OpenM++ and will be called after the simulation completes. UserTables functions are used to
compute the values of derived tables.

[back to topic contents]

The source code of an OpenM++ model is in one or more source files (also called modules) located in a single model code folder, eg Alpha2/code

for the Alpha2 model. Each model source file has a name and extension which determine its language and role when the model is built, as
follows:

The C++ language in model code

Model symbols in OpenM++ and C++

Model functions in OpenM++ and C++

Code folder and source files

https://en.cppreference.com/w/cpp/language/expressions
https://en.cppreference.com/w/cpp/language/operator_assignment
https://en.cppreference.com/w/cpp/language/if
https://en.cppreference.com/w/cpp/language/for
https://en.cppreference.com/w/cpp/language/range-for
https://en.cppreference.com/w/cpp/language/functions
https://en.cppreference.com/w/cpp/container/array
https://en.cppreference.com/w/cpp/container/vector
https://en.cppreference.com/w/cpp/container
https://en.cppreference.com/w/

*.h C++ header files included by other source files.

*.cpp C++ source files, can also contain OpenM++ code NOT YET IMPLEMENTED

*.mpp OpenM++ source files, can also contain C++ code

*.ompp OpenM++ source files, can also contain C++ code

Modgen-specific: modgen_*.mpp Modgen source files explicitly ignored by OpenM++

Modgen-specific: Only model source files with the .mpp extension are recognized by Modgen. The names and extensions *.ompp and
modgen_*.mpp allow selected model source code files to be processed exclusively by OpenM++ or exclusively by Modgen. This can be useful in

cross-compatible models. For example, tables which use the median statistic (which is not supported by Modgen) could be declared in a model
source file named OrdinalStatistics.ompp . Those tables would be present in the OpenM++ version of the model, but absent in the Modgen version.
Declaring those tables in a file with extension .ompp means that they will not cause Modgen to stop with a syntax error when building the Modgen
version of the model.

The following model-specific source files must be present:

custom.h C++ header file containing model-specific declarations.

custom_early.h C++ header file containing model-specific declarations early in header file inclusion order.

The following model source files are present, by convention:

ompp_framework.ompp Model-specific source file containing use statements which specify the names of framework source code modules to be
incorporated when the model is built. Framework source code modules are supplied with OpenM++ and are located in the OM_ROOT/use

folder. For more information, see OpenM++ Framework Library.

ompp_options.ompp Model-specific source file containing options statements which specify commonly modified model options, such as Model
Documentation options.

Some source files in the OpenM++ model code folder have fixed names and fixed content. Typically a model developer copies them to the model
code folder from an example model in the OpenM++ distribution, for example from OM_ROOT/models/NewCaseBased/code or
OM_ROOT/models/NewTimeBased/code . They are:

case_based.h Model-independent declaration of a structure present in case-based models, included in custom.h .

Modgen-specific: modgen_case_based.mpp Model-independent implementation of the simulation core of a case-based Modgen model.

Modgen-specific: modgen_time_based.mpp Model-independent implementation of the simulation core of a time-based Modgen model.

[back to topic contents]

The human language documentation of an OpenM++ model can be embedded in the model source code in Label and Note comments or in files
in a single model documentation folder, e.g. RiskPaths/doc for the RiskPaths model. Each model documentation file has a name and extension
which determine its language and role when model documentation is built, for example:

NOTE.SymbolName.EN.md Markdown file documenting the model symbol SymbolName in English.

NOTE.SymbolName.FR.md Markdown file documenting the model symbol SymbolName in French.

LABEL.SymbolName.EN.txt Text file containing the label of the model symbol SymbolName in English.

LABEL.SymbolName.FR.txt Text file containing the label of the model symbol SymbolName in French.

Home.EN.md Markdown file containing the Home topic of the Authored Model Documentation in English.

Home.FR.md Markdown file containing the Home topic of the Authored Model Documentation in French.

TopicName.EN.md Markdown file containing the autonomous authored topic TopicName in English.

TopicName.FR.md Markdown file containing the autonomous authored topic TopicName in English.

*.pdf Auxiliary downloadable PDF documentation file

Doc folder and documentation files

See Model Documentation for more about model documentation.

[back to topic contents]

A model source file can contain only C++ content, only OpenM++ language content, or a mixture of both. OpenM++ uses keywords at the
outermost level of code to recognize OpenM++ syntactic islands which contain declarative information about the model. Here's an example of an
OpenM++ syntactic island in a model source file:

parameters
{
 //EN Annual hazard of death
 double MortalityHazard;
 /* NOTE(MortalityHazard, EN)
 A constant hazard of death results in an exponential
 survival function.
 */
};

This syntactic island starts with the OpenM++ keyword parameters and ends with the terminating ; .

All code outside of a syntactic island is C++ code. When processing .mpp and .ompp model code files, OpenM++ extracts all C++ code found
outside of syntactic islands and assembles it into the single C++ file src/om_developer.cpp for subsequent processing by the C++ compiler. By
default, OpenM++ inserts #line directives↗ into this file so that any errors or warnings from the C++ compiler will refer back to the original model
source file and line rather than to the assembled file src/om_developer.cpp .

When processing a .cpp model code file, OpenM++ processes any syntactic islands, but does not extract C++ code outside of syntactic islands.
This lets one organize all model code into .cpp files in the model code folder, and pass those files directly to the C++ compiler in Step 2 of the
model build process (see below). Alternatively one could organize all OpenM++ language content in .ompp files, and all C++ language content in
.cpp files. NOT YET IMPLEMENTED

C++ directives can be inserted into model code to improve the usability of an IDE. For more information, see the subtopic Hiding syntactic islands.

Modgen-specific: Modgen processes only .mpp files, not .cpp files.

[back to topic contents]

The model build process requires a starting scenario containing values for all model input parameters, which is normally named Default . The
parameter values for the Default scenario are in the model subfolder parameters/Default . It is also possible to publish multiple scenarios, not just the
Default scenario, when a model is built, see Model Run: How model finds input parameters.

Selected Default parameters can be made invariant and incorporated directly into the model executable. This is done either by placing parameter
files into the model subfolder parameters/Fixed , or using parameters_retain or parameters_suppress statements in model code.

The following file types for input parameters are recognized:

.dat Contains values for one or more parameters in Modgen format

.odat Contains values for one or more parameters in Modgen format

.csv Contains values for one parameter in csv format

.tsv Contains values for one parameter in tsv format

Modgen-specific: Only parameter files with the .dat extension are recognized by Modgen. The .odat extension lets a selected parameter file be
processed only by OpenM++. This can be useful in cross-compatible models. It is used in OpenM++ sample cross-compatible models to provide
values for parameters which are implemented by scenario properties in Modgen. For example, for the NewCaseBased model, the parameter
input file OM_ROOT/models/NewCaseBased/parameters/Default/Framework.odat provides values for the SimulationSeed and SimulationCases parameters. The
file OM_ROOT/models/NewCaseBased/parameters/Default/scenario_info.odat contains no parameters but provides a label and note for the scenario. Those
structured comments would generate an error in Modgen if they were in a .dat file.

[back to topic contents]

Source file content

Default scenario

Model build

https://en.cppreference.com/w/cpp/preprocessor/line

The model build process uses the model source code and the Default scenario to construct an executable and accompanying database which
implement the model. The model build process can be launched by issuing a command inside an Integrated Development Environment (IDE)
such as Visual Studio on Windows, or Visual Studio Code on Linux or MacOS. The build process can also be launched by a command line utility
such as msbuild on Windows or make in Linux. For more information please see Model development in OpenM++. The model build process
consists of two steps. Bpth steps can produce warning and error messages. These messages explain the nature of the warning or error and
contain the file and line in the model source code. In an IDE, these messages can usually be clicked to navigate directly to the error or wanring
location in the IDE code editor.

Many aspects of the OpenM++ framework can be adapted or replaced to work differently or to support other environments. It is also possible to
publish models to an existing database and to move or copy published models and scenarios from one database to another. For more
information, see subtopics at Home.

OpenM++ reads and parses all files in the model source subfolder code and the files for the Default scenario in parameters\Default (and possibly in
parameters\Fixed), checks for errors, and performs the following steps:

Extracts the C++ portions of model code from all .mpp and .ompp files and assembles them into a single C++ source file.

Generates several C++ header files and a C++ source file which implements the model specification.

Generates a C++ source file which contains the values of invariant parameters.

Creates a new empty database for the model.

Publishes the model's metadata to the database, including classifications, parameter properties, table properties, parameter and table
hierarchies, labels and notes, etc.

Publishes the Default scenario to the database, ie values of all modifiable parameters in the Default scenario.

After Step 1 completes, the C++ compiler is invoked. The input to the C++ compiler consists of all C++ files in the model source code folder
(*.cpp , *.h), together with the C++ files generated by OpenM++ in Step 1. Additional general purpose code is included from the OpenM++
distribution and from the C++ standard library.

The results of the C++ compilation are linked with standard C++ libraries and an OpenM++ support library to create the model executable.
Because OpenM++ integrates with C++, it is possible to link in other components such as a math library, or even a complete additional model,
possibly written in a different language like Fortran.

[back to topic contents]

Modern IDEs have powerful abilities to parse and navigate C++ code, e.g. context sensitive popup menus which identify all uses of a symbol in a
project. However, these abilities require that the project consist of valid C++. OpenM++ syntactic islands are not valid C++, and will cause errors
when processed by an IDE (or an extenral tool like doxygen). Syntactic islands can be hidden from a C++ compiler or IDE by using C++
preprocessor conditional inclusion↗ directives. Here's an example showing how the syntactic island in the earlier example can be hidden from the
C++ compiler or IDE.

#if 0 // Hide from C++ compiler or IDE
parameters
{
 //EN Annual hazard of death
 double MortalityHazard;
 /* NOTE(MortalityHazard, EN)
 A constant hazard of death results in an exponential
 survival function.
 */
};
#endif // Hide from C++ compiler or IDE

OpenM++ will still process the syntactic island because it ignores C++ preprocessor directives.

An IDE may display a hidden syntactic island differently as a visual cue that it's an inactive code block, for example by reducing the opacity of
characters in the block to make them fade into the background compared to normal characters. That can make it more difficult to read and edit
code in syntactic islands.

Step 1: OpenM++ build

Step 2: C++ build

Hiding syntactic islands

https://en.cppreference.com/w/cpp/preprocessor/conditional

To change the display of inactive code blocks in Visual Studio 2022, do
Tools > Options > Text Editor > C/C++ > View
and modify the settings in 'Inactive Code' as desired.

C++ code in model code files will not be considered valid by a C++ compiler or IDE if a required master header file is missing. That's because
C++ requires that a symbol be declared before being used in code. That requirement can be met by including the optional include file
omc/optional_IDE_helper.h at the top of the model code file, as follows:

#include "omc/optional_IDE_helper.h" // help an IDE editor recognize model symbols

Modgen-specific: The optional helper include file omc/optional_IDE_helper.h is x-compatible and will not interfere with a Modgen build.

[back to topic contents]

Download desktop version: openmpp_win_YYYYMMDD.zip binary files and source code

Documentation: Windows: Quick Start for Developers

Download and unzip openM++ Windows desktop binaries into any directory, for example: C:\openmpp_win_20210112\

create new directory for your model under models subfolder i.e.: C:\openmpp_win_20210112\models\MyModel . It is not required, but recommended
to have folder name same as your model name.

copy one of the test model VC++ project files into your model subfolder, i.e.: from C:\openmpp_win_20210112\models\NewCaseBased\ompp* into
C:\openmpp_win_20210112\models\MyModel\ompp

copy your model files *.ompp *.mpp and custom.h files into C:\openmpp_win_20210112\models\MyModel\code\ subfolder

copy your data files *.odat *.dat files into C:\openmpp_win_20210112\models\MyModel\parameters\Default\ subfolder

start Visual Studio and open C:\openmpp_win_20210112\models\MyModel\ompp\Model.vcxproj project

save your new Model.sln solution

build your model

You can set model name of your new model using Visual Studio menu: Project -> Properties -> Configuration Properties -> OpenM++ -> Name -
> Model Name: MyModel

In example above we were creating only one "Default" scenario for our model from *.dat files in parameters/Default directory. It is also possible to

Windows: Create and Debug Models
Where is OpenM++

Before you begin

Create New Model

Create multiple input sets of parameters (multiple scenarios)

https://github.com/openmpp/main/releases/latest
https://github.com/openmpp/main/releases/latest

create multiple input sets of parameters (multiple scenarios) when you are building the model:

go to menu: Project -> Properties -> Configuration Properties -> OpenM++

change: Names -> Scenario Names -> Default;CSV_Values

Rebuild the project

As result you will create two input sets of parameters in the model.sqlite database:

scenario "Default" from .dat, .odat, .csv and .tsv files in ..\parameters\Default directory

scenario "CSV_Values" from .csv and .tsv files in ..\parameters\CSV_Values directory

Please notice: additional scenario directory can contain only CSV or TSV files and not .dat or .odat files.

To find out more about CSV and TSV parameter files please read: How to use CSV or TSV files for input parameters values

build your model as described above

open any model.ompp or *.mpp file and put breakpoint in it

start debugger

to inspect model parameters go to Watch tab and do "Add item to watch"

Debug your Model

As described at Windows: Quick Start for Model Users you can run the model with different options. For example, you can calculate 8 sub-values
(a.k.a. sub-samples, members, replicas), use 4 threads and simulate 8000 cases:

MyModel.exe -OpenM.SubValues 8 -OpenM.Threads 4 -Parameter.SimulationCases 8000

You can supply run options as model command line arguments or by using model.ini file:

[OpenM]
SubValues = 8
Threads = 4

[Parameter]
SimulationCases=8000

MyModel.exe -ini MyModel.ini

There are two possible ways to specify model ini-file using Visual Studio menu:

Project -> Properties -> Configuration Properties -> OpenM++ -> Run Options
Model ini file = MyModel.ini

Run scenario after build = Yes

Project -> Properties -> Configuration Properties -> Debugging -> Command Arguments = -ini MyModel.ini

Model run options

If your BestModel is using microdata file(s) then it is possible to start microdata path with environment variable:

 input_csv in_csv;
 in_csv.open("$OM_BestModel/microdata/OzProj22_5K.csv");

You may need to export that OM_BestModel variable in order to debug the model under Visual Studio. For example, if your model location is:
C:\my-models\BestModel then add: OM_BestModel=C:\my-models\BestModel into the model Debugging Environment:

Debug Model with microdata files

Model run-time errors cause a model to emit a log message and halt with a non-zero return code. Here's an example of a model run-time error
message:

Simulation error: attempt to assign -1 to range REPORT_TIME which has limits [0,200] when current time is 0.000000000000000 in entity_id 1 in or after event TickEvent in simulatio
n member 0 with combined seed 1

Model run-time errors are implemented in OpenM++ using C++ exceptions. C++ exceptions can be trapped by Visual Studio when running a
Debug version of a model. If trapped, execution will halt when a run-time error occurs. This allows direct examination of entities, attributes, local
variables, etc. in the Visual Studio Debugger to troubleshoot the cause of the error.

To tell Visual Studio to break if a model run-time exception occurs, ensure that <All C++ Exceptions not in this list> is checked in Debug > Windows >

Exception Settings :

Debug model run-time errors

If a model run-time error occurs in a Visual Studio session with a Debug version of a model, display the call stack window in Visual Studio to
identify the model code location which caused the error. In the following screenshot, the call stack entry NewTimeBasedD.exe]!Ticker::TickEvent() Line 79

is the topmost model code entry in the call stack when the run-time error occurred.

Double clicking that call stack entry causes Visual Studio to navigate to the model code line which caused the error. In this example, the line is in
the module TickerCore.mpp of the NewCaseBased model which was modified to deliberately cause a run-time error:

void Ticker::TickEvent()
{
 // Increment report time
 report_time = COERCE(REPORT_TIME, report_time + 1);
 report_time = -1;

 // Age all Persons to the current time.
...

In a real situation, values of attributes could be examined in the Visual Studio Debugger, exactly like debugging after a Debug break point is hit.

By default model compiled to debug only *.ompp and *.mpp source code, not a model C++ code. Normally it is enough to debug only *.ompp and
*.mpp code but in some exceptional circumstances you may also want to debug model c++ code, generated by openM++ omc compiler.

C++ model files are located in ompp/src directory, for example, if you have openM++ installed in C:\openmpp_win_20210112 directory then model
Chapter5 .cpp and .h source files are in C:\openmpp_win_20210112\models\Chapter5\ompp\src folder:

In order to debug model c++ code do following:

go to menu: Project -> Properties -> Configuration Properties -> OpenM++ -> Disable generation of #line directives = Yes

Debug model c++ code

Rebuild the model project by going to menu Build -> Rebuild Solution

put debug breakpoints at the om_developer.cpp RunSimulation() or other entry points of your choice, e.g.: om_definitions.cpp RunModel()

start debugger

Starting from version 16.9 Visual Studio include AddressSanitizer tool which allow to catch most of memory violation bugs. For example:

int x[10];
int main (int argc, char ** argv)
{
 x[20] = 20; // error: global buffer overflow

}

If you want to add AddressSanitizer to your existing pre-version 16.9 Visual Studio installation start Visual Studio Installer, choose Modify and
select "C++ AddressSanitizer":

Use AddressSanitizer to catch memory violation bugs

https://docs.microsoft.com/en-us/cpp/sanitizers/asan?view=msvc-160

To build your model with AddressSanitizer do following:

exit from Visual Studio

copy your existing model project to some backup location:

copy C:\openmpp_win_20210112\models\MyModel\ompp\Model.vcxproj* C:\my\safe\place\

copy AddressSanitizer version of model project. For example if openM++ installed into C:\openmpp_win_20210112 directory and your model
directory is MyModel then do:

copy C:\openmpp_win_20210112\props\ompp-asan\Model.vcxproj C:\openmpp_win_20210112\models\MyModel\ompp\
copy C:\openmpp_win_20210112\props\ompp-asan\Model.vcxproj.filters C:\openmpp_win_20210112\models\MyModel\ompp\

start Visual Studio, open your model openM++ solution C:\openmpp_win_20210112\models\MyModel\MyModel-ompp.sln

Important: clean existing model build. You can do it by Menu -> Build -> Clean Solution

build your model

Now you can run your model from Visual Studio as usually, with or without debugger.

To run model.exe with AddressSanitizer from command line (outside of Visual Studio) use VS 2019 Native Tools command prompt:

open command line prompt

set 64 or 32 bit environment:
"C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\VC\Auxiliary\Build\vcvars64.bat"

"C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\VC\Auxiliary\Build\vcvars32.bat"

run your model.exe:

cd \openmpp_win_20210112\models\MyModel\ompp\bin
MyModel64D.exe

Restore your original Model project from C:\my\safe\place\Model.vcxproj* after you done with AddressSanitizer.

Download: latest binary files and source code

Documentation: Linux Quick Start for Developers

check your g++ --version:

g++ (Debian 8.3.0-6) 8.3.0
g++ (Ubuntu 9.3.0-10ubuntu2) 9.3.0
g++ (GCC) 8.3.1 20191121 (Red Hat 8.3.1-5)

Optional:

If you want to debug your model then you will need to rebuild openM++ runtime library first as described at Linux Quick Start for Developers

To build and run debug version of the model use desktop (non-MPI) version of openM++:

wget https://github.com/openmpp/main/releases/download/v1.8.3/openmpp_debian_20210304.tar.gz
tar xzf openmpp_debian_20210304.tar.gz
cd openmpp_debian_20210304/openm/
make libopenm

create new directory for your model under models subfolder i.e.: models/MyModel

copy other test model makefile into your model folder, copy your model files and data files:

cd openmpp_debian_20210304/models/
mkdir MyModel
cd MyModel
cp ../NewCaseBased/makefile .
mkdir code
cp ~/my_model_sources/*mpp code
cp ~/my_model_sources/*.cpp code
cp ~/my_model_sources/*.h code
mkdir -p parameters/Default
cp ~/my_model_data/*dat parameters/Default

build your model and "publish" it:

make all publish

run the model:

cd ompp-linux/bin
./MyModelD
cd ..

Please note: It is recommended (not required) to have directory name exactly the same as model name. Linux file and directory names are case-
sensitive and myModel is not the same as MyModel

In example above we were creating only one "Default" scenario for our model from *.dat files in parameters/Default directory. It is also possible to
create multiple input sets of parameters (multiple scenarios) when you are building the model:

make SCENARIO_NAME=Default,Other OMC_SCENARIO_PARAM_DIR=parameters/Default,parameters/SomeOther all publish

Above command will create two input sets of parameters:

scenario "Default" from .dat, .odat, .csv and .tsv files in parameters/Default directory

Linux: Create and Debug Models
What do you need

Before you begin

Create new Model

Create multiple input sets of parameters (multiple scenarios)

https://github.com/openmpp/main/releases/latest

scenario "Other" from .csv and .tsv files in parameters/SomeOther directory

Please notice: additional scenario directory can contain only CSV or TSV files and not .dat or .odat files.

To find out more about CSV and TSV parameter files please read: How to use CSV or TSV files for input parameters values

There is an excellent AddressSanitizer tool which allow to catch most of memory violation bugs. For example:

int x[10];
int main (int argc, char ** argv)
{
 x[20] = 20; // error: global buffer overflow

}

It is not recommended to use AddressSanitizer in production, it slows down model code execution approximately by 70% and double memory
usage. For that reason openM++ binary release does not enable AddressSanitizer by default and you will need to re-build openM++ run-time
libraries to use it for your models testing.

To enable AddressSanitizer for your developement do:

unpack openM++ release in separate folder, for example: ~/openmpp-asan . It is not recommended to use it in your main development folder

re-build openM++ run-time library: ` bash cd ~/openmpp-asan rm -rf lib rm -rf build

cd openm make USE_ASAN=1 libopenm make USE_ASAN=1 RELEASE=1 libopenm

* rebuild your model with AddressSanitizer, for example if your model name is `RiskPaths` you can build Debug and Release model versions by:
```bash
cd ~/ompp-main/models/RiskPaths
make clean-all
make USE_ASAN=1 all publish
make USE_ASAN=1 RELEASE=1 all publish

and now you can run Debug or Release version of your model:

cd ompp-linux/bin
./RiskPathsD
./RiskPaths

Please notice, Debug version of the model executable is always significantly slower than Release. It is recommended to prepare smaller
version of your test scenario to run it with Debug model. Or, maybe adjust some parameters from default scenario, for example:

cd ompp-linux/bin
./RiskPathsD -Parameter.SimulationCases 1234

Prerequisites:

install Visual Studio Code

follow steps described above to create new model

Note: In example below we are using RiskPaths demo model, please replace "RiskPaths" with your actual model name.

Make sure you have GDB, g++, make and other build tools installed on your system. For example on Ubuntu:

sudo apt install sqlite
sudo apt install g++
sudo apt install make
sudo apt install curl
sudo apt install git

For example on RedHat (CentOS):

Use AddressSanitizer to catch memory violation bugs

Debug your Model using Visual Studio Code

https://github.com/google/sanitizers/wiki/AddressSanitizer
https://code.visualstudio.com/download


dnf install gcc-c++
dnf install make
dnf install sqlite
dnf install gdb
dnf install git

Start Visual Studio Code and go to: File -> Open Folder... -> ~/openmpp_debian_20210304/models/RiskPaths

Create build task for your model using menu: Terminal -> Configure Tasks...



{
    "version": "2.0.0",
    "tasks": [
        {
            "label": "build-RiskPaths",
            "type": "shell",
            "command": "make all publish",
            "problemMatcher": "$gcc",
            "group": {
                "kind": "build",
                "isDefault": true
            },
            "dependsOrder": "sequence",
            "dependsOn": [
                "build-libopenm",
                "stop-ui-RiskPaths"
            ]
        },
        {
            "label": "build-RiskPaths-release",
            "type": "shell",
            "command": "make RELEASE=1 all publish",
            "problemMatcher": "$gcc",
            "group": "build",
            "dependsOrder": "sequence",
            "dependsOn": [
                "build-libopenm-release",
                "stop-ui-RiskPaths"
            ]
        },
        {
            "label": "start-ui-RiskPaths",
            "type": "shell",
            "command": "../start-model-ui-linux.sh",
            "problemMatcher": []
        },
        {
            "label": "start-ui-RiskPaths-release",
            "type": "shell",
            "command": "RELEASE=1 ../start-model-ui-linux.sh",
            "problemMatcher": []
        },
        {
            "label": "stop-ui-RiskPaths",
            "type": "shell",
            "command": "../stop-model-ui-linux.sh",
            "problemMatcher": []
        },
        {
            "label": "clean-RiskPaths",
            "type": "shell",
            "command": "make clean-all && make RELEASE=1 clean-all",
            "group": "build",
            "problemMatcher": []
        },
        {
            "label": "build-libopenm",
            "type": "shell",
            "command": "make libopenm",
            "options": {
                "cwd": "../../openm"
            },
            "problemMatcher": "$gcc",
            "group": "build"
        },
        {
            "label": "build-libopenm-release",
            "type": "shell",
            "command": "make RELEASE=1 libopenm",
            "options": {
                "cwd": "../../openm"
            },
            "problemMatcher": "$gcc",
            "group": "build"
        }
    ]
}

You also can find file above at ~/openmpp_debian_20210304/models/RiskPaths/.vscode-linux/tasks.json

Some models may require special settings in order to run, for example, you may need to increase ulimit  resources for OncSimX model:



        {
            "label": "start-ui-OncoSimX",
            "type": "shell",
            "command": "ulimit -S -s 65536 && ../start-ompp-ui-linux.sh",
            "problemMatcher": []
        },
        {
            "label": "start-ui-OncoSimX-release",
            "type": "shell",
            "command": "ulimit -S -s 65536 && RELEASE=1 ../start-ompp-ui-linux.sh",
            "problemMatcher": []
        },

Create model debug configuration using menu: Debug -> Add Configuration...:

{
    "version": "0.2.0",
    "configurations": [
        {
            "name": "debug RiskPaths",
            "type": "cppdbg",
            "request": "launch",
            "program": "${workspaceFolder}/ompp-linux/bin/RiskPathsD",
            "args": [],
            "stopAtEntry": false,
            "cwd": "${workspaceFolder}/ompp-linux/bin",
            "environment": [
              { "name": "OM_RiskPaths", "value": "${workspaceFolder}" }
            ],
            "externalConsole": false,
            "MIMode": "gdb",
            "setupCommands": [
                {
                    "description": "Enable pretty-printing for gdb",
                    "text": "-enable-pretty-printing",
                    "ignoreFailures": true
                }
            ]
        }
    ]
}

You also can find file above at ~/openmpp_debian_20210304/models/RiskPaths/.vscode-linux/launch.json

In order to debug .mpp and .ompp files as c++ go to menu File -> Preferences -> Settings -> Text Editor -> Files -> Associations -> click on "Edit
in settings.json" and add into settings.json :

{
    "files.associations": {
      "*.mpp": "cpp",
      "*.ompp": "cpp"
    }
}

You also can find file above at `~/openmpp_debian_20210304/models/RiskPaths/.vscode-linux/settings.json

Build your model using Terminal -> Run Build Task...

Start model debugging by using Run -> Start Debugging

open any model.ompp or *.mpp file and put breakpoint in it

(optional) add breakpoint(s) at RunSimulation  entry point using File -> Open File... -> use/case_based/case_based_common.ompp -> RunSimulation()

(optional) you may also add breakpoint(s) at main  entry point: File -> Open File... -> openm/libopenm/main.cpp

open model with UI by using Terminal -> Run Task... -> start-ui-RiskPaths . You can see UI screenshots at UI: openM++ user interface page.



To inspect model parameters add Watch variable:



It is a convenient to see Doxygen comments in your model code when you hover:

If such functionality does not work for you then it maybe a result of missing include path in your c++ model settings. To fix it find a missing (red
underscored) include, in example below it is #include "omc/omSimulation.h"  and select Quick Fix  -> Edit includePath settings :

It should open Microsoft C/C++ extension settings page. Add "${workspaceFolder}/../../include/**"  to your Include Path list. It is also a good idea to set
C++ standard as c++17 :

View Doxygen comments on hover your Model code in Visual Studio Code



That can be done by adding .vscode/c_cpp_properties.json  to your model folder, but such JSON maybe specific to the particular version of VSCode:

{
    "configurations": [
        {
            "name": "Linux",
            "includePath": [
                "${workspaceFolder}/**",
                "${workspaceFolder}/../../include/**"
            ],
            "defines": [],
            "compilerPath": "/usr/bin/gcc",
            "cStandard": "c17",
            "cppStandard": "c++17",
            "intelliSenseMode": "linux-gcc-x64"
        }
    ],
    "version": 4
}

You also can find file above at ~/openmpp_debian_20210304/models/RiskPaths/.vscode-linux/c_cpp_properties.json

As described at Linux Quick Start for Model Users you can run the model with different options. For example, you can calculate 8 sub-values
(a.k.a. sub-samples, members, replicas), use 4 threads and simulate 8000 cases:

./RiskPathsD -OpenM.SubValues 8 -OpenM.Threads 4 -Parameter.SimulationCases 8000

Model run options



You can supply run options as model command line arguments or by using model.ini file:

[OpenM]
SubValues = 8
Threads = 4

[Parameter]
SimulationCases=8000

./RiskPathsD -ini RiskPathsD.ini

There are two possible ways to use model ini-file with Visual Studio Code:

by adding -ini RiskPaths.ini  command line argument to model executable. Go to menu -> Run -> Open Configurations and edit launch.json  at
"program"  line:

{
  // .... .... ....
  "program": "${workspaceFolder}/ompp-linux/bin/RiskPathsD -ini RiskPaths.ini",
  // .... .... ....
}

by adding MODEL_INI=RiskPaths.ini  command line argument to model make. Go to menu -> Terminal -> Configure Task -> build-RiskPaths and
edit tasks.json  at "command": "make ....  line:

{
  "tasks": [
      {
          "label": "build-RiskPaths",
          "command": "make MODEL_INI=RiskPaths.ini all publish run",
      // .... .... ....
      }]
}

That MODEL_INI  argument will be passed to model executable when make  run the model as:

ompp-linux/bin/RiskPathsD -ini RiskPaths.ini



Download: latest binary files and source code

Documentation:
MacOS Quick Start for Developers

(optional) MacOS: Create and Debug Models using Xcode

Tested on: MacOS 10.15 Catalina And Big Sur >= 11.1.

Install Xcode and command line developer tools, if not installed already by Xcode: xcode-select --install .

(optional) Install Visual Studio Code for cross-platform development: MacOS: Install VSCode

Check if clang, make and sqlite3 are installed on your computer:

g++ --version
....
Apple clang version 11.0.0 (clang-1100.0.33.12)

make --version
....
GNU Make 3.81

sqlite3 --version
....
3.28.0 2019-04-15 14:49:49

Download and unpack latest openM++ release using Safari or curl:

curl -L -o om.tar.gz https://github.com/openmpp/main/releases/download/v1.6.0/openmpp_mac_20200621.tar.gz
tar xzf om.tar.gz

Make sure you are using tight security settings on your Mac and antivirus software, if necessary. We are trying our best to keep
development machines clean, but cannot provide any guarantee.

On Big Sur it is very likely to get an security error when you are trying to run any downloaded executable:

please reply "Cancel" to that question (click "Cancel" button).

remove quarantine attribute from openM++ installation directory, for example:

xattr -r -d com.apple.quarantine ~/openmpp_mac_20200621

MacOS: Create and Debug Models
What do you need

Prerequisites

MacOS security issue

Create new Model

https://github.com/openmpp/main/releases/latest


create new directory for your model under models sub-folder: models/MyModel  Please note: It is recommended (not required) to have
directory name exactly the same as model name.

copy other test model makefile into your model folder, copy your model files and data files:

cd openmpp_mac_20200621/models/
mkdir MyModel
cd MyModel
cp ../NewCaseBased/makefile .
mkdir code
cp ~/my_model_sources/*mpp code
cp ~/my_model_sources/*.cpp code
cp ~/my_model_sources/*.h code
mkdir -p parameters/Default
cp ~/my_model_data/*dat parameters/Default

build your model:

make all publish

run the model:

cd ompp-mac/bin
./MyModelD
cd ..

you can also build and run the model using make:

make all publish run

In example above we were creating only one "Default" scenario for our model from *.dat files in parameters/Default  directory. It is also possible to
create multiple input sets of parameters (multiple scenarios) when you are building the model:

make SCENARIO_NAME=Default,Other OMC_SCENARIO_PARAM_DIR=parameters/Default,parameters/SomeOther all publish

Above command will create two input sets of parameters:

scenario "Default" from .dat, .odat, .csv and .tsv files in parameters/Default directory

scenario "Other" from .csv and .tsv files in parameters/SomeOther directory

Please notice: additional scenario directory can contain only CSV or TSV files and not .dat or .odat files.

To find out more about CSV and TSV parameter files please read: How to use CSV or TSV files for input parameters values

There is an excellent AddressSanitizer tool which allow to catch most of memory violation bugs. For example:

int x[10];
int main (int argc, char ** argv)
{
    x[20] = 20;  // error: global buffer overflow
    ........
}

It is not recommended to use AddressSanitizer in production, it slows down model code execution approximately by 70% and double memory
usage. For that reason openM++ binary release does not enable AddressSanitizer by default and you will need to re-build openM++ run-time
libraries to use it for your models testing.

To enable AddressSanitizer for your developement do:

unpack openM++ release in separate folder, for example: ~/openmpp-asan . It is not recommended to use it in your main development folder

re-build openM++ run-time library: ` bash cd ~/openmpp-asan rm -rf lib rm -rf build

Create multiple input sets of parameters (multiple scenarios)

Use AddressSanitizer to catch memory violation bugs

https://clang.llvm.org/docs/AddressSanitizer.html


cd openm make USE_ASAN=1 libopenm make USE_ASAN=1 RELEASE=1 libopenm

* rebuild your model with AddressSanitizer, for example if your model name is `RiskPaths` you can build Debug and Release model versions by:
```bash
cd ~/ompp-main/models/RiskPaths
make clean-all
make USE_ASAN=1 all publish
make USE_ASAN=1 RELEASE=1 all publish

and now you can run Debug or Release version of your model:

cd ompp-mac/bin
./RiskPathsD
./RiskPaths

Please notice, Debug version of the model executable is always significantly slower than Release. It is recommended to prepare smaller
version of your test scenario to run it with Debug model. Or, maybe adjust some parameters from default scenario, for example:

cd ompp-mac/bin
./RiskPathsD -Parameter.SimulationCases 1234

Prerequisites:

install Visual Studio Code and configure it for openM++ model development: MacOS: Install VSCode

follow steps described above to create new model

Note: In example below we are using RiskPaths demo model, please replace "RiskPaths" with your actual model name.

Start VSCode and use menu to File -> Open... -> ~/openmpp_mac_20200621/models/RiskPaths:

Configure build tasks by using menu: Terminal -> Configure Tasks...

How to use Visual Studio Code
Build openM++ models using VSCode

{
 // See https://go.microsoft.com/fwlink/?LinkId=733558
 // for the documentation about the tasks.json format
 "version": "2.0.0",
 "tasks": [
 {
 "label": "build-RiskPaths",
 "type": "shell",
 "command": "make all publish",
 "problemMatcher": "$gcc",
 "group": {
 "kind": "build",
 "isDefault": true
 },
 "dependsOrder": "sequence",
 "dependsOn": [
 "build-libopenm",
 "stop-ui-RiskPaths"
]
 },
 {
 "label": "build-RiskPaths-release",
 "type": "shell",
 "command": "make RELEASE=1 all publish",
 "problemMatcher": "$gcc",
 "group": "build",
 "dependsOrder": "sequence",
 "dependsOn": [
 "build-libopenm-release",
 "stop-ui-RiskPaths"
]
 },
 {
 "label": "start-ui-RiskPaths",
 "type": "shell",
 "command": "../start-model-ui-mac.sh",
 "problemMatcher": []
 },
 {
 "label": "start-ui-RiskPaths-release",
 "type": "shell",
 "command": "RELEASE=1 start-model-ui-mac.sh",
 "problemMatcher": []
 },
 {
 "label": "stop-ui-RiskPaths",
 "type": "shell",
 "command": "../stop-model-ui-mac.sh",
 "problemMatcher": []
 },
 {
 "label": "clean-RiskPaths",
 "type": "shell",
 "command": "make clean-all && make RELEASE=1 clean-all",
 "group": "build",
 "problemMatcher": []
 },
 {
 "label": "build-libopenm",
 "type": "shell",
 "command": "make libopenm",
 "options": {
 "cwd": "../../openm"
 },
 "problemMatcher": "$gcc",
 "group": "build"
 },
 {
 "label": "build-libopenm-release",
 "type": "shell",
 "command": "make RELEASE=1 libopenm",
 "options": {
 "cwd": "../../openm"
 },
 "problemMatcher": "$gcc",
 "group": "build"
 }
]
}

You also can find file above at ~/openmpp_debian_20210304/models/RiskPaths/.vscode-mac/tasks.json

Note: Model default build task make all publish run does:

create Debug version of model executable

copy model SQLite database file into ompp-mac/bin "publish" folder

If you also want to run the model after successful build then use: make all publish run . If you want to build Release version of the model then use:
make RELEASE=1 all publish .

To build and run your model please use menu: Terminal -> Run Build Task...

Create your model debug configuration by using menu Run -> Add Configuration...

Debug openM++ model using VSCode

{
 // Use IntelliSense to learn about possible attributes.
 // Hover to view descriptions of existing attributes.
 // For more information, visit: https://go.microsoft.com/fwlink/?linkid=830387
 "version": "0.2.0",
 "configurations": [
 {
 "name": "debug RiskPaths",
 "type": "cppdbg",
 "request": "launch",
 "program": "${workspaceFolder}/ompp-mac/bin/RiskPathsD",
 "args": [],
 "stopAtEntry": false,
 "cwd": "${workspaceFolder}/ompp-mac/bin",
 "environment": [
 { "name": "OM_RiskPaths", "value": "${workspaceFolder}" }
],
 "externalConsole": false,
 "MIMode": "lldb"
 }
]
}

You also can find file above at ~/openmpp_debian_20210304/models/RiskPaths/.vscode-mac/launch.json

Start model debugging by using menu Run -> Start Debugging or as shown below:

Set breakpoint(s):

open any model.ompp or *.mpp file and put breakpoint in it

(optional) RunSimulation entry point using File -> Open File... -> use/case_based/case_based_common.ompp -> RunSimulation()

(optional) main() entry point: File -> Open File... -> openm/libopenm/main.cpp

To inspect model parameters add Watch variable:

To start model UI from VSCode use menu: Terminal -> Run Tasks... -> start-ui-RiskPaths

To stop backgound oms web-service after you done with model UI use: Terminal -> Run Tasks... -> stop-ui-RiskPaths

Start model UI on MacOS from VSCode

It is a convenient to see Doxygen comments in your model code when you hover:

View Doxygen comments on hover your Model code in Visual Studio Code

If such functionality does not work for you then it maybe a result of missing include path in your c++ model settings. To fix it find a missing (red
underscored) include, in example below it is #include "omc/omSimulation.h" and select Quick Fix -> Edit includePath settings :

It should open Microsoft C/C++ extension settings page. Add "${workspaceFolder}/../../include/**" to your Include Path list. It is also a good idea to set
C++ standard as c++17 :

That can be done by adding .vscode/c_cpp_properties.json to your model folder, but such JSON maybe specific to the particular version of VSCode:

{
 "configurations": [
 {
 "name": "Mac",
 "includePath": [
 "${workspaceFolder}/**",
 "${workspaceFolder}/../../include/**"
],
 "defines": [],
 "macFrameworkPath": [
 "/Applications/Xcode.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX.sdk/System/Library/Frameworks"
],
 "compilerPath": "/usr/bin/clang",
 "cStandard": "c17",
 "cppStandard": "c++17",
 "intelliSenseMode": "macos-clang-x64"
 }
],
 "version": 4
}

You also can find file above at ~/openmpp_debian_20210304/models/RiskPaths/.vscode-mac/c_cpp_properties.json

As described at Linux Quick Start for Model Users you can run the model with different options. For example, you can calculate 8 sub-values
(a.k.a. sub-samples, members, replicas), use 4 threads and simulate 8000 cases:

Model run options

./RiskPathsD -OpenM.SubValues 8 -OpenM.Threads 4 -Parameter.SimulationCases 8000

You can supply run options as model command line arguments or by using model.ini file:

[OpenM]
SubValues = 8
Threads = 4

[Parameter]
SimulationCases=8000

./RiskPathsD -ini RiskPathsD.ini

There are two possible ways to use model ini-file with Visual Studio Code:

by adding -ini RiskPaths.ini command line argument to model executable. Go to menu -> Run -> Open Configurations and edit launch.json at
"program" line:

{
 //
 "program": "${workspaceFolder}/ompp-linux/bin/RiskPathsD -ini RiskPaths.ini",
 //
}

by adding MODEL_INI=RiskPaths.ini command line argument to model make. Go to menu -> Terminal -> Configure Task -> build-RiskPaths and
edit tasks.json at "command": "make line:

{
 "tasks": [
 {
 "label": "build-RiskPaths",
 "command": "make MODEL_INI=RiskPaths.ini all publish run",
 //
 }]
}

That MODEL_INI argument will be passed to model executable when make run the model as:

ompp-linux/bin/RiskPathsD -ini RiskPaths.ini

Download: latest binary files and source code

Documentation:
MacOS Quick Start for Developers

MacOS: Create and Debug Models

Tested on: latest MacOS, may work starting from Big Sur >= 11.1.

Install Xcode and command line developer tools, if not installed already by Xcode: xcode-select --install .

Check if clang, make and sqlite3 are installed on your computer:

g++ --version
....
Apple clang version 11.0.0 (clang-1100.0.33.12)

make --version
....
GNU Make 3.81

sqlite3 --version
....
3.28.0 2019-04-15 14:49:49

Download and unpack latest openM++ release using Safari or curl:

curl -L -o om.tar.gz https://github.com/openmpp/main/releases/download/v1.6.0/openmpp_mac_20200621.tar.gz
tar xzf om.tar.gz

Copy model Xcode project files into your new "MyModel" directory, for example:

cd ~/openmpp_mac_20200621
cp -pr Xcode/Model.* models/MyModel/

Start Xcode and open ~/openmpp_mac_20200621/models/MyModel/Model.xcworkspace :

MacOS: Create and Debug Models using Xcode
What do you need

Prerequisites

Create Xcode project for new Model

https://github.com/openmpp/main/releases/latest

Rename model Project -> Targets -> click twice on target name -> and rename to MyModel

Rename model scheme using menu: Product -> Scheme -> Manage Schemes... -> click twice on "Model" scheme -> and rename to MyModel

Add your model source code from MyModel/code folder:

Make sure your model scheme selected by using menu: Product -> Scheme -> MyModel:

Build your model:

(Optional) Build the model with multiple scenarios:

edit Xcode-src/Model.xcconfig and to specify additional scenario names and input directories, separated by comma. For example:

SCENARIO_NAME = Default,Other

OMC_SCENARIO_PARAM_DIR = $(SRCROOT)/parameters/Default,$(SRCROOT)/parameters/SomeOther

Start Xcode and open your model workspace, for example: ~/openmpp_mac_20200621/models/MyModel/Model.xcworkspace

Use menu to select your model scheme: Product -> Scheme -> MyModel:

Known issue: Xcode UI may not update check mark on selected scheme. To fix it go to Product -> Scheme -> Manage Schemes... and use
mouse to drag any scheme to move it up or down.

Debug openM++ Model using Xcode

(Optional) If you want to set breakpoints in any .mpp or .ompp files then tell to Xcode it is "C++ Source" file(s):

Run and debug your openM++ model:

To inspect model parameters go to Debug Area and Add Expression:

To start model UI after build completed please change Model.xcconfig variable START_OMPP_UI to "1" or "true" or "yes" (case-sensitive)

Start model UI on MacOS from Xcode

OpenM++ provides superset of Modgen language specification and therefore able to compile Modgen source files. Conversion from Modgen
include following:

Make sure you are done with: Windows: Quick Start for Model Developers

Clone existing openM++ case-based model, for example: NewCaseBased

Rename model directory and solution to YourModelName, for example: RiskPaths

Replace NewCaseBased .mpp modules with your model RiskPaths .mpp files and inspect your code for any quirks (often none)

Replace NewCaseBased .dat parameter data with your model RiskPaths .dat files

Open Visual Studio, build the model and fix errors if necessary

Run the model and verify simulation results

Below is step-by-step example how to convert RiskPaths model from Modgen 12.1 to openM++.

As starting point please copy one of openM++ sample models, for case-based model we can start from NewCaseBased.

Modgen: Convert case-based model to openM++
Overview

Clone existing openM++ model

Rename directory and model solution into YourModelName.sln :

rename NewCaseBased - Copy directory into RiskPaths

rename NewCaseBased-ompp.sln into RiskPaths-ompp.sln

(optional) rename NewCaseBased-modgen.sln into RiskPaths-modgen.sln

Note: It is not required to use model name as directory name and solution name, but it is openM++ convention and significantly simplifies model
maintenance.

Delete NewCaseBased .mpp modules and copy your model substantive .mpp files instead. For complex models with long maintenance history it
may be not always easy to understand what *.mpp files are "substantive" and you may need to repeat this step multiple times.

It is also rare, but possible for some *.mpp modules to contain special quirky code in order to overcome issues in old version of Modgen or c++.
Please inspect your code and adjust it, if necessary, to comply with c++17 standard.

Rename model directory and solution

Replace sample model .mpp modules with your model .mpp files

For our example we need to:

delete NewCaseBased parameters/Default/PersonCore.dat and parameters/Default/scenario_info.odat

copy Base(RiskPaths).dat

(optional) rename it into RiskPaths.dat

For complex models it is also possible to have Fixed parameters data. Please copy it into parameters/Fixed/ sub-folder.

Replace sample model parameter data with your model *.dat files

Open RiskPaths-ompp.sln solution in Visual Studio and build the model, fix errors, if necessary.

Open Visual Studio solution and build the model

Last, but obviously very important step, is to run the model and compare Modgen and openM++ simulation results.

Check parameters/Default/Framework.odat values:

parameters {
 int SimulationSeed = 16807;
 long long SimulationCases = 5000;
};

and adjust number of simulation cases if required, re-build the model to update SimulationCases value in RiskPaths.sqlite model database.

You can run openM++ model from command line, or from Visual Studio by changing Project -> Properties -> OpenM++ -> Run Options :

Run the model and verify simulation results

It is possible to open model run results in openM++ UI (beta version) to examine model parameters and output results:

OpenM++ provides superset of Modgen language specification and therefore able to compile Modgen source files. Conversion from Modgen
include following:

Make sure you are done with: Windows: Quick Start for Model Developers

Clone existing openM++ time-based model, for example: NewTimeBased

Rename model directory and solution to YourModelName, for example: IDMM

Replace NewTimeBased .mpp modules with your model IDMM .mpp files and inspect your code for any quirks (often none)

Replace NewTimeBased .dat parameter data with your model IDMM .dat files

Open Visual Studio, build the model and fix errors if necessary

Run the model and verify simulation results

Below is step-by-step example how to convert IDMM model from Modgen 12.1 to openM++.

As starting point please copy one of openM++ sample models, for time-based model we can start from NewTimeBased.

Modgen: Convert time-based model to openM++
Overview

Clone existing openM++ model

Rename directory and model solution into YourModelName.sln :

rename NewTimeBased - Copy directory into IDMM

rename NewTimeBased-ompp.sln into IDMM-ompp.sln

(optional) rename NewTimeBased-modgen.sln into IDMM-modgen.sln

Note: It is not required to use model name as directory name and solution name, but it is openM++ convention and significantly simplifies model
maintenance.

Delete NewTimeBased .mpp modules and copy your model substantive .mpp files instead. For complex models with long maintenance history it
may be not always easy to understand what *.mpp files are "substantive" and you may need to repeat this step multiple times.

It is also rare, but possible for some *.mpp modules to contain special quirky code in order to overcome issues in old version of Modgen or c++.
Please inspect your code and adjust it, if necessary, to comply with c++17 standard.

Rename model directory and solution

Replace sample model .mpp modules with your model .mpp files

For our example we need to:

delete NewTimeBased parameters/Default/PersonCore.dat and parameters/Default/scenario_info.odat

copy Base(IDMM).dat

(optional) rename it into IDMM.dat

For complex models it is also possible to have Fixed parameters data. Please copy it into parameters/Fixed/ sub-folder.

Replace sample model parameter data with your model *.dat files

Open IDMM-ompp.sln solution in Visual Studio and build the model, fix errors, if necessary.

Open Visual Studio solution and build the model

Last, but obviously very important step, is to run the model and compare Modgen and openM++ simulation results.

Check parameters/Default/Framework.odat values:

parameters {
 int SimulationSeed = 16807;
 Time SimulationEnd = 101.0;
};

and adjust number of simulation end time if required, re-build the model to update SimulationEnd value in IDMM.sqlite model database.

You can run openM++ model from command line, or from Visual Studio by changing Project -> Properties -> OpenM++ -> Run Options :

Run the model and verify simulation results

It is possible to open model run results in openM++ UI (beta version) to examine model parameters and output results:

It may be your model is using microdata files or it contains references to Modgen global variables: gpoEventQueue, gbCanceled, gbErrors or functions:
StartCase(), SignalCase() . For example if your Modgen code look like:

// The Simulation function is called by Modgen to simulate a set of cases.
void Simulation()
{
 // Open the microdata file
 PersonOpenFile();

 // The global variables gbInterrupted, gbCancelled and gbErrors
 // are maintained by the Modgen run-time.
 for (long lCase = 0; lCase < CASES() && !gbInterrupted && !gbCancelled && !gbErrors; lCase++)
 {
 // Simulate a case.
 // Tell the Modgen run-time to prepare to simulate a new case.
 StartCase();

 // Read the record corresponding to the case_id of the case
 long lCaseID = GetCaseID();
 PersonGetRecord(lCaseID);

 // Call the CaseSimulation function defined earlier in this module.
 CaseSimulation();

 // Tell the Modgen run-time that the case has been completed.
 SignalCase();
 }

 // Close the microdata file
 PersonCloseFile();
}

// The CaseSimulation function simulates a single case
void CaseSimulation()
{
 //
 // Process events until there are no more
 ProcessEvents();
 //
}

// The ProcessEvents function processes all events until there are none in the event queue.
// It is called by the CaseSimulation function.
void ProcessEvents()

 // The Modgen run-time implements the global event queue gpoEventQueue.
 while (!gpoEventQueue->Empty())
 {
 // The global variables gbCancelled and gbErrors
 // are maintained by the Modgen run-time.
 if (gbCancelled || gbErrors)
 {
 // The user cancelled the simulation, or run-time errors occurred.
 // Terminate the case immediately.
 gpoEventQueue->FinishAllActors();
 }
 else
 {
 // Age all actors to the time of the next event.
 gpoEventQueue->WaitUntil(gpoEventQueue->NextEvent());

 // Implement the next event.
 gpoEventQueue->Implement();
 }
 }
}

Then please use OzProj example model to update your CaseSimulation() function. There are Modgen version of code_original\OzProj.mpp and
openM++ version: code\OzProj.mpp which you can use as starting point to upgrade your model code.

Modgen: Convert Modgen models and usage of C++ in openM++
code
This page is under construction
Microdata files, gpoEventQueue, StartCase(), SignalCase()

Use of ternary operator may require cast to underlying type

Use of ternary operator may require cast to underlying type (type name followed by _t). The Microsoft VC++ error number is a strong hint. The
error message text is not helpful.

Assignments from one attribute to another may require cast to underlying type. Specific Microsoft VC++ error number helps to indicate the
occurrence (the error message text is not helpful).

Use of min and max may need to be changed to specify the underlying type. We would recommend to invoke the template explicitly, eg
std::max<double>(a, b)

Non-standard Microsoft functions and types must be replaced with standard. It is easy to detect such error: build your model on MacOS or Linux
and to detect all non-standard Microsoft extensions.

Assignments from one attribute to another may require cast to underlying type.

Use of min and max may need to be changed to specify the underlying type.

Arguments to print-style functions need to be cast to explicit types.

Non-standard Microsoft functions and types must be replaced with standard.

Home > Model Development Topics > Model Localization

This topic describes how to provide translations for model-specific run-time messages.

Multilingual Support forthcoming content

Quick start

How model finds translated message

Model developer: How to mark strings for translation in model code

You can provide translated messages for your model by editing modelName.message.ini file located in the same directory where modelName.exe is.

For example:

dir /B openmpp_win_20180205\models\bin
....
modelOne.exe
modelOne.ini
modelOne.message.ini
modelOne.sqlite

modelOne.message.ini is translated messages for modelOne.exe

Message.ini file must be UTF-8 encoded and it contain model translated messages:

;
; modelOne localized messages
;

[FR]
Run %d = Exécution: %d

[fr-CA]
Run %d = Exécution: %d
;
; Example of multi-line translated message:
;
"Scenario processing" = "\
 Traitment \
 du scénario\
 "

[en]
; Model = Model

If translation the same as original message you can exclude it, e.g.: Model = Model is not required.

[back to topic contents]

At start model determine list user preferred languages. For example if current environment is French Canadian and model default language is EN
then language list will be: (fr-ca, fr, en) .

User language preference can be changed in Windows Control Panel or by Linux LANG environment variable. You can override environment
language by using model command-line or ini-file argument:

modelOne.exe -OpenM.MessageLanguage es-EC

To find translated message model does lookup in:

Model Localization: Translation of model messages

Related topics

Topic contents

Quick Start

How model finds translated message

modelName.message.ini

database table model_word

database table lang_word Search done in order of user preferred languages.

For example, if modelOne.message.ini is same as above and database table model_word contains entry:

fr-CA Done. Fini.

Then model messages in French Canadian environment can be similar to:

2014-03-17 17:14:24.0023 Model: modelOne
2014-03-17 17:14:24.0070 Exécution 101
....
2014-03-17 17:14:24.0179 Fini.

As you can see for current user language fr-CA model found two messages translated in "generic fr " French: "Exécution" and "Fini", however
"Model" still untranslated. To fix this you can update modelOne.message.ini by adding:

[fr-CA]
Model = Modèle

Then result would look like:

2014-03-17 17:14:24.0023 Modèle: modelOne
2014-03-17 17:14:24.0070 Exécution 101
....
2014-03-17 17:14:24.0179 Fini.

[back to topic contents]

Omc model compiler automatically include first "const char *" argument of

theLog->logMsg("some message");

theLog->logFormatted("some format %d %g %s",....);

macro LT("some message")

WriteLogEntry("some message");

WriteDebugLogEntry("some message");

WarningMsg("some message");

ModelExit("some message"); into output model.message.ini file, which can be used as translation starting point.

If your source code directory already contains translated code/model.message.ini then such file is merged with newly added model messages into
output bin/model.message.ini , which you can forward to translation team.

It is possible to use macro LT("something") in order to build concatenated message, however LT is "strictly inline" because it returns temporary
const char * pointer. As result following will crash your model:

const char * myBadDay = LT("nice day");
if (myBadDay // memory access violation, model crash

How to avoid string concatenation. String concatenation considered as bad practice by any translation guide. For example, if you have
something like:

string msg = LT("Table has ") + std::to_string(rowCount) + LT(" rows");
theLog->logMsg(msg.c_str());

then try to replace it with:

Model developer: How to mark strings for translation in model code

theLog->logFormatted("Table has %d rows", rowCount);

Non-translatable strings. Not every output in your model you want to translate For example, you may don't want to translate your model trace
output:

WriteDebugLogEntry(NO_LT("------------"));
WriteDebugLogEntry(NO_LT("{1, 2, 3, 4}"));
WriteDebugLogEntry(NO_LT("------------"));

Please use NO_LT macro to disable unnecessary translation.

[back to topic contents]

There multiple examples how to set input parameters, run the model and get results:

run model from Python: simple loop over model parameter

run RiskPaths model from Python: advanced parameters scaling

run model from R: simple loop over model parameter

run model from R: simple loop in cloud

run RiskPaths model: advanced parameters scaling

run RiskPaths model from R: advanced run in cloud

oms web-service: How to prepare model input parameters

Also openM++ support following APIs:

oms: openM++ web-service which you can use from any modern environment: Python, .NET, JavaScript, etc.

openMpp R package

Go library and tools

Quick examples below do not cover all possible options, please check links above and Model Run: How model finds input parameters for more
details.

Following terms: "simulation member", "replica", "sub-sample" are often used in micro-simulation conversations interchangeably, depending on
context. To avoid terminology discussion openM++ uses "sub-value" as equivalent of all above and some older pages of that wiki may contain
"sub-sample" in that case.

There are two kind of model output tables:

accumulators table: output sub-values (similar to Modgen sub-samples)

expressions table: model output value calculated as accumulators aggregated across sub-values (e.g. mean or CV or SE)

All output accumulator tables always contain same number of sub-values, for example model run:

model.exe -OpenM.SubValues 16

will create 16 sub-values for each accumulator in each output accumulator table.

OpenM++ parameters can also contain sub-values. Parameters sub-values are not required, it is a user choice to run the model and supply sub-
values for some parameters.

For example, if user wants to describe statistical uncertanty of parameter SalaryByYearByProvince then csv file with 16 sub-values can be supplied to
run the model:

model.exe -OpenM.SubValues 16 -SubFrom.SalaryByYearByProvince csv -OpenM.ParamDir C:\MyCsv\

Most of the model parameters are not changing between simulations and only few are varying. It is convenient to select all unchanged
parameters from previous model run (from "base" run):

How To: Set Model Parameters and Get Results
Overview

Sub-values: sub-samples, members, replicas

Model output tables: sub-values, accumulators and expressions

Model parameters: sub-values (optional)

Parameters: Re-use same parameters values as in previous model run

http://openmpp.org/r/html/00Index.html
https://godoc.org/github.com/openmpp/go

model.exe -Parameter.Ratio 0.7 -OpenM.BaseRunId 1234
model.exe -Parameter.Ratio 0.7 -OpenM.BaseRunDigest 5dc848891ea57db19d8dc08ec7a30804
model.exe -Parameter.Ratio 0.7 -OpenM.BaseRunName "My base run of the Model"

Above command do run the model with parameter Ratio = 0.7 and the rest of parameters values are the same as it was in previous run with id =

1234 .

It is also possible to use run diegst or run name to identify "base" model run:

model.exe -Parameter.Ratio 0.7 -OpenM.BaseRunDigest 5dc848891ea57db19d8dc08ec7a30804
model.exe -Parameter.Ratio 0.7 -OpenM.BaseRunName "My base run of the Model"

Please keep in mind, model run may not be unique and if database contains multiple model runs with the same name then first run will be
selected.

It is possible to specify value of any scalar parameter as command line argument, for example:

model.exe -Parameter.Ratio 0.7

There is an example of such technique at Run model from R: simple loop over model parameter page, where we using NewCaseBased model to
study effect of Mortality Hazard input parameter on Duration of Life output:

for (mortalityValue from 0.014 to 0.109 by step 0.005)
{
 # run the model
 NewCaseBased.exe -Parameter.MortalityHazard mortalityValue
}

If parameter is enum-based (e.g. classification) then you can specify code or enum id:

modelOne.exe -Parameter.baseSalary Full
modelOne.exe -Parameter.baseSalary 22 -OpenM.IdParameterValue true

If we want to run the model with multiple sub-values (a.k.a. sub-samples) and want "Grade" parameter sub-values to be created as [0, N-1] then:

model.exe -OpenM.SubValues 16 -SubFrom.Grade iota

as result sub-values parameter Grade would be: [0, ..., 15]

Also any scalar parameter can be defined in model ini-file, i.e.:

model.exe -ini my.ini

; inside of my.ini file:
;
[Parameter]
Z_Parameter = XYZ ; string parameter
SomeInt = 1234 ; integer parameter
OrLogical = true ; boolean parameter
Anumber = 9.876e5 ; float parameter

It is also possible to supply some (or even all) model parameters as csv-file(s). For example:

model.exe -OpenM.ParamDir C:\my_csv

If directory C:\my_csv\ exist and contains parameterName.csv files then model will use it parameter values.

Parameter: Value as command line argument

Parameter: Sub-values [0, N-1] as command line argument

Parameter: Value inside of ini.file

Parameters: Csv files

It is important to describe your parameter values to make sure model users clearly understand scenario data. In order to do that you can supply
parameterName.LANG-CODE.md file(s).

For example, C:\my_csv\Sex.csv values of "Sex" parameter:

sub_id,dim0,param_value
0, F, true
0, M, false

And parameter value notes C:\my_csv\Sex.EN.md :

Sex parameter values in this scenario contain indicators of increased gender-specific hazards.

Note: As it is today Markdown content of parameter value notes may not always display correctly in openM++ UI.

If user want to supply up to 32 sub-values of "Sex" parameter:

sub_id,dim0,param_value
0, F, true
0, M, false
1, F, true
1, M, true
.................
31, F, false
31, M, true

Important: Presence of multiple sub-values in csv file (or in database) does not mean model will use all parameter sub-values. Only explicitly
specified parameter(s) receiving sub-values.

For example, if user run the model 3 times:

model.exe -OpenM.SubValues 16
model.exe -OpenM.SubValues 16 -OpenM.ParamDir C:\my_csv
model.exe -OpenM.SubValues 16 -OpenM.ParamDir C:\my_csv -SubFrom.Sex csv

"Sex" parameter expected to be in database and no sub-values used

"Sex" parameter value is sub-value 0 from C:\my_csv\Sex.csv

"Sex" parameter using sub-values [0, 15] from C:\my_csv\Sex.csv

By default model calculate all output tables and write it into database as model run results. Sometime it may be convenient to save only some
output tables to reduce a time of each model run. This can be done by either suppressing model output table(s) or table group(s):

model.exe -Tables.Suppress ageSexIncome
model.exe -Tables.Suppress ageSexIncome,fullAgeSalary,A_TablesGroup

Or by suppressing output for all tables except of some:

model.exe -Tables.Retain ageSexIncome
model.exe -Tables.Retain ageSexIncome,fullAgeSalary,A_TablesGroup

Suppress and Retain options are mutually exclusive and cannot be mixed. For example, this model run would fail:

model.exe -Tables.Suppress ageSexIncome -Tables.Retain fullAgeSalary

Parameters: Csv files with multiple sub-values

Output Tables: Suppress output tables

Use dbcopy: Export entire model into text files

dbcopy -m modelOne
dbcopy -m modelOne -dbcopy.Zip
dbcopy -m modelOne -dbcopy.NoAccumulatorsCsv
dbcopy -m modelOne -dbcopy.NoMicrodata

It will create modelOne directory and modelOne.Zip file with:

all model metadata (e.g. parameters, description, notes,...) in .json files

csv files with sets of model input parameters

csv files with model run results, input parameters and microdata

Model run microdata can be huge and if you are not intersted in it then use -dbcopy.NoMicrodata to suppress it:

dbcopy -m modelOne -dbcopy.NoMicrodata

For each model run output table openM++ store expression values (e.g. average, CV, SE) and also accumulators. Accumulators are sub-samples
(a.k.a. sub-values or members or replicas, etc.) which used to produces output table aggregated expression value(s). By default dbcopy do output
both: output table expressions and accumulators. If you are interestred only expression values then use -dbcopy.NoAccumulatorsCsv to suppress
accumulators and get your results faster:

dbcopy -m modelOne -dbcopy.NoAccumulatorsCsv

dbcopy -m modelOne -dbcopy.To csv
dbcopy -m modelOne -dbcopy.To csv -dbcopy.Zip
dbcopy -m modelOne -dbcopy.To csv -dbcopy.NoAccumulatorsCsv

It will create modelOne directory and modelOne.Zip file with:

all model metadata (e.g. parameters, description, notes,...) in .csv files

csv files with sets of model input parameters

csv files with model run results and input parameters Each model run result and each input parameters set will be in separate sub-directory.
Use -dbcopy.NoAccumulatorsCsv option to get your results faster by suppressing accumulators (a.k.a sub-sanples) output to CSV files.

Other variation of csv output is:

dbcopy -m modelOne -dbcopy.To csv-all

In that case all model runs will be in "all_model_runs" sub-directory and all input sets are in "all_input_sets".

You can suppress zero values and / or NULL (missing) values in output tables and microdata CSV files:

dbcopy -m modelOne -dbcopy.To csv -dbcopy.NoZeroCsv
dbcopy -m modelOne -dbcopy.To csv -dbcopy.NoNullCsv
dbcopy -m modelOne -dbcopy.To csv -dbcopy.NoNullCsv -dbcopy.NoZeroCsv

dbcopy -m modelOne -s modelOne_other -dbcopy.ParamDir pDir

It will create pDir directory with:

input parameters set metadata (name, description, notes,...) in .json file

csv files with sets of model input parameters

Use dbcopy: Export entire model into csv files

Use dbcopy: Export set of input parameters into text files

Use dbcopy: Export model run results into text files

dbcopy -m modelOne -dbcopy.LastRun
dbcopy -m modelOne -dbcopy.RunId 101
dbcopy -m modelOne -dbcopy.RunName modelOne_2016_11_22_11_38_49_0945_101
dbcopy -m modelOne -dbcopy.LastRun -dbcopy.NoAccumulatorsCsv

It will create a directory with:

model run metadata (name, description, notes,...) in .json file

csv files with input parameters used to run the model

csv files with model output tables values Use -dbcopy.NoAccumulatorsCsv option to get your results faster by suppressing accumulators (a.k.a
sub-sanples) output to CSV files.

dbcopy -m myModel -s MyInput -dbcopy.ParamDir P -dbcopy.ToSqlite myModel.sqlite

If any parameterName.csv file(s) exist in directory P then it will be loaded into MyInput set of input parameters.

It is recommended to run dbcopy -m modelOne -s modelOne_other -dbcopy.ParamDir P to get familiar how csv files look like.

dbcopy -m myModel -s MyInput -dbcopy.ToSqlite myModel.sqlite

It will insert or update MyInput set of input parameters in database with:

if json metadata file exist then input set description, notes and parameter value note updated

if any parameterName.csv files exist then it will be loaded into database

It is recommended to run dbcopy -m modelOne -s modelOne_other -dbcopy.ParamDir P to get familiar how json and csv files look like.

Example of json metadata file for "ageSexData" input set of parameters with description, notes and ageSex parameter value notes:

{
 "ModelName" : "modelOne",
 "Name" : "ageSexData",
 "Txt" : [{
 "LangCode" : "EN",
 "Descr" : "Model One set of parameters"
 }
],
 "Param" : [{
 "Name" : "ageSex",
 "SubCount" : 1,
 "Txt" : [{
 "LangCode" : "EN",
 "Note" : "Age by Sex values"
 }
]
 }
]
}

It is also must exist csv file with parameter values: ageSex.csv

Example of json metadata file for "emptyData" input set of parameters with description and notes in English and French:

Use dbcopy: Import parameters from csv files into database

Use dbcopy: Import parameters, description and notes from text files into database

{
 "ModelName" : "modelOne",
 "Name" : "emptyData",
 "Txt" : [{
 "LangCode" : "EN",
 "Descr" : "Model One set of parameters",
 "Note" : "Notes for model One set of parameters"
 }, {
 "LangCode" : "FR",
 "Descr" : "Je suis désolé je ne parle pas français"
 }
]
}

Model run (execution of the model) consists of the following steps:

initializing of model process(es) with model run options

connecting to database and creating "model run" with run_id and run_name

find set of input parameters and prepare it for the run

reading model input parameters

simulation of sub-values

writing output sub-values to output tables in database

aggregating sub-values using Output Expressios

Results of model run stored in database within unique integer "run_id" and include all model parameters, options and output result tables. You
always can find full set of model input and output by run id.

OpenM++ models can be run on Windows and Linux platforms, on single desktop computer, on multiple computers over network, in HPC cluster
or cloud environment (Google Cloud, Microsoft Azure, Amazon,...). Because openM++ runtime library hides all that complexity from the model we
can safely assume model is a single executable on local machine. Please check Model Run: How to Run the Model for more details.

Following terms: "simulation member", "replica", "sub-sample" are often used in micro-simulation conversations interchangeably, depending on
context. To avoid terminology discussion openM++ uses "sub-value" as equivalent of all above and some older pages of our wiki may contain
"sub-sample" in that case.

There are two kind of model output tables:

accumulators table: output sub-values (similar to Modgen sub-samples)

expressions table: model output value calculated as accumulators aggregated across sub-values (e.g. mean or CV or SE)

All output accumulator tables always contain same number of sub-values, for example model run:

model.exe -OpenM.SubValues 16

will create 16 sub-values for each accumulator in each output accumulator table.

OpenM++ parameters can also contain sub-values. Parameters sub-values are not required, it is a user choice to run the model and supply sub-
values for some parameters.

For example, if user wants to describe statistical uncertanty of parameter SalaryByYearByProvince then csv file with 16 sub-values can be supplied to
run the model:

model.exe -OpenM.SubValues16 SubFrom.SalaryByYearByProvince csv -OpenM.ParamDir C:\MyCsv\

Note: To simplify diagram below we do omit sub-values from the picture. But in real database there are multiple sub-values for parameters and
accumulators; each sub-value identified by sub_id column.

Model Run: How model finds input parameters
Model run cycle overview

Sub-values: sub-samples, members, replicas

Model output tables: sub-values, accumulators and expressions

Model parameters: sub-values (optional)

How model finds input parameters: Parameters search order

Model search for input parameter values in following order:

use parameter value specified as command line argument

use parameter value specified inside of ini-file [Parameter] section

use parameter value from profile_option table

read parameter.csv file from "OpenM.ParamDir" directory

import parameter value from other model parameter or other model output table

use parameter value set of input parameters in database: workset

use same value as in previous model run: values from "base" run

use parameter value from default set of input parameters in database: default workset

some parameters, e.g. number of sub-values may have default value

In any case all input parameters are copied under new run id before simulation starts. That process of copy parameters do guarantee a full
copy of input parameters for each model run in database.

There are many options which control model run, i.e.: number of sub-values, number of threads, etc. OpenM++ model gets run options in
following order:

as command line arguments

from model run options ini-file

from database profile_option tables

use default values

Each option has unique key associated with it, e.g. "Parameter.RandomSeed" is model input parameter "RandomSeed", which is most likely,
random generator starting seed. You can use this key to specify model parameter on command line, in ini-file or database. For example:

modelOne.exe -Parameter.RandomSeed 123 -ini my.ini

would run modelOne model with random seed = 123 and other options from my.ini file.

Please see OpenM++ Model Run Options to find out more.

Database can contain multiple versions of model input parameter value. User can edit (change values of) input parameter(s) and save it as
"working set of model input parameters" (a.k.a. "workset" or scenario).

each set of parameters has unique "set id" and unique "set name"

each model must have at least one full set of input parameters populated with default values (default set)

default input set is a first set of model parameters (first means set with minimal set id)

Most of the model parameters are not changing between simulations and only few are varying. It is convenient to select all unchanged
parameters from previous model run ("base" run). In order to do that user can:

specify "base" model run to re-use parameters values

create input set of parameters as "based on previous model run" and include only updated parameters in that input set Model will use
parameters values from command line, csv files, etc. (as described above) and:

if input set (workset) specified then select all parameters which do exist in that workset

if "base" model run specified then select the rest parameters values from that previous model run

if there is no "base" run then select model parameters from model default workset

If user run the model without any arguments:

modelOne.exe

then input parameters selected from default set, which is the first input data set of that model.

Model run options

Set of model input parameters in database (workset or scenario) and "base" model run

How model finds input parameters: Default

To run the model with input data other than default user can specify set id or workset name:

modelOne.exe -OpenM.SetId 20

modelOne.exe -OpenM.SetName "My Set of Input Parameters"

assuming workset with set_id = 20 and set with name My Set of Input Parameters exists in model database.

It is often convenient to re-use parameters from previous model run:

model.exe -Parameter.Ratio 0.7 -OpenM.BaseRunId 42

As result model will be using same parameters values as it was for run with run_id = 42 except of parameter Ratio = 0.7 . For more details please
see below: How to specify model base run.

It is also possible to specify value of any scalar parameter as command line argument, i.e.:

model.exe -Parameter.Ratio 0.7

There is an example of such technique at Run model from R: simple loop over model parameter page, where we using NewCaseBased model to
study effect of Mortality Hazard input parameter on Duration of Life output:

for (mortalityValue from 0.014 to 0.109 by step 0.005)
{
 # run the model
 NewCaseBased.exe -Parameter.MortalityHazard mortalityValue
}

If we want to run the model with N sub-values (a.k.a. sub-samples) and want Grade parameter sub-values to be created as [0,...,N-1] then:

model.exe -OpenM.SubValues 10 -SubFrom.Grade iota

as result sub-values of parameter Grade would be: [0, ..., 9]

Also any scalar parameter can be defined in model ini-file, i.e.:

model.exe -ini my.ini

; inside of my.ini file:
;
[Parameter]
Z_Parameter = B ; string parameter
SomeInt = 1234 ; integer parameter
OrLogical = true ; boolean parameter
Anumber = 9.876e5 ; float parameter

Another way to supply value of scalar parameter(s) is through profile_option database table. For example:

model.exe -OpenM.SetId 20 -OpenM.Profile MyProfile

How model finds input parameters: Input set name or Id

How model finds input parameters: re-use parameters from previous model run (base run)

How model finds input parameters: Value as command line argument

How model finds input parameters: iota sub-values command line argument

How model finds input parameters: Value inside of ini.file

How model finds input parameters: Value in model profile

SELECT * FROM profile_lst;

profile_name

MyProfile

SELECT * FROM profile_option;

profile_name option_key option_value
------------- ---------------------- ------------
MyProfile Parameter.RandomSeed 4095

It is also possible to supply some (or even all) model parameters as csv-file(s). For example:

model.exe -OpenM.ParamDir C:\my_csv

If directory C:\my_csv\ exist and contains parameterName.csv file model will use it parameter values. Parameter directory can be specified as
command-line argument or as ini-file entry (it is not recommended to use profile_option table for OpenM.ParamDir option).

On picture above model run as:

model.exe -ini my.ini -OpenM.SetId 20

and my.ini file contains:

[OpenM]
ParamDir = C:\my_csv\

As result model.exe will read from C:\my_csv\Sex.csv values of "Sex" parameter:

sub_id,dim0,param_value
0, F, true
0, M, false

Together with csv files you can also supply parameter value note file(s) to describe scenario data values in each model language. Parameter
value note files must be located in the same csv directory are named as: parameterName.LANG-CODE.md . For example, C:\my_csv\Sex.EN.md is an
English notes for Sex parameter values:

Sex parameter values in this scenario contain indicators of increased gender-specific hazards.

It is also possible to have enum id's in csv files instead of codes, for example C:\my_csv\Sex.csv can be:

sub_id,dim0,param_value
0, 0, true
0, 1, false

To use such csv files you need to run the model with OpenM.IdCsv true argument:

model.exe -OpenM.SetId 20 OpenM.IdCsv true

Format of parameter.csv is based on RFC 4180 with some simplification:

space-only lines silently ignored

end of line can be CRLF or LF

values are trimmed unless they are " double quoted "

multi-line string values not supported

If parameter is boolean then following values expected (not case sensitive):

"true" or "t" or "1"

How model finds input parameters: Csv file

"false" or "f" or "0"

Important: Header line must include all dimension names, in ascending order, without spaces, e.g.: sub_id,dim0,dim1,dim2,dim3,param_value .

Parameter.csv file must contain all values, e.g. if parameter has 123456 values then csv must have all 123456 lines + header. Sorting order of
lines are not important.

If user want to supply up to 32 sub-values of "Sex" parameter then Sex.csv file look like:

sub_id,dim0,param_value
0, F, true
0, M, false
1, F, true
1, M, true
.................
31, F, false
31, M, true

Important: Presence of multiple sub-values in csv file (or in database) does not mean model will be using all parameter sub-values. Only
explicitly specified parameter(s) receiving sub-values.

For example, if user run the model 8 times:

model.exe -OpenM.SubValues 8
model.exe -OpenM.SubValues 8 -OpenM.ParamDir C:\my_csv
model.exe -OpenM.SubValues 8 -OpenM.ParamDir C:\my_csv -SubFrom.Sex csv -SubValues.Sex default
model.exe -OpenM.SubValues 8 -OpenM.ParamDir C:\my_csv -SubFrom.Sex csv -SubValues.Sex 17
model.exe -OpenM.SubValues 8 -OpenM.ParamDir C:\my_csv -SubFrom.Sex csv
model.exe -OpenM.SubValues 8 -OpenM.ParamDir C:\my_csv -SubFrom.Sex csv -SubValues.Sex [24,31]
model.exe -OpenM.SubValues 8 -OpenM.ParamDir C:\my_csv -SubFrom.Sex csv -SubValues.Sex 1,3,5,7,9,11,13,15
model.exe -OpenM.SubValues 8 -OpenM.ParamDir C:\my_csv -SubFrom.Sex csv -SubValues.Sex xAAAA
model.exe -OpenM.SubValues 8 -OpenM.ParamDir C:\my_csv -SubFrom.GeoGroup csv -SubValues.GeoGroup 1,3,5,7,9,11,13,15

"Sex" parameter expected to be in database and no sub-values used

"Sex" parameter value is selected as "default" (sub_id=0) from C:\my_csv\Sex.csv , if .csv file exist

"Sex" parameter value is selected as "default" (sub_id=0) from C:\my_csv\Sex.csv , .csv file must exist

"Sex" parameter value is selected as sub_id = 17 from C:\my_csv\Sex.csv

"Sex" parameter using sub-values [0,7] from C:\my_csv\Sex.csv

"Sex" parameter using sub-values [24,31] from C:\my_csv\Sex.csv

"Sex" parameter using sub-values 1,3,5,7,9,11,13,15 from C:\my_csv\Sex.csv

"Sex" parameter using sub-values 1,3,5,7,9,11,13,15 from C:\my_csv\Sex.csv (bit mask)

all parameters of GeoGroup using sub-values 1,3,5,7,9,11,13,15 from .csv files form C:\my_csv\ directory

"Default" sub-value id can be explicitly defined for input parameter by person who published input set of parameters (workset). If "default" sub_id
is not defined for that parameter then sub_id=0 assumed. Sub-value id's in the input set of parameters (in workset) can have be any integer (can
be negative and not even have to sequential). For example if RatioByProvince parameter have 32 sub-values then typically sub_id's are [0,31],
but it can be [-10, -8, -6, -4, -2, 0, 2, 4, ..., 52] and default sub_id can be = -10.

Important: Number of sub-values in csv must be at least as user required. In example above Sex.csv contains 32 sub-values and user cannot run
model with more than 32 sub-values.

If input parameter specified as "importable" by model developer then value(s) can be imported from run values of upstream model parameter or
output table. For example if model developer of BigModel specified:

import Phi (RedModel.RedPhi) sample_dimension= off;
import Zet (SunModel.SunZet) sample_dimension= off;

Csv file with multiple sub-values

How model finds input parameters: Import value from upstream model

And model user running BigModel as:

BigModel.exe -Import.All true

Then:

value of BigModel parameter Phi must be imported from last run of RedModel parameter RedPhi

value of BigModel parameter Zet must be imported from last run of SunModel output table SunZet

There are multiple options to control model import. For example if user run BigModel 9 times:

BigModel.exe -Import.All true
BigModel.exe -Import.SunModel true
BigModel.exe -ImportRunDigest.SunModel abcdefghef12345678
BigModel.exe -ImportRunId.SunModel 123
BigModel.exe -ImportRunName.SunModel GoodRun
BigModel.exe -ImportDigest.SunModel 87654321fedcba
BigModel.exe -ImportId.SunModel 456
BigModel.exe -ImportExpr.SunZet expr4
BigModel.exe -ImportDatabase.SunModel "Database=../NewSunModel.sqlite;OpenMode=ReadOnly;"

Import all importable parameters from last successful run of upstream models

Import all parameters importable from SunModel using values of last successful run of SunModel

Import all parameters importable from SunModel using values of run where digest = abcdefghef12345678

Import all parameters importable from SunModel using values of run where id = 123

Import all parameters importable from SunModel using values of last successful run where run name = GoodRun

Import all parameters importable from SunModel where model digest is 87654321fedcba using values of last successful run

Import all parameters importable from SunModel where model id = 456 using values of last successful run

Import parameter Zet from SunModel output table SunZet expression expr4 using values of last successful run

Import all parameters importable from SunModel from database ../NewSunModel.sqlite

Import options can be combined with sub-values options if model user want to select specific sub-values from upstream model parameter.

Default database to search for upstream model:

if upstream model SunModel exist in current model database then it is imported from current database

else it must be default upstream model SQLite database: SunModel.sqlite

Most of the model parameters are not changing between simulations and only few parameters are varying. In that case it is convenient to select
unchanged parameters from previous model run ("base" run).

Base run can be identified by run_id or run digest or run name. Please note: model run names are not unique and if there are multiple runs in
database with the same name then first run selected:

SELECT MIN(run_id) WHERE run_name = 'Default model run';

Input set of model parameters (workset) can be created as "based on existing run" and store only small number of model parameters, all the rest
will be selected selected from "base" run by run_id .

On picture above command line to run the model is:

model.exe -ini my.ini -OpenM.SetId 20

and input set with id 20 defined as "based on run" with id = 11:

How model finds input parameters: Value from previous model run (base run)

Create set of input parameters based on previous model run

SELECT set_id, set_name, base_run_id FROM workset_lst WHERE set_id = 20;

set_id set_name base_run_id
------ ------------------- -----------
 20 set_based_on_run_11 11

Because workset with id = 20 does not include "Provinces" input parameter those values selected from existing model run by run_id = 11 :

SELECT dim0, param_value FROM Provinces WHERE run_id = 11;

dim0 value
---- -----
 0 ON
 1 QC

Note: sql above specially simplified, actual database table names, column names and queries bit more complex.

It is possible to explicitly specify model base run to select input parameters. For example:

model.exe -Parameter.Ratio 0.7 -OpenM.SetName "Age Input Values" -OpenM.BaseRunId 42

Model will use parameter Ratio = 0.7 and select all parameters which do exist in Age Input Values workset:

SELECT dim0, param_value FROM Age WHERE set_name = 'Age Input Values';

dim0 value
---- -----
 0 [0,21]
 1 22+

.... select all other parameters where parameter exist in 'Age Input Values'

And the rest of model parameters selected from base run:

SELECT dim0, param_value FROM Provinces WHERE run_id = 42;

dim0 value
---- -----
 0 BC
 1 NS

It is also possible to use run diegst or run name to identify "base" model run:

model.exe -Parameter.Ratio 0.7 -OpenM.BaseRunDigest 5dc848891ea57db19d8dc08ec7a30804
model.exe -Parameter.Ratio 0.7 -OpenM.BaseRunName "My base run of the Model"

Please keep in mind, model run may not be unique and if database contains multiple model runs with the same name then first run will be
selected.

If we want to run the model with multiple sub-values (a.k.a. sub-samples) and want "RatioByProvince" parameter sub-values selected from
database:

model.exe -OpenM.SubValues 8 -SubFrom.RatioByProvince db

Model will select "RatioByProvince" parameter sub-values from default workset or from base run, if there are no RatioByProvince parameter in
default workset. Database must contain at least 8 sub-values for "RatioByProvince".

model.exe -OpenM.SubValues 8 -SubFrom.GeoGroup db

For GeoGroup of parameters model will select sub-values from default workset or from base run, if there are no such parameter in default
workset. Database must contain at least 8 sub-values for all parameters of GeoGroup.

How to specify model base run

Parameter sub-values from database

For example:

SELECT sub_id, dim0, param_value FROM RatioByProvince WHERE run_id = 11;

sub_id dim0 value
------ ---- -----
 0 0 1.00
 0 1 1.01
 1 0 1.02
 1 1 1.03
 2 0 1.04
 2 1 1.05

 31 0 1.31
 31 1 1.32

In that case first 8 sub-values will be selected with sub_id between 0 and 7.

There are multiple options to specify which sub-values to select from database, for example:

model.exe -OpenM.SubValues 8
model.exe -OpenM.SubValues 8 -SubFrom.RatioByProvince db
model.exe -OpenM.SubValues 8 -SubFrom.RatioByProvince db -SubValues.Sex [24,31]
model.exe -OpenM.SubValues 8 -SubFrom.RatioByProvince db -SubValues.Sex 1,3,5,7,9,11,13,15
model.exe -OpenM.SubValues 8 -SubFrom.RatioByProvince db -SubValues.Sex xAAAA
model.exe -OpenM.SubValues 8 -SubFrom.RatioByProvince db -SubValues.Sex default
model.exe -OpenM.SubValues 8 -SubFrom.RatioByProvince db -SubValues.Sex 17
model.exe -OpenM.SubValues 8 -SubFrom.GeoGroup db -SubValues.GeoGroup 17

"RatioByProvince" parameter expected to be in database and no sub-values used

"RatioByProvince" parameter using sub-values [0,7] from database

"RatioByProvince" parameter using sub-values [24,31] from database

"RatioByProvince" parameter using sub-values 1,3,5,7,9,11,13,15 from database

"RatioByProvince" parameter using sub-values 1,3,5,7,9,11,13,15 from database (bit mask)

"RatioByProvince" parameter value is selected as "default" (sub_id=0) from database

"RatioByProvince" parameter value is selected as sub_id = 17 from database

all parameters of GeoGroup are selected as sub_id = 17 from database

"Default" sub-value id can be explicitly defined for input parameter by person who published input set of parameters (workset). If "default" sub_id
is not defined for that parameter then sub_id=0 assumed. Sub-value id's in the input set of parameters (in workset) can have be any integer (can
be negative and not even have to sequential). For example if RatioByProvince parameter have 32 sub-values then typically sub_id's are [0,31],
but it can be [-10, -8, -6, -4, -2, 0, 2, 4, ..., 52] and default sub_id can be = -10.

On the other hand, in model run results sub_id is always [0,N-1] for run parameters and output tables. For example:

model.exe -OpenM.SubValues 8 -SubFrom.RatioByProvince db -SubValues.Sex [24,31]

"RatioByProvince" parameter in model run will have sub_id column values: [0,7].

Following terms: "simulation member", "replica", "sub-sample" are often used in micro-simulation conversations interchangeably, depending on
context. To avoid terminology discussion openM++ uses "sub-value" as equivalent of all above and some older pages of that wiki may contain
"sub-sample" in that case.

There are two kind of model output tables:

accumulators table: output sub-values (similar to Modgen sub-samples)

expressions table: model output value calculated as accumulators aggregated across sub-values (e.g. mean or CV or SE)

All output accumulator tables always contain same number of sub-values, for example model run:

model.exe -OpenM.Subvalues 16

will create 16 sub-values for each accumulator in each output accumulator table.

It is also possible to use parameter(s) in expressions, parameter must be a scalar of float or integer type (see example of OM_COUNT_IF below).

During the simulation OpenM++ model collect the results in "accumulators" and, at the end, write it into output accumulators table(s). Each output
accumulator table contains results of model executions for all sub-values.

For example:

Model output table "Salary by Sex" has two accumulators and two dimensions:

salary: 0 = "Low", 1 = "Medium", 2 = "High"

sex: 0 = "Female", 1 = "Male"

If we run that model twice, first time with one sub-value and second with eight sub-values then output results may look like:

SELECT
 run_id, dim0, dim1, acc_id, sub_id, acc_value
FROM modelone_201208171604590148_a0_salarySex
ORDER BY 1, 2, 3, 4, 5;

run_id dim0 dim1 acc_id sub_id acc_value
------ ------ ------ ------ ------ ----------
11 0 0 0 0 50.0
11 0 0 1 0 1.0
11 0 1 0 0 60.0
11 0 1 1 0 2.0
11 1 0 0 0 51.6
11 1 0 1 0 2.0
11 1 1 0 0 62.0
11 1 1 1 0 3.0
11 2 0 0 0 53.2
11 2 0 1 0 3.0
11 2 1 0 0 64.0
11 2 1 1 0 4.0
12 0 0 0 0 50.0
12 0 0 0 1 100.0
12 0 0 0 2 150.0
12 0 0 0 3 200.0
12 0 0 0 4 250.0
12 0 0 0 5 300.0
12 0 0 0 6 350.0
12 0 0 0 7 400.0
12 0 0 1 0 1.0
....more results....
12 2 1 1 7 11.0

Columns are:

run_id: is unique run id for that model execution; all model input parameters and output results can be found by run_id;

Model Output Expressions
Sub-values: sub-samples, members, replicas

Model output tables: sub-values, accumulators and expressions

Sub-values (accumulators) output tables

dim0: salary dimension items;

dim1: sex dimension items;

acc_id: zero-based accumulator number;

sub_id: zero-based sub-value number;

acc_value: accumulator value;

Accumulators are low level simulation results and useful mostly to analyze simulation model itself.

On top of accumulator values for each sub-value model can produce more meaningful output results by using OpenM++ output expressions, i.e.:
average value across all sub-values. To do that model developer (or model user) can specify output aggregation expression, for example,
average value is: OM_AVG(acc0) .

Each "value" output table can contain unlimited (reasonably unlimited) amount of aggregation expressions. Each expression must include
aggregation function(s) with accumulators as argument(s) and, optionally, other arithmetic operators and basic SQL functions, such as ABS or
SQRT .

Following OpenM++ sub-values aggregation functions are supported:

OM_COUNT(...expr...) - count of values across all sub-values, OM_COUNT(acc0) result in SQL:

 COUNT(acc0)

OM_COUNT_IF(...condition...) - count of values matching condition, OM_COUNT_IF(acc0 > param.High) result in SQL:

 COUNT(CASE WHEN acc0 > (....sql to select value of High parameter...) THEN 1 ELSE NULL END)

OM_SUM(...expr...) - sum of values across all sub-values, OM_SUM(acc0) result in SQL:

 SUM(acc0)

OM_AVG(...expr...) - average value over sub-values, OM_AVG(acc0) result in SQL:

 AVG(acc0)

OM_MAX(...expr...) - maximum value over all sub-values, OM_MAX(acc0) result in SQL:

 MAX(acc0)

OM_MIN(...expr...) - minimal value over all sub-values, OM_MIN(acc0) result in SQL:

 MIN(acc0)

OM_VAR(...expr...) - variance over sub-values, OM_VAR(acc0) result in SQL:

 SUM((acc0 - AVG(acc0) * (acc0 - AVG(acc0)) / (COUNT(acc0) - 1)

OM_SD(...) - standard deviation:

 SQRT(OM_VAR(...expr...))

OM_SE(...expr...) - standard error:

 SQRT(OM_VAR(...expr...) / COUNT(...expr...))

OM_CV(...expr...) - coefficient of variation:

Aggregated output values

 100 * (OM_SD(...expr...) / AVG(...expr...))

There are also non-aggregation functions available:

OM_IF(...condition... THEN ...expr... ELSEother...) - if condition is true then return expr else return other (else part is optional). OM_IF(acc0 > 1.5 THEN

acc0 ELSE 1.5) result in SQL:

 CASE WHEN acc0 > 1.5 THEN acc0 ELSE 1.5 END

OM_DIV_BY(...expr...) - wrap expression to make it suitable for denominator:

 CASE WHEN ABS(acc0) > 1.0e-37 THEN acc0 ELSE NULL END

If your expression include divide by operator then it is recommended to wrap a denominator into OM_DIV_BY() function to prevent an error when
divisor is zero or very small value. For example, if your expression is acc1 / acc0 then use do acc1 / OM_DIV_BY(acc0) .

Aggregation expression can be more complex than a single function, for example: OM_SUM(acc0) / OM_COUNT(acc0) is equivalent of OM_AVG(acc0) .
And OM_SD(acc1) can be written as:

SQRT(OM_SUM((acc1 - OM_AVG(acc1) * (acc1 - OM_AVG(acc1)) / (OM_COUNT(acc1) - 1))

It is possible, as you can see, combine and nest aggregation functions in the expression.

Important:

openM++ does aggregation across the sub-values, or other word, COUNT() is (almost) always number of sub-values.

aggregation done by underlying SQL database, so, only non-NULL accumulator values are aggregated, so, COUNT() is number of non-
NULL accumultor values across sub-values.

Important: Accumulators always must be inside some aggregation function, i.e. this is an error: acc0 + OM_SUM(acc1) because acc0 is not
aggregated. This is also an error: OM_SUM(acc1) / OM_DIV_BY(acc0) because OM_DIV_BY and OM_IF are non-aggregation functions. Output table
expression is a single value produced as aggregation over sub-values and therefore accumulators must be wrapped into aggregation functions.
For example:

OM_SUM(acc1 + acc0) is correct

OM_SUM(acc1) + acc0 incorrect

OM_SUM(acc2 / OM_DIV_BY(acc0)) is correct

OM_SUM(acc2) / OM_DIV_BY(acc0) incorrect

OM_AVG(acc2) + OM_SUM(OM_AVG(acc1) + acc0) is correct

OM_AVG(acc2) + OM_SUM(OM_AVG(acc1)) + acc0 incorrect

If you want to aggregate simulation results in your own way then it is always possible to combine openM++ and standard SQL functions in some
custom expression. For example, if sub-values of your model is parts of large population then your may want to collect count and sum in separate
accumulators and instead of OM_AVG(...) use custom average expression, like:

OM_SUM(acc0) / OM_SUM(acc1)

Also it is recommended to warp denominator part into OM_DIV_BY() function and result is:

OM_SUM(acc0) / OM_DIV_BY(OM_SUM(acc1))

OpenM++ output table expressions translated into SQL aggregation queries. For example, if we have accumulator table:

Examples of aggregation expressions

CREATE TABLE out4_sub
(
 run_id INT NOT NULL,
 dim0 INT NOT NULL,
 dim1 VARCHAR(8) NOT NULL,
 sub_id INT NOT NULL,
 acc0 FLOAT NULL,
 PRIMARY KEY (run_id, dim0, dim1, sub_id)
);

SELECT run_id, dim0, dim1, sub_id, acc0 FROM out4_sub ORDER BY run_id, dim0, dim1 DESC;

run_id dim0 dim1 sub_id acc0
------ ---- ---- ------ ----
2 10 M 0 1
2 10 M 1 2
2 10 M 2 3
2 10 M 3 4
2 10 F 0 1.5
2 10 F 1 2.5
2 10 F 2 3.5
2 10 F 3 4.5
2 20 M 0 10
2 20 M 1 20
2 20 M 2 30
2 20 M 3 40
2 20 F 0 10.5
2 20 F 1 20.5
2 20 F 2 30.5
2 20 F 3 40.5
3 10 M 0 5
3 10 M 1 6
3 10 F 0 7
3 10 F 1 8
3 20 M 0 50
3 20 M 1 60
3 20 F 0 70
3 20 F 1 80

Please, keep in mind: this is simplified example and in real openM++ database sub-value tables look like as described at the top of the article.

Then following results would be produced by openM++ aggregation functions:

Count, Average, Sum, Min and Max:

SELECT
 S.run_id, S.dim0, S.dim1,
 COUNT(S.acc0) AS "cnt",
 AVG(S.acc0) AS "avg",
 SUM(S.acc0) AS "sum",
 MIN(S.acc0) AS "min",
 MAX(S.acc0) AS "max"
FROM out4_sub S
GROUP BY S.run_id, S.dim0, S.dim1
ORDER BY S.run_id, S.dim0, S.dim1 DESC;

run_id dim0 dim1 cnt avg sum min max
------ ---- ---- --- --- --- --- ---
2 10 M 4 2.5 10 1 4
2 10 F 4 3 12 1.5 4.5
2 20 M 4 25 100 10 40
2 20 F 4 25.5 102 10.5 40.5
3 10 M 2 5.5 11 5 6
3 10 F 2 7.5 15 7 8
3 20 M 2 55 110 50 60
3 20 F 2 75 150 70 80

Count, Average and Variance:

SELECT
 S.run_id, S.dim0, S.dim1,
 COUNT(S.acc0) AS "cnt",
 AVG(S.acc0) AS "avg",
 SUM(
 (S.acc0 - (SELECT AVG(VM1.acc0) FROM out4_sub VM1 WHERE VM1.run_id = S.run_id AND VM1.dim0 = S.dim0 AND VM1.dim1 = S.dim1)) *
 (S.acc0 - (SELECT AVG(VM2.acc0) FROM out4_sub VM2 WHERE VM2.run_id = S.run_id AND VM2.dim0 = S.dim0 AND VM2.dim1 = S.dim1))
) /
 ((SELECT COUNT(VC1.acc0) FROM out4_sub VC1 WHERE VC1.run_id = S.run_id AND VC1.dim0 = S.dim0 AND VC1.dim1 = S.dim1) - 1) AS "var"
FROM out4_sub S
GROUP BY S.run_id, S.dim0, S.dim1
ORDER BY S.run_id, S.dim0, S.dim1 DESC;

run_id dim0 dim1 cnt avg var
------ --- ---- --- --- ---
2 10 M 4 2.5 1.66666666666667
2 10 F 4 3 1.66666666666667
2 20 M 4 25 166.666666666667
2 20 F 4 25.5 166.666666666667
3 10 M 2 5.5 0.5
3 10 F 2 7.5 0.5
3 20 M 2 55 50
3 20 F 2 75 50

Count, Average and Standard Deviation:

SELECT
 S.run_id, S.dim0, S.dim1,
 COUNT(S.acc0) AS "cnt",
 AVG(S.acc0) AS "avg",
 SQRT(
 SUM(
 (S.acc0 - (SELECT AVG(SDM1.acc0) FROM out4_sub SDM1 WHERE SDM1.run_id = S.run_id AND SDM1.dim0 = S.dim0 AND SDM1.dim1 = S.dim1)) *
 (S.acc0 - (SELECT AVG(SDM2.acc0) FROM out4_sub SDM2 WHERE SDM2.run_id = S.run_id AND SDM2.dim0 = S.dim0 AND SDM2.dim1 = S.dim1))
) /
 ((SELECT COUNT(SDC1.acc0) FROM out4_sub SDC1 WHERE SDC1.run_id = S.run_id AND SDC1.dim0 = S.dim0 AND SDC1.dim1 = S.dim1) - 1)
) AS "sd"
FROM out4_sub S
GROUP BY S.run_id, S.dim0, S.dim1
ORDER BY S.run_id, S.dim0, S.dim1 DESC;

run_id dim0 dim1 cnt avg sd
------ ---- --- --- --- --
2 10 M 4 2.5 1.29099444873581
2 10 F 4 3 1.29099444873581
2 20 M 4 25 12.9099444873581
2 20 F 4 25.5 12.9099444873581
3 10 M 2 5.5 0.707106781186548
3 10 F 2 7.5 0.707106781186548
3 20 M 2 55 7.07106781186548
3 20 F 2 75 7.07106781186548

Count, Average, and Standard Error:

SELECT
 S.run_id, S.dim0, S.dim1,
 COUNT(S.acc0) AS "cnt",
 AVG(S.acc0) AS "avg",
 SQRT(
 SUM(
 (S.acc0 - (SELECT AVG(SEM1.acc0) FROM out4_sub SEM1 WHERE SEM1.run_id = S.run_id AND SEM1.dim0 = S.dim0 AND SEM1.dim1 = S.dim1)) *
 (S.acc0 - (SELECT AVG(SEM2.acc0) FROM out4_sub SEM2 WHERE SEM2.run_id = S.run_id AND SEM2.dim0 = S.dim0 AND SEM2.dim1 = S.dim1))
) /
 ((SELECT COUNT(SEC1.acc0) FROM out4_sub SEC1 WHERE SEC1.run_id = S.run_id AND SEC1.dim0 = S.dim0 AND SEC1.dim1 = S.dim1) - 1) /
 (SELECT COUNT(SEC2.acc0) FROM out4_sub SEC2 WHERE SEC2.run_id = S.run_id AND SEC2.dim0 = S.dim0 AND SEC2.dim1 = S.dim1)
) AS "se"
FROM out4_sub S
GROUP BY S.run_id, S.dim0, S.dim1
ORDER BY S.run_id, S.dim0, S.dim1 DESC;

run_id dim0 dim1 cnt avg se
------ ---- ---- --- --- --
2 10 M 4 2.5 0.645497224367903
2 10 F 4 3 0.645497224367903
2 20 M 4 25 6.45497224367903
2 20 F 4 25.5 6.45497224367903
3 10 M 2 5.5 0.5
3 10 F 2 7.5 0.5
3 20 M 2 55 5
3 20 F 2 75 5

Count, Average, an Coefficient of Variation:

SELECT
 S.run_id, S.dim0, S.dim1,
 COUNT(S.acc0) AS "cnt",
 AVG(S.acc0) AS "avg",
 100.0 * (
 SQRT(
 SUM(
 (S.acc0 - (SELECT AVG(CVM1.acc0) FROM out4_sub CVM1 WHERE CVM1.run_id = S.run_id AND CVM1.dim0 = S.dim0 AND CVM1.dim1 = S.dim1)) *
 (S.acc0 - (SELECT AVG(CVM2.acc0) FROM out4_sub CVM2 WHERE CVM2.run_id = S.run_id AND CVM2.dim0 = S.dim0 AND CVM2.dim1 = S.dim1))
) /
 ((SELECT COUNT(CVC1.acc0) FROM out4_sub CVC1 WHERE CVC1.run_id = S.run_id AND CVC1.dim0 = S.dim0 AND CVC1.dim1 = S.dim1) - 1)
) /
 (SELECT AVG(CVM3.acc0) FROM out4_sub CVM3 WHERE CVM3.run_id = S.run_id AND CVM3.dim0 = S.dim0 AND CVM3.dim1 = S.dim1)
) AS "cv"
FROM out4_sub S
GROUP BY S.run_id, S.dim0, S.dim1
ORDER BY S.run_id, S.dim0, S.dim1 DESC;

run_id dim0 dim1 cnt avg cv
------ ---- ---- --- --- --
2 10 M 4 2.5 51.6397779494322
2 10 F 4 3 43.0331482911935
2 20 M 4 25 51.6397779494322
2 20 F 4 25.5 50.6272332837571
3 10 M 2 5.5 12.8564869306645
3 10 F 2 7.5 9.42809041582064
3 20 M 2 55 12.8564869306645
3 20 F 2 75 9.42809041582063

In the previous section we are using simplified representation of accumulator table and SQL dialect, which is not compatible across all vendors.
Real SQL aggregation queries can be found in expr_sql column of table_expr metadata table. For example if source model expression is:

(OM_SUM(acc0) / OM_SUM(acc2))

then result look like:

SELECT
 M1.run_id, M1.dim0, (SUM(M1.acc_value) / SUM(L1A2.acc2)) AS expr1
FROM RiskPaths_201410071856440009_a2_T03_FertilityByAge M1
INNER JOIN
(
 SELECT run_id, dim0, sub_id, acc_value AS acc2
 FROM RiskPaths_201410071856440009_a2_T03_FertilityByAge
 WHERE acc_id = 2
) L1A2
ON (L1A2.run_id = M1.run_id AND L1A2.dim0 = M1.dim0 AND L1A2.sub_id = M1.sub_id)
WHERE M1.acc_id = 0
GROUP BY M1.run_id, M1.dim0

SQL implementation details

There are many options which control model run, i.e.: number of cases, random generator starting seed, etc. OpenM++ model gets run options in
following order:

as command line arguments

from ini-file (similar to Modgen .sce file)

from database profile_option tables

use default values

Each option has unique key string associated with it, i.e. "Parameter.StartingSeed" is model input parameter "StartingSeed", which is most likely,
random generator starting seed. You can use this key to specify model parameter on command line, in ini-file or database. For example:

modelOne.exe -Parameter.StartingSeed 123 -ini small.ini

would run "modelOne" model with starting seed = 123 and other options from small.ini file.

Note: We recommend to use normal Windows command line cmd.exe. If you are using Windows PowerShell then it may be necessary to put
"quotes" around command line options, e.g:

modelOne.exe "-Parameter.StartingSeed" 123 "-ini" "small.ini"

Typically we are using SQLite database files to run the model and in that case you just specifiy a path to your sqlite file:

modelOne.exe -db C:\My-Model\m1.sqlite

It is often SQLite database file is in the same directory as model.exe file and file name is ModelName.sqlite, you can run model as:

my/model/dir/model.exe -OpenM.SqliteFromBin

If database connection string is not specified then model try to open SQLite database OM_MODEL_NAME.sqlite (i.e.: modelOne.sqlite) in current
working directory. Default database connection string is:

Database=OM_MODEL_NAME.sqlite; Timeout=86400; OpenMode=ReadWrite;

Please notice, Linux file names are case sensitive and modelOne.sqlite is different from ModelOne.sqlite .

You can specify database connection string as command line argument, i.e.:

modelOne.exe -OpenM.Database "Database=C:\My Model\m1.sqlite; Timeout=86400; OpenMode=ReadWrite;"

Or, more convenient, by using ini-file

modelOne.exe -ini C:\MyModel\small.ini

Following parameters allowed for SQLite database connection:

Database - (required) database file name or URI, file name can be empty

Timeout - (optional) table lock "busy" timeout in seconds, default=0

OpenMode - (optional) database file open mode: ReadOnly, ReadWrite, Create, default=ReadOnly

DeleteExisting - (optional) if true then delete existing database file, default: false

Please notice: to run the model you need OpenMode=ReadWrite .

Model Run Options and ini-file
Overview

OpenM++ database connection

Model developer can pass an arbitrary run option from ini-file and use it to debug model code. In order to do that model should be started with
following command line arguments:

model.exe -ini some.ini -OpenM.IniAnyKey

Or any of equivalent formats:

model.exe -ini some.ini -OpenM.IniAnyKey true
model.exe -OpenM.IniFile some.ini -OpenM.IniAnyKey true
model.exe -OpenM.IniFile some.ini -OpenM.IniAnyKey 1
model.exe -OpenM.IniFile some.ini -OpenM.IniAnyKey yes

Special boolean option -OpenM.IniAnyKey true allow to pass any key and values to model development code from ini-file.

For example, you can process following ini-file development options:

[MyTest]
ShowReport = yes ; true if: "yes", "1", "true" or empty value, false if missing
ReportStyle = readable ; string option
MinimumTime = 1234.56 ; double value, use as default: -inf
LineCount = 4321 ; integer option
EntityId = 1234567890123456789 ; long long integer
SelectedNames = e1,e2,e3 ; comma separated list of event names

by including code below into ompp_framework.ompp :

// process development model run options from model ini-file
void ProcessDevelopmentOptions(const IRunOptions * const i_options)
{
using namespace std;

 bool isShowReport = i_options->boolOption("MyTest.ShowReport");
 string rptStyle = i_options->strOption("MyTest.ReportStyle");
 double minTime = i_options->doubleOption("MyTest.MinimumTime", -numeric_limits<double>::infinity());
 int lineCount = i_options->intOption("MyTest.LineCount", 0);
 long long entityId = i_options->longOption("MyTest.EntityId", 0);

 // option is a list of comma separated names
 list<string> evtList = openm::splitCsv(i_options->strOption("MyTest.SelectedNames"));

 // if option is not specified at all
 if (!i_options->isOptionExist("MyTest.ShowReport")) {
 // do something
 }

 // get a copy of all model run options, including openM++ standard options
 vector<pair<string, string>> allOpts = i_options->allOptions();

 // each option is a pair of key and value
 for (const auto & opt : allOpts) {
 // string key = opt.first;
 // string value = opt.second;
 }
}

Important:

Model development options should not be used as model parameters and should not affect modeling results. It is strictly for
debugging and development purpose. OpenM++ does not provide any guarantee about model development options.

To specify name of ini-file you can use -s or -ini or -OpenM.IniFile command line option. Please see OpenM++ ini-file format to find out more
about ini-file structure supported by openM++.

Example of model ini-file:

; Lines started with ; semicolon are just a comments
Lines started with # hash are just a comments

;#==

Model development options

OpenM++ ini-file run options

;#==
;#
;# model parameters
;# any scalar model parameter can be specified in [Parameter] section
;# or as command line argument or in profile_option table
;
[Parameter]

;# random seed value
;
; StartingSeed = 16807

;# base salary is classification parameter
;# using enum code "Full" to specify parameter value
;# if [OpenM]IdParameterValue=true (see below) then we must use baseSalary=22 instead
;
; baseSalary = Full

;#==
;#
;# openM++ run options
;#
;# OpenM++ boolean options:
;# True value is any of: "yes", "1", "true" or empty value
;# False value is any of: "no" "0", "false"
;# Boolean values are not case sensitive, e.g.: "yes" == "YES" and it is a true value
;
[OpenM]

;# number of sub-values, default: 1
;
; SubValues = 16

;# max number of modeling threads, default: 1
;#
;# if number of sub-values per process < number of modeling threads then sub-values run sequentially.
;# if more threads specified then sub-values run in parallel.
;#
;# for example:
;# model.exe -OpenM.SubValues 8
;# model.exe -OpenM.SubValues 8 -OpenM.Threads 4
;# mpiexec -n 2 model.exe -OpenM.SubValues 31 -OpenM.Threads 7
;
; Threads = 4

;# if NotOnRoot is true then do not use "root" process for modeling
;# default value: false
;# empty value: true
;#
;# this option can be used only if multiple model.exe processes are running in parallel
;# otherwise it has no effect.
;#
;# for example:
;# (a) mpiexec -n 4 model.exe -OpenM.SubValues 16
;# (b) mpiexec -n 4 model.exe -OpenM.SubValues 16 -OpenM.NotOnRoot true
;# both commands above do launch four model.exe processes
;# but in second case only three children are doing modeling
;# and root process dedicated to run controlling activity
;
; NotOnRoot = false

;# database connection string
;# default database name: ModelName.sqlite
;
; Database = "Database=ModelName.sqlite; Timeout=86400; OpenMode=ReadWrite;"

;# path to SQLite database file
;#
;# If Database option (see above) specified then this SQLite option has no effect
;# Database option has higher priority over this Sqlite option.
;
; Sqlite = /path/to/my-model.sqlite

;# if SqliteFromBin is true the use model SQLite database file located next to model.exe
;# model database file path: directory/of/model/exe/ModelName.sqlite
;#
;# If any of Database or SQLite options (see above) specified then this SqliteFromBin option has no effect
;# Database and SQLite option has higher priority over this Sqlite option.
;
; SqliteFromBin = false

;# name of model run results
;# if not specified then automatically generated
;
; RunName = my-default-scenario

;# set id is an id of input set of model parameters
;#
;# default: min(set id)

;# default: min(set id)
;
; SetId = 101

;# set name is name of input set to get model parameters
;# if set name specified then it used to find set of model input parameters
;# if SetId option specified then SetName is ignored
;
; SetName = Default

;# if specified then use parameters from base run instead of input set
;# find base run by run id
;
; BaseRunId = 1234

;# if specified then use parameters from base run instead of input set
;# if BaseRunId option NOT specified then find base run by run digest
;
; BaseRunDigest = 6866f742cabab735ced1577c56b23e93

;# if specified then use parameters from base run instead of input set
;# if BaseRunId and BaseRunDigest options are NOT specified then find base run by run name
;# run name is not unique and as result it will be a first model run with that name
;
; BaseRunName = My_Model_Run

;# run id to restart model run (i.e. after power failure)
;
; RestartRunId =

;# task id is an id of modeling task
;# if modeling task id specified then
;# model will run all input sets included into that modeling task
;
; TaskId = 1

;# task name is name of modeling task
;# if task name specified then it used to get task id
;# if task id specified then set name is ignored
;
; TaskName = taskOne

;# task run name is name of modeling task run
;# if not specified then automatically generated
;
; TaskRunName = run-first-task-with-16-sub-values

;# task "wait":
;# default value: false
;# empty value: true
;#
;# allow to dynamically append new input data into modeling task
;# modeling task not completed automatically
;# it is waiting until some external script signal:
;# UPDATE task_run_lst SET status = 'p' WHERE task_run_id = 1234;
;
; TaskWait = false

;# profile name to select run options from profile_option database table
;
; Profile = modelOne

;# convert to string format for float, double, long double, default: %.15g
;
; DoubleFormat = %.15g

;# path to parameters csv file(s) directory
;# if specified then for each parameter where exist param/dir/parameterName.csv
;# values from csv file are used to run the model
;
; ParamDir = ./csv

;# if true then parameter(s) csv file(s) contain enum id's, default: enum code
;# default value: false
;# empty value: true
;
; IdCsv = false

;# value of scalar parameter(s) can be specified in [Parameter] section (see above)
;# or as command line argument -Parameter.Name of model.exe
;#
;# if IdParameterValue is true
;# then scalar parameter(s) value is enum id's, default: enum code
;# default value: false
;# empty value: true
;
; IdParameterValue = false

;# if true then use sparse output to database, default: false
;# default value: false
;# empty value: true
;
; SparseOutput = false

;# if use sparse and abs(value) <= SparseNullValue then value not stored
;# default = FLT_MIN
;
; SparseNullValue = 1.0E-37

;# if positive then used to report percent completed of simulation, default: 1
;
; ProgressPercent = 1

;# if positive then used to report simulation progress, default: 0
;# for case based models it is number of cases completed and must integer value
;# for time based models it is time passed from first event and must positive value, e.g.: 0.1
;
; ProgressStep = 1000

;# language to display output messages
;# default: set in Windows Control Panel or by Linux LANG
;
; MessageLanguage = en-CA

;# process run stamp, default: log file time stamp
;# use it to find model run(s) in run_lst table
;# or model task run in task_run_lst table
;
; RunStamp = 2012_08_17_16_04_59_148

;# log settings:
;# log can be enabled/disabled for 3 independent streams:
;# console - standard output
;# "last run" file - log file with specified name, overwritten on every model run
;# "stamped" file - log file with unique name, created for every model run
;#
;# "stamped" name produced from "last run" name by adding time-stamp and/or pid-stamp, i.e.:
;# modelOne.log => modelOne.2012_08_17_16_04_59_148.987654.log
;
; LogToConsole = true ; log to console, default: true
; LogToFile = true ; log to file, default: true
; LogToStampedFile = false ; log to "stamped" file
; LogUseTimeStamp = false ; use time-stamp in log "stamped" file name
; LogUsePidStamp = false ; use pid-stamp in log "stamped" file name
; LogFilePath = model.log ; log file path, default = current/dir/modelExeName.log
; LogNoMsgTime = false ; if true then do not prefix log messages with date-time
; LogRank = false ; if true then prefix log messages with MPI process rank
; LogSql = false ; debug only: log sql statements

;# trace settings:
;# trace can be enabled/disabled for 3 independent streams:
;# console - cout stream
;# "last run" file - trace file with specified name, overwritten on every model run
;# "stamped" file - trace file with unique name, created for every model run
;#
;# "stamped" name produced from "last run" name by adding time-stamp and/or pid-stamp, i.e.:
;# trace.txt => trace.2012_08_17_16_04_59_148.987654.txt
;#
;# If trace to file is enabled
;# then existing "last run" trace file is overwritten even if model does not write anything to trace output
;
; TraceToConsole = false ; trace to console, default false
; TraceToFile = false ; trace to file
; TraceToStampedFile = false ; trace to "stamped" file
; TraceFilePath = trace.txt ; trace file path, default: current/dir/modelExeName.trace.txt
; TraceUseTimeStamp = false ; use time-stamp in trace "stamped" file name
; TraceUsePidStamp = false ; use pid-stamp in trace "stamped" file name
; TraceNoMsgTime = true ; if true then do not prefix trace messages with date-time
; TraceRank = false ; if true then prefix trace messages with MPI process rank

;#==
;#
;# language-specific options
;#

[EN]
;#
;# model run description in English
;
; RunDescription = model run with 50,000 cases

;#
;# path to file with model run notes in English
;
; RunNotesPath = run_notes-in-english.md

;#
;# run entity description in English
;
; Person--EntityDescription = base Person entities

;#
;# path to file with entity run notes in English
;
; Person--EntityNotesPath = entity-run_notes-in-english.md

[FR]
;#
;# model run description in French
;
; RunDescription = je suis désolé je ne parle pas français

;#
;# path to file with model run notes in French
;
; RunNotesPath = run_notes-fr-français.md

;#==
;#
;# Ouput tables suppression.
;#
;# It can be in one of the two forms:
;# Suppress = ATable,BTable,Group1,Group2
;# Or:
;# Retain = ATable,BTable,Group1,Group2
;#
;# Suppress and Retain options are mutually exclusive and cannot be mixed.
;# For example, this model run would fail:
;# model.exe -Suppress.A -Retain.B

[Tables]
;#
;# Suppress output table "ageSexIncome"
;# and suppress group of output tables "AdditionalTables"
;
; Suppress = ageSexIncome,AdditionalTables

;# Or suppress all output tables
;# except of "ageSexIncome" table and tables included into "AdditionalTables" group:
;
; Retain = ageSexIncome,AdditionalTables

;#==
;#
;# where to find sub-values for model parameter or group of parameters: db, csv, iota
;
[SubFrom]

;# where to find sub-values for parameter "Member"
;# "iota" means create parameter "Member" sub-values as 0,1,...[OpenM].SubValues-1
;
; Member = iota

;# where to find sub-values for "baseSalary" parameter
;# "db" means read sub-values from input set (read from model database)
;# modelOne default input set has 4 sub-values for "baseSalary" and "salaryFull"
;
; baseSalary = db

;# where to find sub-values for "salaryFull" parameter
;# "csv" means read all sub-values from parameter.csv file
;# by default only one sub-value read from csv file
;
; salaryFull = csv

;# sub-value for all members of "age_sex_parameters" group coming from .csv files:
;#
;# age_sex_parameters = csv
;#
;# it is the same as:
;# -SubFrom.ageSex csv -SubFrom.salaryAge csv
;# because this group consist of: "ageSex" and "salaryAge"

;#==
;#
;# how many sub-values to select for parameter and which sub id to select
;# it is also can be applied to the parameters group
;#
;# SubValues option can be:
;# range: SubValues.Age [1,4]
;# list of id's: SubValues.Age 2,1,4,3
;# bit mask: SubValues.Age x0F
;# single id: SubValues.Age 7

;# default id: SubValues.Age default
;#
;# if you running:
;# model.exe -OpenM.SubValues 4 -SubFrom.Age csv
;# then Age.csv file must have at least 4 sub values with sub id's 0,1,2,3
;#
;# to use only one single sub-value either specify "default" id:
;# model.exe -OpenM.SubValues 4 -SubFrom.Age db -SubValues.Age default
;# or explicit sub-value id:
;# model.exe -OpenM.SubValues 4 -SubFrom.Age csv -SubValues.Age 7
;#
;# to select 4 sub-values use [first,last] range or comma-separated list or bit mask:
;# model.exe -OpenM.SubValues 4 -SubFrom.Age csv -SubValues.Age [4,7]
;# model.exe -OpenM.SubValues 4 -SubFrom.Age csv -SubValues.Age 4,5,6,7
;# model.exe -OpenM.SubValues 4 -SubFrom.Age csv -SubValues.Age xF0
;#
[SubValues]

; baseSalary = default
; isOldAge = 4,2,1,3

;# use sub-values 2 and 3 for all members of "age_sex_parameters" group:
;
; age_sex_parameters = 2,3
;
;# it is the same as:
;# -SubValues.ageSex 2,3 -SubValues.salaryAge 2,3
;# because this group consist of: "ageSex" and "salaryAge"

;#==
;#
;# import model parameters from other model(s)
;
[Import]

;# if "All" is true then import all parameters (all parameters which has import statement).
;# default value: false
;# empty value: true
;
; All = true
;
;# for each upstream model last succesful run is used to import parameters
;#
;# if "ModelName" is true then import all parameters from upstream "ModelName".
;# default value: false
;# empty value: true
;# Example:
;# import parameters from last succesful run of upstream model "RedModel"
;
; RedModel = true

;#==
;#
;# import model parameters from run specified by run digest
;#
[ImportRunDigest]

;# Example:
;# import parameters from upstream model "RedModel" where run digest = abcdefghef12345678
;
; RedModel = abcdefghef12345678

;#==
;#
;# import model parameters from run specified by run id
;
[ImportRunId]

;# Example:
;# import parameters from upstream model "RedModel" where run id = 101
;
; RedModel = 101

;#==
;#
;# import model parameters from last sucessful run with specified run name
;
[ImportRunName]

;# Example:
;# import parameters from last successful run of upstream model "RedModel" where run name = GoodRun
;
; RedModel = GoodRun

;#==
;#
;# import model parameters from last sucessful run of model with specified digest
;

;
[ImportDigest]

;# Example:
;# import parameters from last successful run of upstream model "RedModel" where model digest = 87654321fedcba
;
; RedModel = 87654321fedcba

;#==
;#
;# import model parameters from last sucessful run of model with specified id
;
[ImportId]

;# Example:
;# import parameters from last successful run of upstream model "RedModel" where model id = 123
;
; RedModel = 123

;#==
;#
;# import model parameter from specified expression of output table
;
[ImportExpr]

;# If upstream output table has multiple measure values (multiple expressions)
;# the by default first expression of output table is used to import parameter value.
;# To override default measure name (expression name) can be explicitly specified.
;#
;# Example:
;# import parameter from AgeTable of upstream model "RedModel" using "expr2" value as parameter values
;
; AgeTable = expr2

;#==
;#
;# import model parameter from specified model database
;
[ImportDatabase]

;# By default upstream model imported from the same database as current (downstream) model
;# or, if not exist there then from defalut SQLite database with name ModelName.sqlite
;# Use connection string to override default database rule.
;#
;# Example:
;# import parameters from upstream model "RedModel" in database ../RedHot.sqlite
;
; RedModel = "Database=../RedHot.sqlite;OpenMode=RedaOnly;"

;#==
;#
;# model development options
;#
;# Are available for processing in model code only if model.exe started with command line options:
;#
;# model.exe -ini iniFileName.ini -OpenM.IniAnyKey
;#
;# Or:
;#
;# model.exe -ini iniFileName.ini -OpenM.IniAnyKey 1
;# model.exe -ini iniFileName.ini -OpenM.IniAnyKey yes
;# model.exe -ini iniFileName.ini -OpenM.IniAnyKey true
;#
;# OpenM++ boolean options:
;# True value is any of: "yes", "1", "true" or empty value
;# False value is any of: "no" "0", "false"
;# Boolean values are not case sensitive, e.g.: "yes" == "YES" and it is a true value
;#
;# For example of model development option processing, see function ProcessDevelopmentOptions
;# in OM_ROOT/NewCaseBased/code/ompp_framework.ompp
;
; [LargeOutput]
;
; incomeByYear = true ; 4824 * 4 expression cells
; incomeByLow = true ; 48240 * 4 expression cells
; incomeByMiddle = true ; 144720 * 4 expression cells
; incomeByPeriod = true ; 969624 * 4 expression cells
;

;#==
;#
;# event trace model development options
;#
;# Requires activation of model development options using -OpenM.IniAnyKey (see above).
;# Requires that model code contains the statement
;# options event_trace = on;
;# Requires OpenM.TraceToFile = true
;# you can enable TraceToFile in section [OpenM] above, e.g.:
;# [OpenM]

;# [OpenM]
;# TraceToFile = true
;#
;# See wiki for explanation of EventTrace options
;
; [EventTrace]
;
; format
;
; ReportStyle = readable ; "modgen", "readable", or "csv", default: modgen
; MaximumLines = 100000 ; integer value, default: 20000
; NameColumnWidth = 20 ; integer value, default: 40
;
; filters
;
; SelectedEntityKinds = e1,e2,e3 ; comma separated list of entity kinds, if empty all entity kinds
; SelectedEntities = 1,2,3 ; comma separated list of integers, if empty all entities
; SelectLinkedEntities = no ; default: no
; SelectedCaseSeeds = 1,2,3 ; comma separated list of case seeds, if empty all cases
; MinimumTime = 2025 ; double value, default: -inf
; MaximumTime = 2025 ; double value, default: +inf
; MinimumAge = 65 ; double value, default: -inf
; MaximumAge = 66 ; double value, default: +inf
;
; events
;
; ShowEnterSimulation = yes ; default: yes
; ShowExitSimulation = yes ; default: yes
; ShowEvents = yes ; default: yes
; SelectedEvents = e1,e2,e3 ; comma separated list of event names, if empty all events
; ShowQueuedEvents = no ; default: no
; ShowQueuedUnchanged = no ; default: no
; ShowSelfSchedulingEvents = no ; default: no
; ShowQueuedSelfSchedulingEvents = no ; default: no
;
; attributes
;
; ShowAttributes = no ; default: no
; SelectedAttributes = year,alive ; comma separated list of attribute names, if empty no attributes
; MinimumAttribute = 1 ; double value, default: -inf
; MaximumAttribute = 1 ; double value, default: +inf
;

;#==
;#
;# Model run microdata: entity name and attributes to store at each model run
;#
;# run time list of attributes can include less attributes than entity have
;# for example, full list of Person attributes is:
;
; Person = age, ageGroup, sex, income, salary, salaryGroup, fullTime, isOldAge, pension
;
;# order of attributes is not important, it is defined by entity metadata and cannot be changed at run time
;
[Microdata]

; Person = ageGroup,sex,age,income,isOldAge,pension

; Store all non-internal attributes of Person entity
;
; Person = All

; Store all non-internal attributes of all entities
; NOT recommended for production, use for debug only
;
; All = true

; Allow to store entities internal attributes
; NOT recommended for production, use for debug only
;
; UseInternal = true

; Write microdata entity attributes into database
; Important: each microdata entity MUST have unique key
;
; ToDb = false

; Write microdata entity attributes and events (if enabled) into CSV file(s)
; each microdata entity is written in it's own file
;
; ToCsv = false

; Directory where microdata CSV file(s) should be created, must be existing directory
; default value: current directory
;
; CsvDir = path/to/some/directory

; Write microdata entity(s) attributes and events (if enabled) into model Trace output

; Write microdata entity(s) attributes and events (if enabled) into model Trace output
; Trace output must be enabled to produce any results;
; see Trace options in [OpenM] section above
;
; ToTrace = false

; Write selected events into Trace or CSV file
;
; Events = Birth,Union,Death

; If true then write event name into CSV file
;
; CsvEventColumn = true

Home > Model Development Topics > OpenM++ compiler arguments and options

This topic documents the arguments and options of the OpenM++ compiler (omc). These arguments and options are normally used indirectly by
build system components shipped with OpenM++ for the supported development environments.

Model Code

File-based Parameter Values: Representing parameter values in files

ini File Format

Overview

Omc ini-file options

There are a number of options which control model compilation and publishing. The most frequently used are:

model name

input directory containing model .ompp or .mpp source files

input directory with model parameters (a.k.a. "scenario" .dat files or parameters .csv files)

input scenario name

The OpenM++ compiler (omc) gets run options in the following order:

as command line arguments

from options ini-file

use default values

Following options are supported by omc command line:

-Omc.ModelName name/of/model/executable, e.g. RiskPaths

-Omc.ScenarioName name/of/base/scenario, e.g. Base, it can be list of names

-Omc.InputDir input/dir/to/find/source/files

-Omc.OutputDir output/dir/to/place/model/cpp_and_h_and_sql/files

-Omc.UseDir use/dir/with/ompp/files

-Omc.ParamDir input/dir/to/find/parameter/files/for/scenario, it can be list of directories

-Omc.FixedDir input/dir/to/find/fixed/parameter/files/

-Omc.SqlDir input sql/script/dir to create model SQLite database

-Omc.SqliteDir output directory to create model SQLite database

-Omc.SqlPublishTo create sql scripts to publish in SQLite,MySQL,PostgreSQL,MSSQL,Oracle,DB2 , default: SQLite

-Omc.CodePage code page for converting source files, e.g. windows-1252

-Omc.MessageLanguage language to display output messages, default: user environment settings

-Omc.MessageFnc localized message functions, default: LT,logMsg,logFormatted,WriteLogEntry,WarningMsg,ModelExit

-Omc.ModelDoc generate human-readable model documentation (User Edition), default: false

OpenM++ Compiler (omc) Run Options

Related topics

Topic contents

Overview

-Omc.InDocDir input/dir/to/find/authored/model/documentation/files/

-Omc.OutDocDir output directory to create model documentation files, e.g.: ompp/bin/doc

-Omc.NoLineDirectives suppress #line directives in generated C++, default: false

-Omc.NoMetadata suppress production of model metadata (model cannot be run), default: false

-Omc.TraceScanning detailed tracing from scanner, default: false

-Omc.TraceParsing detailed tracing from parser, default: false

-OpenM.IniFile some/optional/omc.ini

Or you can use short form of command line arguments:

-m short form of -Omc.ModelName

-s short form of -Omc.ScenarioName

-i short form of -Omc.InputDir

-o short form of -Omc.OutputDir

-u short form of -Omc.UseDir

-p short form of -Omc.ParamDir

-f short form of -Omc.FixedDir

-d short form of -Omc.InDocDir

-ini short form of -OpenM.IniFile

Each option has a unique key string associated with it, i.e.: Omc.InputDir . You can use this key to specify either as a command line argument or in
an ini-file Section.Key entry. For example:

omc.exe -m RiskPaths -Omc.InputDir ../code -ini my-omc.ini

would compile model RiskPaths source files: ../code/*.ompp and ../../code/*.mpp with some other options specified through my-omc.ini file.

Omc do compile model source .ompp and .mpp files and create model.sqlite database with parameter values from .odat, .dat, .csv, .tsv and *.md
files:

omc.exe -m RiskPaths -i ../code -s Default -p ../parameters/Default

Command above will read .odat, .dat, .csv, .tsv and *.md files from ../parameters/Default directory and create RiskPaths.sqlite database with Default

input set of parameters (Default scenario).

It is possible to create multiple input sets of parameters (multiple scenarios) when you are building the model:

omc.exe -m RiskPaths -i ../code -s Default,Other -p ../parameters/Default,../parameters/other/dir

Above command will create two input sets of parameters:

scenario Default from .dat, .odat, .csv, .tsv and *.md files in ../parameters/Default directory

scenario Other from .csv, .tsv and *.md files in ../parameters/other/dir

Please note that the second or subsequent scenario directory (if present) can contain only CSV or TSV and Markdown files and not .dat or .odat
files.

For more information on specifying parameter values using .csv or .tsv files, please see the topic File-based Parameter Values.

For more information on specifying parameter values using .dat or .odat files, please refer to Modgen documentation.

[back to topic contents]

To specify name of ini-file you can use -ini or -OpenM.IniFile command line option. Please see OpenM++ ini-file format to find out more.

Example of omc ini-file:

;
; This is an example of omc.ini options file
;

;
; Omc-specific options
;
[Omc]

;
; model name, it must be specified either on command line or here
; no default value
;
; ModelName = NewCaseBased

;
; name of default set of input parameters (a.k.a. base scenario data)
; it can be multiple names separated by comma or semicolon
;
; default = Default
;
; ScenarioName = Default
; ScenarioName = Default,Other,Test

;
; input directory to get source .ompp or .mpp files to compile
; default = current directory
;
; InputDir = ./code

;
; output directory to place generated .cpp and .h files for the model
; default = current directory
;
; OutputDir = ./src

;
; use directory to resolve 'use' statements
; default = directory/of/omc.exe/../use/
;
; UseDir = ../../use

;
; parameter directory to get source .dat or .csv files to publish a scenario
; it can be multiple directories separated by comma or semicolon
;
; default = Default
;
; ParamDir = ../parameters/Default
; ParamDir = ../parameters/Default,../parameters/Other/dir,../parameters/some/Test

;
; fixed directory to get source .dat files with fixed parameter values
; default = Fixed
;
; FixedDir = ../parameters/Fixed

;
; directory where common sql scripts located (used to create SQLite database)
; default = directory/of/omc.exe/../sql/
;
; SqlDir = ../../sql

;
; output directory to create model.sqlite database
; default: value of OutputDir (see above)
;
; SqliteDir = ./src

;
; database providers comma-separated list
; supported providers: SQLite,MySQL,PostgreSQL,MSSQL,Oracle,DB2
; default: SQLite
;
; SqlPublishTo = SQLite

;
; code page for converting source files into utf-8
; default on Linux: utf-8 (no conversion)
; default on Windows: current user code page, e.g.: windows-1252

Omc ini-file options

; default on Windows: current user code page, e.g.: windows-1252
;
; CodePage = windows-1252

; language to display output messages
; default: Windows Control Panel or Linux LANG
;
; messageLang = en-CA

;
; localized message functions
; first argument of the Function("const char * message",...) translated into other language
; by lookup in omc.message.ini where "message" = "translated message"
; default: LT,logMsg,logFormatted,WriteLogEntry,WarningMsg,ModelExit
;
; MessageFnc = LT,logMsg,logFormatted,WriteLogEntry,WarningMsg,ModelExit

; suppress #line directives in generated cpp files
; default: false
;
; NoLineDirectives = false

; dsuppress production of model metadata (model cannot be run)
; default: false
;
; NoMetadata = false

; detailed tracing from scanner
; default: false
;
; TraceScanning = false

; detailed tracing from parser
; default: false
;
; TraceParsing = false

; if true then generate model documentation
; default: false
;
; ModelDoc = false

; input directory to find authored model documentation files
; default: ../doc
;
; InDocDir = ../doc

; output directory to create model documentation files
; default: $(TARGET_DIR)/doc
;
; OutDocDir = ompp/bin/doc

;
; Common openM++ run options supported by omc
;
[OpenM]

;
; log settings:
; log can be enabled/disabled for 3 independent streams:
; console - cout stream
; "last run" file - log file with specified name, truncated on every compiler run
; "stamped" file - log file with unique name, created for every compiler run
;
; "stamped" name produced from "last run" name by adding time-stamp and pid-stamp, i.e.:
; omc.log => omc.2012_08_17_16_04_59_148.1234.log
;

LogToConsole = true ; log to console
LogNoMsgTime = true ; if true then do not prefix log messages with date-time
; LogToFile = false ; log to file
; LogToStampedFile = false ; log to "stamped" file
; LogUseTimeStamp = false ; use time-stamp in log "stamped" file name
; LogUsePidStamp = false ; use pid-stamp in log "stamped" file name
; LogFilePath = omc.log ; log file path, default = current/dir/omc.log
; LogSql = false ; debug only: log sql statements (reserved, but not used by omc)

[back to topic contents]

Home > Common Topics > OpenM++ ini Files

OpenM++ components can use ini files to specify options. This topic describes how these ini files are structured.

model run ini file options

omc ini file options

OpenM++ ini-files are similar to other well-known implementations of ini-files. It is a text file consist of [sections] of key = value pairs and optional
comments. For example:

[General]
Cases = 12345 ; number of cases

; openM++ specific options
[OpenM]
SparseOutput = true

Ini-file can contain following lines:

[section] line where section is [anything in square brackets]

Key = Value lines

empty lines and comment lines

Value can take multiple lines with \ at the end of the line for continuation.

Value can be a string, integer, double or boolean type. Boolean values:

True value is any of: "yes", "1", "true" or empty value

False value is any of: "no" "0", "false" Boolean values are not case sensitive, e.g.: "yes" is same as "YeS" and it is a true value Double values
must be in "C" locale, which means using dot as decimals separator, i.e.: -123456.78e+9

Comments are optional and can start from either semicolon or hash sign at any position of the line. You can escape comment separator by
putting value in single 'apostrophes' or double "quotes".

Example of ini-file format recorgnized by openM++:

OpenM++ ini-file format

Related topics

OpenM++ ini-file format

[Test] ; section is required, global entries are not allowed
 # this is also a comment
 ; next line is empty value without comment
non =
rem = ; comment only and empty value
val = no comments
dsn = "DSN='server'; UID='user'; PWD='secret';" ; database connection string example
lst = "the # quick" brown 'fox # jumps ; over' # use "quote" and 'apostrophe' to escape characters and keep spaces
unb = "unbalanced quote ; this is not a comment: it is a value started from " quote

trim = Aname,Bname, \ ; multi-line value joined with spaces trimmed
 Cname,DName ; result is: Aname,Bname,Cname,DName

; multi-line value started with " quote or ' apostrophe
; right spaces before \ is not trimmed, result is:
; Multi line text with spaces
;
keep = "Multi line \
 text with spaces"

; multi-line value started with " quote or ' apostrophe
; result is the same as above:
; Multi line text with spaces
;
same = "\
 Multi line \
 text with spaces\
 "

; General settings
[General]
StartingSeed=16807
Subsamples=8
Cases = 5000 ; only for case-based
SimulationEnd = 100 ; only for time-based
UseSparse = true

#
override values of above [Test] section with new values
#
[Test]
val=new value of no comments
dsn="new value of UID='user'; PWD='secret';" ; new database connection string
lst=new value of "the # quick" fox 'jumps # over' # new list of test words

Open++ user interface (ompp-ui) is a lightweight web UI which is:

scalable: can be run on single end-user desktop and in cluster environment

cloud ready: can be deployed in private or public cloud (Amazon AWS, Microsoft Azure, Google Cloud, etc.)

portable: work on Windows, Linux and MacOS, 32 and 64 bit versions

open source: it is open source product

By default ompp-ui does not require any installation, to run it do one of the following:

on Windows double click on bin\ompp_ui.bat

on Linux double click on bin/ompp_ui.sh

on MacOS double click on bin/ompp_ui.command

Any of above script is relatively simple, all it does is starting oms web-service:

cd ~/openmpp_mac_20200704
bin/oms
.....
2020-06-19 16:07:57.892 Model directory: models/bin
2020-06-19 16:07:57.930 Listen at localhost:4040
2020-06-19 16:07:57.930 To start open in your browser: localhost:4040
2020-06-19 16:07:57.931 To finish press Ctrl+C

and open your browser at http://localhost:4040

Linux: Not every distribution do run executable by double click, if this action does not work then do it from command line:

cd openmpp_debian_20200704
./bin/ompp_ui.sh

It is possible you will be asked to confirm or select the action "Run in terminal" or "Open with Terminal":

UI: How to start user interface
How to use openM++ UI

Start openM++ UI

If model runs queue enabled then from UI Service Status page you can:

see current model runs queue

Use model runs queue

re-arrange your model run queue

delete your model run job from the queue

see the history of model runs

re-submit model run again if it was failed

see currently active model runs

cancel (stop) model run

In order to enable model runs queue on your local computer do following:

create job directory and sub-directories under your openM++ installation folder:

You can just copy job directory, sub-directories and job.ini from ompp-go folder of your openM++ installation.

edit job.ini file to specify number of CPU cores which you want to use for model run, e.g.:

[Common]
LocalCpu = 4

modify UI start script to add -oms.JobDir job option to the oms line

on Windows bin\ompp_ui.bat :

...skip... \bin\oms -oms.HomeDir models\home -oms.AllowDownload -oms.AllowUpload -oms.LogRequest -oms.JobDir job

on Linux bin/start_oms.sh :

...skip... ./bin/oms -l localhost:${OMS_PORT} -oms.HomeDir models/home -oms.AllowDownload -oms.AllowUpload -oms.LogRequest -oms.JobDir job

on MacOS bin/ompp_ui.command :

"...skip... bin/oms -l localhost:4040 -oms.HomeDir models/home -oms.AllowDownload -oms.AllowUpload -oms.LogRequest -oms.JobDir job"

After that you can start UI by double click on bin\ompp_ui.bat (Windows) or bin/ompp_ui.sh (Linux) or bin/ompp_ui.command (MacOS). Model runs
queue and status page will look similar to:

Linux: To start UI from your model source code directory:

cd openmpp_debian_20211130/models/RiskPaths
../start-ompp-ui-linux.sh

If you make RELEASE model then it may be convenient to use one of the following:

RELEASE=1 ../start-ompp-ui-linux.sh
export RELEASE=1 make all publish && ../start-ompp-ui-linux.sh

It is recommended to stop oms web-service after you are done with UI:

cd openmpp_debian_20211130/models/RiskPaths
../stop-ompp-ui-linux.sh

If your model source code directory located outside of openM++ release directory then do export OM_ROOT :

export OM_ROOT=$HOME/openmpp_debian_20211130
cd ~/my-models/RiskPaths
$OM_ROOT/models/start-ompp-ui-linux.sh

MacOS: To start UI from your model source code directory:

Start openM++ UI from model source directory

cd openmpp_mac_arm64_20211130/models/RiskPaths
../start-ompp-ui-mac.sh

If you make RELEASE model then it may be convenient to use one of the following:

RELEASE=1 ../start-ompp-ui-mac.sh
export RELEASE=1 make all publish && ../start-ompp-ui-mac.sh

It is recommended to stop oms web-service after you are done with UI:

cd openmpp_mac_arm64_20211130/models/RiskPaths
../stop-ompp-ui-mac.sh

If your model source code directory located outside of openM++ release directory then do export OM_ROOT :

export OM_ROOT=$HOME/openmpp_mac_arm64_20211130
cd ~/my-models/RiskPaths
$OM_ROOT/models/start-ompp-ui-mac.sh

Windows: To start UI from your model source code directory:

1. Copy start-ompp-ui.bat into your model folder, for example: C:\openmpp_win_20220105\props\start-ompp-ui.bat => C:\openmpp_win_20220105\models\RiskPaths

2. Double click on start-ompp-ui.bat or from command line window do:

cd \openmpp_win_20220105\models\RiskPaths
start-ompp-ui.bat

3. It is recommended to close oms web-service window after you are done with UI.

If your model source code directory located outside of openM++ release directory then set OM_ROOT :

set OM_ROOT=C:\openmpp_win_20220105
cd \my-models\RiskPaths
start-ompp-ui.bat

To open UI from Visual Studio solution model build change project settings as on screenshot below. Optionally you may also want to run the
model during model build to see results in UI.

Start model UI on Windows from Visual Studio

More details about using Visual Studio for model development available at Windows: Create and Debug Models

To open UI from Visual Studio Code on Linux please configure "Start UI" task for the model. It can be done by using menu Terminal -> Configure
Tasks... and create tasks similar to RiskPaths model below:

Start model UI on Linux from Visual Studio Code

{
 // See https://go.microsoft.com/fwlink/?LinkId=733558
 // for the documentation about the tasks.json format
 "version": "2.0.0",
 "tasks": [
 {
 "label": "build-RiskPaths",
 "type": "shell",
 "command": "make all publish",
 "problemMatcher": "$gcc",
 "group": {
 "kind": "build",
 "isDefault": true
 },
 "dependsOrder": "sequence",
 "dependsOn": [
 "build-libopenm",
 "stop-ui-RiskPaths"
]
 },
 {
 "label": "start-ui-RiskPaths",
 "type": "shell",
 "command": "../start-ompp-ui-linux.sh",
 "problemMatcher": []
 },
 {
 "label": "stop-ui-RiskPaths",
 "type": "shell",
 "command": "../stop-ompp-ui-linux.sh",
 "problemMatcher": []
 },
 {
 "label": "clean-RiskPaths",
 "type": "shell",
 "command": "make clean-all",
 "group": "build",
 "problemMatcher": []
 },
 {
 "label": "build-libopenm",
 "type": "shell",
 "command": "make libopenm",
 "options": {
 "cwd": "../../openm"
 },
 "problemMatcher": "$gcc",
 "group": "build"
 }
]
}

To start UI please go to menu Terminal -> Run Task... -> start-ui-RiskPaths After you done with UI it is recommended to shutdown background oms
web-service by using Terminal -> Run Task... -> stop-ui-RiskPaths

More details about model development on Linux available at Linux: Create and Debug Models

To start model UI after build completed please change Model.xcconfig variable START_OMPP_UI to "1" or "true" or "yes" (case-sensitive)

Start model UI on MacOS from Xcode

More details about model development on MacOS available at MacOS: Create and Debug Models More details about using Xcode for model
development available at MacOS: Create and Debug Model using Xcode

Home > OpenM++ User Interface

This topic shows functionality of the OpenM++ UI through annotated screenshots. The UI can also be explored by hovering over elements to
display short descriptions.

Starting the UI How to start the UI

Create new scenario or edit existing scenario

Upload input scenario or parameters

Run the Model

Compare model run results

Disk space usage and cleanup

Introduction and Background

Terminology and Concepts

Screenshot: Chart

Screenshot: Heat map

Screenshot: Ad hoc measures

Screenshot: Model runs

Screenshot: create new scenario or edit existing scenario

Screenshot: Create new scenario

Screenshot: Select existing scenario to edit

Screenshot: Edit parameter

Screenshot: Run the model

Screenshot: Compare model runs

Screenshot: Compare run parameters

Screenshot: Download model data

Screenshot: Upload scenario

Screenshot: Download parameter

Screenshot: Upload parameter

Screenshot: Session state and settings

The Open++ user interface is a lightweight web UI which can be run from any browser. It is

scalable: can be run on single end-user desktop and in cluster environment

cloud ready: can be deployed in private or public cloud (Amazon AWS, Microsoft Azure, Google Cloud, etc.)

portable: works on Windows, Linux and MacOS, 32 and 64 bit versions

open source

UI: openM++ user interface

Related topics

Topic contents

Introduction and Background

The OpenM++ UI is an advanced beta which includes significant portions of core functionality but omits others. The underlying software
architecture is modern and layered, to make it easy to change or evolve the UI.

Your feedback on the openM++ UI is welcomed. Please feel free to join and participate in discussion of the openM++ UI on GitHub.

[back to topic contents]

Some key terms:

Term Meaning

Scenario A set of one or more parameters and the values of those parameters.

Partial
scenario

A scenario which does not include all parameters.

Complete
scenario

A scenario consisting of all parameters.

Run
specification

A completely specified set of parameters. It can be either A) a complete scenario or B) a partial scenario combined with a
base run or a complete scenario.

Completed
run

All input parameters together with output tables resulting from a model execution.

When a model is first built and published, it includes a complete scenario which is normally named Default. It does not necessarily include a run.

A scenario is best thought of as a subset of parameters and their values. Those values are typically modified with respect to some other scenario
or run.

A partial scenario cannot be run. It must first be paired with a base run or a complete scenario to supply values for parameters which are absent
from the partial scenario. That pairing results in a run specification.

A scenario does not become a run when a run specification uses it or when a run is submitted. Scenarios are independent of runs. For example,
the same scenario could be combined with two different base runs to produce two new runs, each with its own run name.

A scenario has a name given when it was created.

A run has a name given when it was specified.

Depending on the names a user chooses, a scenario might have the same name as a run, but it is nevertheless a different kind of object.

[back to topic contents]

Terminology and Concepts

Screenshot: Chart

https://github.com/openmpp/UI/discussions

[back to topic contents]

Screenshot: Heat map

[back to topic contents]

Screenshot: Ad hoc measures

 [back to topic contents]

[back to topic contents]

Screenshot: Model runs

Screenshot: Create new scenario or edit existing scenario

[back to topic contents]

 [back to topic contents]

Screenshot: Create new scenario

Screenshot: Select existing scenario to edit

[back to topic contents]

[back to topic contents]

Screenshot: Edit parameter

Screenshot: Run the model

[back to topic contents]

Screenshot: Compare model runs

 [back to

topic contents]

Screenshot: Compare run parameters

 [back

to topic contents]

Screenshot: Download model data

[back to topic contents]

[back to topic contents]

Screenshot: Upload scenario

Screenshot: Download parameter

 [back to topic

contents]

Screenshot: Upload parameter

[back to topic contents]

Screenshot: Session state and settings

 [back

to topic contents]

Home > Create new scenario or edit existing scenario

This topic shows functionality of the OpenM++ UI through annotated screenshots. The UI can also be explored by hovering over elements to
display short descriptions.

User can do:

edit parameter values using UI:
enter parameter values by typing or selecting from classification

copy-paste parameter values as TSV (tab separated values)

download parameter values as CSV file

upload parameter values as CSV file

create new scenario:
enter new scenario description and notes

copy parameter or group of parameters from previous model run into the new scenario

copy parameter or group of parameters from other scenario into the new scenario

remove parameter or group of parameters from scenario

create new scenario and copy parameters which are different from base model run

delete scenario

edit existing scenario:
edit scenario description and notes

copy parameter or group of parameters from previous model run into the scenario

copy parameter or group of parameters from other scenario

remove parameter or group of parameters from scenario

upload new scenario or upload new data to existing scenario

It is recommended to use "partial" scenario to run the model. Partial scenarios contain only parameters which you want to modify for your
analysis. For example, for RiskPaths model it can be only number of Simulation Cases and Union Duration Baseline . All other parameters, which you
don't want to change, can come either from previous model run, or from Default model scenario.

To create new scenario or to modify existing scenario click on Input Scenarios tab:

UI: Create new or edit scenario

To edit existing scenario or to modify parameter(s) do:

select scenario from the list

if scenario is "locked" then click on "unlock button"

Imporatnt: After scenario editing completed click on "lock" button to use that scenario for model run. Scenario must be "locked" in order to be
runnable, you can NOT run "unlocked" scenario.

In order to open parameter values editor click on parameter name in the scenario parameters tree. For example, click on UnionDurationBaseline

parameter of RiskPaths model.

Please keep in mind, in openM++ number of Simulation Cases is also a model parameter (it is a different from Modgen).

To create new scenario click on new scenario button:

Create new scenario:

provide new scenario name. It must be a valid file name, and cannot contain any of: " ' ` : * ? > < | $ } { @ & ^ ; / \

you cannot change scenario name later, there is no "rename" scenario option;

(optional) provide scenario description and notes, you always can change description and notes later.

click on Save button to save scenario or on Cancel to discard your changes

After new scenario created you can add parameters into it by copy it:

from previous model run

or from other scenario

In order to copy parameter(s) from previous model run:

click on "Copy from previous model run" button (see above)

select parameter from model parameters tree

click on plus button

After you are done with copy parameters from previous model click on Close button:

In order to copy parameter(s) from other input scenario:

select source input scenario from the list. Source scenario must be "locked" otherwise you would not be able to select it as a source of
parameters

click on "Copy from other scenario" button (see below)

To copy parameter or group of parameters click on plus button in the scenario parameters tree

In order to delete parameter from your current scenario:

click on minus button in the scenario parameters tree:

confirm "Yes" to remove parameter values from scenario.

After you are done with copy parameters from other scenario click on Close button:

User can create new scenario from results of run comparison. In that case scenario will include all parameters of that model run which are
different from the base model run.

Home > Upload input scenario or parameters

This topic shows functionality of the OpenM++ UI through annotated screenshots. The UI can also be explored by hovering over elements to
display short descriptions.

User can modify existing or create new input scenario by uploading scenario.zip archive. Such archive can be created by dbcopy utility or through
UI download or by Create Import Set utility. In most simplest case such ZIP archive can contain one or more CSV parameter file(s).

User also can replace existing parameter values by uploading parameter CSV file.

To edit existing scenario or to modify parameter(s) do:

select scenario from the list

if scenario is "locked" then click on "unlock button"

Imporatnt: After scenario editing completed click on "lock" button to use that scenario for model run. Scenario must be "locked" in order to be
runnable, you can NOT run "unlocked" scenario.

To replace existing parameter values by uploading parameter CSV file click on Upload parameter button:

UI: Upload input scenario or parameters

Parameter.csv files described at:

How To Set Model Parameters

Model Run: How model finds input parameters

It is possible to supply multiple sub-values inside of parameter.csv file, in that case:

user must specify number of sub-values in the input CSV file

user can specify default sub-value ID for that parameter, if it is not a zero.

User can upload scenario ZIP archive from input scenarios list page:

It is also possible to do upload from Downloads and Uploads page:

Home > Run the Model

This topic shows functionality of the OpenM++ UI through annotated screenshots. The UI can also be explored by hovering over elements to
display short descriptions.

It is recommended to use "partial" scenario to run the model. Partial scenarios contain only parameters which you want to modify for your
analysis. For example, for RiskPaths model it can be only number of Simulation Cases and Union Duration Baseline . All other parameters, which you
don't want to change, can come from previous model run (a.k.a. Base Run).

Sub-values: sub-samples, members, replicas: Following terms: "simulation member", "replicate", "sub-sample" are often used in micro-
simulation conversations interchangeably, depending on context. To avoid terminology discussion openM++ uses "sub-value" as equivalent of all
above and it is the same as "sub-sample" in Modgen.

In order to run the the model please click on Run the Model tab or select it from the menu and do:

enter model run name, it must be a valid file name, and cannot contain any of: " ' ` : * ? > < | $ } { @ & ^ ; / \

you cannot change run name later, there is no "rename" model run option;

enter number of sub-values (sub-samples) for your model run;

make sure you have your input scenario check box selected;

typically your scenario does not contain all model parameters, make sure proper base run is selected;

enter run description and (optional) run notes, you can always edit it later;

select output tables which you want to retain in your model run results.

Other (advanced) model run options can be pre-selected by clicking on suitable option button. For example, if you have back-end computational
cluster then you may see "Large Run" button, clicking on it sets advanced Cluster Run Options.

UI: Run the Model

Model run output tables selection:

Example of advanced options to run the model on back-end computational cluster:

If model run jobs enabled on your local workstation or in cloud then from Service Status page you can:

see current model runs queue

re-arrange your model run queue

delete your model run job from the queue

see the history of model runs

re-submit model run again if it was failed

see currently active model runs

cancel (stop) model run

Model run jobs: queue and status:

see all servers status and load

Home > Compare model run results

This topic shows functionality of the OpenM++ UI through annotated screenshots. The UI can also be explored by hovering over elements to
display short descriptions.

User can select multiple runs to compare results:

select Base run first

select one or more runs to compare (Variant runs)

Click on the Base run Info icon to view runs comparison summary:

list of runs to Compare

list of different parameters

list of different output tables

list of missing (suppressed tables)

list of different micorodata entities

list of missing micorodata entities

UI: Compare model run results

Imporatnt: It is strongly recommended to drag Measure dimension on columns or rows:

Select how you want to compare run values:

calculate values difference: Variant - Base

calculate values ratio: Variant / Base

calculate percentage of difference: 100* (Variant - Base) / Base

See the relust:

run values side by side

calculated comaprison values

It is also possible to:

show only comparison calculated values, for example only percentage and hide source run values

show only model run values side by side

Home > Disk space usage and cleanup

This topic shows functionality of the OpenM++ UI through annotated screenshots. The UI can also be explored by hovering over elements to
display short descriptions.

It is a common practice to set a limit (quota) on storage space for cloud users. If your models data exceeded storage quota then you no longer
able to run the models or upload input scenarios until cleanup is done.

In order to cleanup storage space please do:

delete old files in Downloads and Uploads cloud folders

delete old model runs

delete old input scenarios

reduce size of your model database file(s) as described below

It is important to remove old model runs and scenarios first and only after that click on "Cleanup Database" button. If you have not deleted
anything from the model database then cleanup may not be able to reduce the size of your database file.

As first step you should close database file:

UI: Disk space usage and cleanup

After model database is closed you can click on Cleanup database button. Cleanup may take a few minutes or multiple hours, depending on your
model and number of runs remaining in the database.

You can examine database cleanup log file for details or errors:

After cleanup is completed you need to click on Open database file button in order to use the model:

To provide translated messages for openM++ UI you should:

create translated messages file for your language, for example Deutsch: ompp-ui/src/i18n/de/index.js

modify openM++ UI main page ompp-ui/src/layouts/MainLayout.vue to support new language

rebuild openM++ by running npm run dev as described at Quick Start for OpenM++ Developers: Build ompp-ui

Please contact us at GitHub openM++ UI project or by email: openmpp dot org at gmail dot com for assistance. We certainly can do all necessary steps
to include your translation into openM++ UI.

Short fragment from translated messages file ompp-ui/src/i18n/fr/index.js for Français language:

export default {
 'About': 'À propos',
 'Advanced Run Options': "Options d'exécution avancées",
 'Yes': 'Oui',
 'You have {count} unsaved parameter(s)': 'Vous avez {count} paramètre(s) non enregistré(s)'
}

We would appreciate any help with French translation, since person who did it is not a locuteur natif français. Thank you in advance.

OpenM++ UI localization based on internationalization plugin for Vue.js and you can find detailed documentation at that project GitHub page.

Open ompp-ui/src/layouts/MainLayout.vue in any text editor and modify following part of the code:

 import(
 /* webpackInclude: /(fr|en-us)\.js$/ */

to include new language, for example Deutsch:

 import(
 /* webpackInclude: /(de|fr|en-us)\.js$/ */

UI Localization: Translation of openM++
Quick Start

Example of translated messages file

How to modify UI main page to include to support new language

https://github.com/openmpp/UI
http://kazupon.github.io/vue-i18n/

Home > Model Development Topics > Censor Event Time

The censor_event_time option enables a model-specific optimization which can reduce event queue size and improve simulation speed.

Model Code

Introduction and Background

Syntax and Use How to activate and use

Modgen-specific Modgen issues Coding approaches for a x-compatible model

An event in an entity has an associated future time when the event will occur, provided that other intervening events do not affect that future time
due to a change in attributes. If the event is represented as a hazard, code in the event time function might draw a random time to the event from
an exponential distribution, like

tEventTime = WAIT(- log(RandUniform(1)) / EventHazard);

or from some other distribution if the hazard is non-constant.

If the hazard of the event is small, the associated distribution of time-to-event will have a long tail, and the probability of drawing a time far in the
future will be high. A future event time drawn from that distribution may even exceed the maximum lifespan of the entity.

If an event time exceeds the maximum lifespan of the entity, it does not need to compete with other events in the simulation because it will never
occur. The event is in effect 'right-censored' by the entity's maximum lifespan.

The simulation framework arranges all the events of a model by time-to-occurrence in an event queue, and maintains that ordered queue as the
simulation evolves and event times change. The work to maintain the event queue is reduced if right-censored events do not have to be inserted
into their correct ordered position in the queue. Leaving out censored events also reduces the total size of the event queue, making all queue
operations more efficient. Excluding right-censored events from the queue has no effect on the simulation because they are guaranteed not to
occur.

Models with many rare events can gain a noticeable performance boost with event censoring. That's because a rare event occurs only rarely
because its randomly drawn event time is usually far in the entity’s future. In a test with one such model, simulation time decreased by 17% with
the censor_event_time option activated.

Independent of the censor_event_time option, an event with a future time of time_infinite will not be entered into the event queue because the event
will never occur. In a sense, the censor_event_time option can be thought of as a generalization of this behaviour.

[back to topic contents]

The censor_event_time option activates the ability to specify, for each entity, a 'right-censor' time after which the entity is guaranteed to have left the
simulation. By default, the option is off. To turn it on, insert the following options statement in a source code module:

options censor_event_time = on;

A natural place to insert this statement could be the module ompp_framework.ompp .

If an event time exceeds the right-censor time, the simulation framework will not insert the event into the event queue, improving efficiency. The
right-censor test is redone whenever an event time changes during the simulation.

To specify the right-censor time for an entity, supply it as argument to the built-in entity function set_censor_time before the entity enters the
simulation. If the censor time is based on other attributes such as time or age , ensure that they are assigned before the call to set_censor_time .

If the censor_event_time option is off, a call to the function set_censor_time has no effect.

Censor Event Time

Related topics

Topic contents

Introduction and Background

Syntax and Use

If the censor_event_time option is on and the function set_censor_time is not called, the right-censor time is set to time_infinite .

Here's an example. Consider a model with two parameters, MaxLife and MaxYear . An event in the model uses MaxLife to stop the simulation of an
entity when age attains the value MaxLife , which might, for example, be 119. Another event truncates the simulation of all entities when time
attains the value MaxYear .

In this example, the right-censor time is set to the minimum of these two censoring events in the initialization function Person::Start as follows:

// Event time censoring optimization requires the following call
// and also activating the option censor_event_time in ompp_framework.ompp.
// It is certain that Person will leave the simulation at age MaxLife, or at year MaxYear,
// whichever comes first.
set_censor_time(std::min(WAIT(MaxLife), MaxYear));

The censor_event_time optimization is valid only if the guarantee promised by the call to set_censor_time is correct. A model developer can probe the
correctness of the guarantee by running the model with censor_event_time turned off, then on, and verifying that model outputs are identical in the
two runs, perhaps by using the test_models utility. Such a test can also measure the efficiency gain by examining the model run log files for the
two runs.

[back to topic contents]

A Modgen model does not contain the built-in entity function set_censor_time , so a Modgen build will fail with a symbol not defined error in the link
phase of the build. This can be avoided by supplying a 'do nothing' global function with that name when building the Modgen version of a model.
That can be done by inserting the following code fragment in the model source file custom.h :

#if defined(MODGEN)
// Function to set censor time in ompp.
// Supply do-nothing global function to avoid symbol not found at link stage in Modgen build.
inline void set_censor_time(double t)
{
}
#endif

[back to topic contents]

Modgen issues

Home > Model Development Topics > Create Import Set

This topic contains detailed information on the OpenM++ create_import_set utility. create_import_set creates a zip file suitable for upload to a
downstream model, using results from an upstream model.

Introduction and overview

Windows Quick start

Linux or MacOS Quick start

Arguments and Options

Worked Example: Creating an OncoSim parameter set from an HPVMM model run

Technical Requirements: Technical information for model developers

Users familiar with linked models may wish to jump directly to the Worked Example subtopic.

A downstream model can use, as input, the output from a different upstream model. By specializing functionality in two models rather than one, a
two-model design can enable analyses which would otherwise be infeasible. In particular, a time-based (interacting population) model can
simulate a large population of simplified entities and feed statistical results downstream to a case-based model with more complex entities and
events to simulate downstream consequences. For example, an upstream model of an infectious disease can simulate the effects of vaccination
and herd immunity using an interacting population of entities to project incidence of infection over time in response to a given vaccination roll-out.
That upstream model can feed aggregate results on incidence of infection over time to a more detailed downstream model with a non-interacting
population to simulate health consequences, treatment, and costs.

In such a two-model design, the downstream model has input parameters whose values can be supplied by corresponding output tables from an
upstream model. The pairing of output tables from the upstream model to the corresponding input parameters of the downstream model is
specified by import statements in the source code of the downstream model. For example, the import statement

import IncidenceRatesHPV (HPVMM.IM_Incidence) sample_dimension=on;

in a downstream model (in this example, a model named OncoSim) specifies that the input parameter IncidenceRatesHPV of OncoSim can be
provided by the output table IM_Incidence of the upstream model HPVMM.

Multiple output tables from an upstream model can supply values to multiple parameters in the downstream model, with each such linkage
specified by an import statement in the downstream model source code. For logical coherence, every such linked table from the same run of the
upstream model needs to be used as input in the corresponding parameter in the downstream model. For example, the upstream model HPVMM
supplies 11 output tables which match 11 input parameters in the downstream model OncoSim. It is essential that each of the 11 output tables
from the same HPVMM run be copied to the corresponding input parameter for an OncoSim run.

The create_import_set utility supports the propagation of results from an upstream model to a downstream model by building a partial parameter
set for the downstream model from a run of the upstream model. A user 1) downloads a run from the upstream model to their workstation, 2) runs
the create_import_set utility, and finally 3) uploads the resulting set for use by the downstream model. Once uploaded, the set can be used to
construct one or more scenarios for the downstream model.

[back to topic contents]

A Windows executable version of create_import_set is distributed with OpenM++ at OM_ROOT/bin/create_import_set.exe , where OM_ROOT stands for the
OpenM++ installation directory.

To test installation and operation of create_import_set , open a command prompt, change the current directory to OM_ROOT/bin , and type the
command

Create Import Set

Topic contents

Introduction and overview

Windows Quick Start

Verify installation of create_import_set (Windows)

create_import_set -v

Output should be similar to the following:

create_import_set version 1.0

create_import_set is written in the Perl language, and distributed with OpenM++ at OM_ROOT/Perl/create_import_set.pl . Examples in this topic may
invoke test_models using the Perl interpreter from the OM_ROOT/Perl directory, for example

perl create_import_set.pl -v

On Windows, unless you have Perl and the required Perl components installed, invoke the executable version of create_import_set from the
OM_ROOT/bin directory with a command like

create_import_set -v

[back to topic contents]

create_import_set is a Perl script distributed with OpenM++ at OM_ROOT/Perl/create_import_set.pl , where OM_ROOT stands for the OpenM++ installation
directory. To test installation and operation of create_import_set , open a command prompt, change the current directory to OM_ROOT\Perl , and type
the command

perl create_import_set.pl -v

Output should be similar to the following:

create_import_set version 1.0

Depending on your operating system version and installation history, Perl may ask you to install missing Perl modules required by
create_import_set.pl . If so, it will name them explicitly when you invoke create_import_set.pl . We do recommend to use cpanm for Perl modules

installation. Typical scenario is:

cpan App::cpanminus # initialize cpanm, if not done before

cpanm Getopt::Long::Descriptive
cpanm Capture::Tiny
cpanm Config::Tiny
cpanm File::Copy::Recursive
cpanm File::Which

Above list of modules can be different and depends on your current Perl configuration, and on the version of create_import_set.

[back to topic contents]

This subtopic describes the command line options and arguments of create_import_set .

A complete list of options is displayed by issuing the command

perl create_import_set.pl -h

Output should be similar to the following:

create_import_set [-dhiruvw] [long options...]
 -h --help print usage message and exit
 -v --version print version and exit
 -i STR --imports STR path of model imports csv file
 -u STR --upstream STR name of upstream model
 -r STR --run STR name of upstream model run
 -d STR --downstream STR name of downstream model
 -w STR --workdir STR path of working directory for zips
 (default is current directory)
 --keep keep and propagate all subs
 --verbose verbose log output

Linux or MacOS Quick Start

Verify installation of create_import_set (Linux, MacOS)

Arguments and Options

A value is required for the following arguments:

-i imports file: The model imports csv file for the downstream model

-u upstream model name: The name of the upstream model

-r upstream run name: The name of the upstream model run

-d downstream model name: The name of the downstream model

Each of these 4 arguments is described below. Or jump to the Worked Example for a concrete illustration.

The -w argument is optional. It specifies the directory where the input zip downloaded from the upstream model run is found. It is also the
directory where the output zip for the downstream model will be constructed. By default, the working directory is the current working directory of
the terminal session in which create_import_set is invoked.

The --keep option is an experimental option intended for linked models which use OpenM++ architecture for parameter uncertainty. It is not
compatible with linked models in Modgen.

The --verbose option outputs detailed diagnostics of no interest to an end user.

The model imports csv file contains information about the pairing of tables in an upstream model with the parameters in a downstream model. It
has a name of the form MODEL.imports.csv where MODEL is the name of the downstream model. This file contains all import information for the
downstream model, which might include imports from multiple upstream models. For example, a downstream model OncoSimX might import
parameters from an upstream model HPVMM as well as an upstream model GMM. The downstream model developer can provide a copy of this
file. The file is generated by the OpenM++ compiler when the downstream model is built. It is located in the output src directory in the model
build directory structure.

[back to arguments and options]
[back to topic contents]

A downstream model can be linked to more than one upstream model. The -u option specifies which upstream model is to be used by
create_import_set to create the parameter set for the downstream model. Valid model names are in a column of the model imports csv file and

come from the source code of the downstream model.

[back to arguments and options]
[back to topic contents]

The tables from an upstream model run are in a zip file downloaded previously using the OpenM++ UI. The name of that zip file is constructed
automatically from the model name and run name when the run is downloaded, for example HPVMM.run.DefaultVaccination.zip for a run named
DefaultVaccination of the HPVMM model.

[back to arguments and options]
[back to topic contents]

The name of the downstream model is required and must match the name of a model in the target OpenM++ database. create_import_set will
construct a partial parameter set ready for upload using this name and the name of the upstream model run, for example
OncoSimX.set.DefaultVaccination.zip for -d OncoSimX . Note that the partial parameter set for the downstream model has the same name as the

upstream model run, DefaultVaccination in this example.

[back to arguments and options]
[back to topic contents]

This worked example, in Windows, uses an upstream model named HPVMM and a downstream model named OncoSimX. Note that these
models are not distributed with OpenM++. The example assumes a remote server houses an instance of the upstream and downstream models,
but works equally well for models on a workstation. This example could also have been done without the OpenM++ UI by using the dbcopy utility.

-i imports file

-u upstream model name

-r upstream run name

-d downstream model name

Worked Example

Step 0a: Create a staging directory on your workstation to manage downloaded runs and construct parameter sets for upload, for example
C:\Analysis\runs .

Step 0b: Get a copy of the create_import_set utility on your workstation. For Windows users, a stand-alone executable version can be found in the
OpenM++ distribution in the bin sub-folder. The Perl version is located in the perl sub-folder. If you use OpenM++ on your desktop for model
development, you can invoke the utility using the environment variable OM_ROOT , e.g. %OM_ROOT%\bin\create_import_set . If you do not use
OpenM++ for development, you may find it more convenient to just copy the utility executable to your staging directory.

Step 0c: Copy the imports file for the downstream model to the staging directory. In this example, the imports file for OncoSimX is named
OncoSimX.imports.csv . The file is generated by the OpenM++ compiler in a model build folder named OncoSimX\ompp\src . Ask the model developer

for a copy of this file if you don't build the model yourself.

Step 1: Do a run of the upstream model (HPVMM in this example), and give it a short but meaningful name. In this example, the run is named
DefaultVaccination .

Step 2: In the UI, make sure that the option Full, compatible with desktop model is checked in the Model Downloads section of the options panel.

Step 3: In the UI, select the run and click the download button. Wait for the server to construct the download zip for the run, then click it to
download it to the downloads folder on your workstation. In this example, the file is named HPVMM.run.DefaultVaccination.zip . Copy or move the file to
the staging directory.

Step 4: Open a command prompt and navigate to the staging directory in the terminal window.

Step 5: Issue the command

create_import_set -i OncoSimX.imports.csv -u HPVMM -d OncoSimX -r DefaultVaccination

The arguments name the upstream model with -u , the downstream model with -d , the name of the upstream run with -r , and specify the
imports file OncoSimX.imports.csv which create_import_set uses to identify and transform each imported upstream table to the corresponding
downstream parameter. create_input_set uses the arguments to construct the names of the input and output zip files.

The utility may take 10 or more seconds to run. When it completes, it writes something like the following to the terminal window to indicate
success.

11 downstream OncoSimX parameters created from upstream HPVMM tables

If you examine the staging directory, you'll notice a new file named OncoSimX.set.DefaultVaccination.zip . It contains the 11 OncoSimX parameters with
values from the 11 corresponding HPVMM tables in the HPVMM run named DefaultVaccination .

Step 6: Use the UI to upload the set to the server.

The set is uploaded as a read-only partial scenario. You can use the UI to combine it with a previous OncoSim run or scenario to incorporate the
results of the HPVMM DefaultVaccination run.

To make clear the provenance of downstream parameters, create_import_set generates, for each imported parameter, a parameter value
description indicating the upstream model name and run name, e.g. HPVMM: DefaultVaccination . That description will follow each generated
parameter value in any downstream OncoSimX run which uses, directly or indirectly, the partial parameter set generated by create_import_set .

[back to topic contents]

The following restrictions apply:

The input run zip must contain only a single run.

The classification levels in each parameter / table pair must match, for each dimension.

The upstream table dimensions must be named Dim0 , Dim1 , ...

Each imported table can contain only a single measure named Value .

The downstream target parameter dimensions must be named Dim0 , Dim1 , ...

For robustness, provide explicit names to dimensions in the upstream and downstream models to respect the name requirements. For example,
the upstream model could have a source code module ExplicitNames.ompp with content like:

Technical Requirements

// Table IM_ClearanceHazard: Inter-model: Clearance hazard
//NAME IM_ClearanceHazard.Dim0 Dim0
//NAME IM_ClearanceHazard.Dim1 Dim1
//NAME IM_ClearanceHazard.VALUE Value

// Table IM_PersistentProportion: Inter-model: Persistent proportion
//NAME IM_PersistentProportion.Dim0 Dim0
//NAME IM_PersistentProportion.VALUE Value

// Table IM_Incidence: Inter-model: Incidence
//NAME IM_Incidence.Dim0 Dim0
//NAME IM_Incidence.Dim1 Dim1
//NAME IM_Incidence.Dim2 Dim2
//NAME IM_Incidence.Dim3 Dim3
//NAME IM_Incidence.Dim4 Dim4
//NAME IM_Incidence.Dim5 Dim5
//NAME IM_Incidence.VALUE Value

and the downstream model could have a source code module named ExplicitNames.ompp with content like:

// Parameter HpvClearanceHazard: HPV infection clearance rates
// from HPVMM Table IM_ClearanceHazard: Inter-model: Clearance hazard
// leading dimension Dim0 is parameter set
//NAME HpvClearanceHazard.Dim0 Dim0
//NAME HpvClearanceHazard.Dim1 Dim1
//NAME HpvClearanceHazard.Dim2 Dim2

// Parameter HpvPersistentProportion: Proportion who cannot naturally clear HPV infection
// from HPVMM Table IM_PersistentProportion: Inter-model: Persistent proportion
// leading dimension Dim0 is parameter set
//NAME HpvPersistentProportion.Dim0 Dim0
//NAME HpvPersistentProportion.Dim1 Dim1

// Parameter IncidenceRatesHPV: Incidence rates of HPV
// from HPVMM Table IM_Incidence: Inter-model: Incidence
// leading dimension Dim0 is parameter set
//NAME IncidenceRatesHPV.Dim0 Dim0
//NAME IncidenceRatesHPV.Dim1 Dim1
//NAME IncidenceRatesHPV.Dim2 Dim2
//NAME IncidenceRatesHPV.Dim3 Dim3
//NAME IncidenceRatesHPV.Dim4 Dim4
//NAME IncidenceRatesHPV.Dim5 Dim5
//NAME IncidenceRatesHPV.Dim6 Dim6

[back to topic contents]

Home > Model Development Topics > Derived Tables

This topic is under construction and/or revision.

Topic summary, two sentences max.

Model Code

Introduction and outline

Content to follow.

[back to topic contents]

Derived Tables

Related topics

Topic contents

Introduction and outline

Home > Model Development Topics > Entity attributes in C++

This topic contains detailed information about specific C++ compiler errors you may encounter in C++ model code which uses entity attributes, eg
the age attribute of a Person entity. This topic describes the situations which can cause these specific C++ error messages and how to address
them in model code.

Introduction

Ternary operator

Attribute assignment

min, max, and clamp

Forthcoming content

[back to topic contents]

Forthcoming content

[back to topic contents]

Forthcoming content

[back to topic contents]

Forthcoming content

[back to topic contents]

Entity Attributes in C++

Topic contents

Introduction

Ternary operator

Attribute assignment

min, max, and clamp

Home > Model Development Topics > Entity Function Hooks

This topic describes the hook statement in model source code. It is used to chain the execution of one entity function to another entity function.

Model Code

Introduction and Motivation

Syntax and Use Syntax and example

Disambiguating Hook Order When hooks collide

Content to follow.

Content sketch:

Increase modularity

Reduce model code 'busy work'

[back to topic contents]

A hook statement is specified within an entity declaration, and has the form

 hook downstream_function, upstream_function, order;

The integer argument order is optional and is implicitly 0 if not specified.

In the following example, the downstream function StartCity is called by the upstream function `Start'.

entity Person
{
 void StartCity();
 hook StartCity, Start;
};

If an upstream function F has been hooked to by one or more downstream functions, the model developer must insert a call to a function named
hook_F in the definition of the upstream function F . In the following example, the model developer inserted a call to the function hook_Start in an

appropriate place in the definition of the function Start . The body of the function hook_Start is generated by the OpenM++ compiler, and calls, in
hook order, all functions hooked to the Start function.

void Person::Start()
{
 // Initialize all attributes.
 initialize_attributes();
...
 hook_Start();

 // Have the entity enter the simulation.
 enter_simulation();
}

The OpenM++ compiler will raise an error if the body of a function contains no invocation of the hook_F function if one or more downstream
functions hook to it.

[back to topic contents]

Entity Function Hooks

Related topics

Topic contents

Introduction and Motivation

Syntax and Use

Disambiguating Hook Order

For the model source code to be logically well-specified, the order of invocation of multiple hooks to the same function must be specified.

For example, if the TestEventMemory.mpp module contains

actor Person
{
 //EN Start city
 void StartCity();
 hook StartCity, Start;
};

and the TestFixed.mpp module contains

actor Person
{
 //EN Set dog ownership
 void StartDogOwnership();
 hook StartDogOwnership, Start;
};

The OpenM++ compiler will issue two warnings like

TestEventMemory.mpp(93): warning : one or more functions hooking to 'Start' are ordered ambiguously with respect to 'StartCity'.
TestFixed.mpp(48): warning : one or more functions hooking to 'Start' are ordered ambiguously with respect to 'StartDogOwnership'.

The warning is issued for each hook statement which has an order tied to another hook statement. In this example, the two hook statements did
not specify hook order, so they both had implicit order 0 , creating ambiguity. The module and line number of these warnings are the code
locations of the hook statements responsible for the ambiguity. In an IDE, the warning can be clicked to navigate directly to the hook statements
responsible for the ambiguity.

To resolve the ambiguity, supply an explicit order to the hook which does not conflict, for example

 hook StartCity, Start, 1;
 hook StartDogOwnership, Start, 2;

[back to topic contents]

Home > Model Development Topics > Entity Member Packing

This topic describes how to pack entity members to reduce memory use.

Model Code

Model Resource Use

Introduction and Background

Syntax and Use How to activate and use

The entity_member_packing option can reduce the size of entities with no impact on processing performance. It can be useful for time-based models
with large populations. The option does negate a convenience feature for model debugging (see below).

An entity is implemented as a C++ object with data members consisting of the entity's attributes and other data members generated by the
OpenM++ compiler. Each entity in a run occupies a block of contiguous memory containing the values of its data members. For example, each
Person entity in the RiskPaths model has a block of 776 bytes of memory containing 70 data members (38 attributes and 32 other data

members).

Each data member has a size in bytes determined by its type. For example, in the RiskPaths model the value of the built-in attribute age is held
in a C++ double which is 8 bytes in size. The attribute in_union is held in a C++ bool which is 1 byte in size. The attribute unions is held in a C++
int which is 4 bytes in size. Below is an extract of a table produced by the resource_use option which lists each data member of the Person entity

in RiskPaths and its size in bytes.

+--+
| Person Members (detail) |
+----------------------------------+-------+
| member | bytes |
+----------------------------------+-------+
| Attributes: | |
| Built-in: | |
| age | 8 |
| case_id | 8 |
| case_seed | 8 |
| entity_id | 4 |
| events | 4 |
| time | 8 |
| Simple: | |
| life_status | 1 |
| parity_status | 1 |
| union_period2_change | 8 |
| union_status | 1 |
| unions | 4 |
| Maintained: | |
| age_status | 4 |
| dissolution_duration | 4 |
| dissolution_hazard | 8 |
| formation_hazard | 8 |
| in_union | 1 |

...

+----------------------------------+-------+
| Sum of member bytes | 699 |
| Bytes per entity | 776 |
| Storage efficiency (%) | 90.1 |
+----------------------------------+-------+

A CPU accesses a value in memory efficiently if the memory address of the value is an exact multiple of the size of the value being accessed. For
example, for efficient access an 8-byte value is stored at a memory address which is a multiple of 8, and a 4-byte value is stored at a memory
address which is a multiple of 4. A C++ compiler will normally place values in memory to respect this principle.

In C++, the declaration of an object (e.g. the Person entity) specifies the order in which data members are laid out in the object's block of memory.
If the specified order would cause a data member to be incorrectly aligned for its size, the C++ compiler will insert padding bytes into the object to

Entity Member Packing

Related topics

Topic contents

Introduction and Background

enforce correct alignment. Such padding can make the object larger.

The option entity_member_packing instructs the OpenM++ compiler to order entity members from larger to smaller to minimize padding and reduce
the size of the entity. If two members have the same alignment requirements, they are ordered lexicographically within that alignment
requirement group.

In the RiskPaths model, turning entity member packing on changes the summary section of the above table to:

+----------------------------------+-------+
| Sum of member bytes | 699 |
| Bytes per entity | 728 |
| Storage efficiency (%) | 96.0 |
+----------------------------------+-------+

In RiskPaths, the size of Person decreased from 776 to 728 with entity member packing turned on.

By default, the OpenM++ compiler orders entity members to facilitate debugging in an IDE. The default order is

entity_id
time
age
all attributes declared in model code, ordered lexicographically
all other members, ordered lexicographically

If entity_member_packing is on , this default order is replaced by a non-intuitive order. So, for debugging sessions, it may be worthwhile to have
entity member packing turned off. Note that by default entity_member_packing is off .

[back to topic contents]

By default, entity member packing is off. To activate it, include the statement

options entity_member_packing = on;

in the source code of a model. A typical place to insert this statement is the module ompp_framework.ompp .

[back to topic contents]

Syntax and Use

Home > Model Development Topics > Entity Tables

This topic describes entity tables in depth. This topic is under construction and consists mostly of stub subtopics.

Model Code

Introduction and concepts

Flash tables

Duration tables

Increments

Accumulators

Shorthand

Increment Validity Increment validity

Operators

Content to follow. Topic outline is incomplete. The only complete subtopic is Increment Validity.

[back to topic contents]

An increment is based on the value of an attribute when an entity enters a table cell and the value when it exits the cell. An entity enters a table
cell at simulation entry or when the table filter becomes true . An entity leaves a table cell at simulation exit or when the table filter becomes false .
An entity changes cell when attributes used in the classification dimensions of the table change value.

Keyword Description

value_in The attribute value when the entity enters the table cell.

value_out The attribute value when the entity leaves the table cell.

delta The difference in the attribute value between cell exit and cell entrance.

nz_value_in The non-zero count of attribute value on entrance.

nz_value_out The non-zero count of attribute value on exit.

nz_delta The non-zero count of the difference in value between exit and entrance.

value_in2 The square of the value on entrance.

value_out2 The square of the value on exit.

delta2 The square of the difference in value between exit and entrance.

[back to topic contents]

Keyword Description

unit

sum

Entity Tables

Related topics

Topic contents

Introduction and concepts

Increments

Accumulators

minimum

maximum

gini

P1

P2

P5

P10

P20

P25

P30

P40

P50 median

P60

P70

P75

P80

P90

P95

P98

P99

Keyword Description

[back to topic contents]

These keywords are a more compact way of specifying commonly-used combinations of increments and accumulators.

Keyword Equivalent

delta(x) sum(delta(x))

delta2(x) sum(delta2(x))

nz_delta(x) sum(nz_delta(x))

value_in(x) sum(value_in(x))

value_in2(x) sum(value_in2(x))

nz_value_in(x) sum(nz_value_in(x))

value_out(x) sum(value_out(x))

value_out2(x) sum(value_out2(x))

nz_value_out(x) sum(nz_value_out(x))

max_delta(x) maximum(delta(x))

max_value_in(x) maximum(value_in(x))

Shorthand

max_value_out(x) maximum(value_out(x))

min_delta(x) minimum(delta(x))

min_value_in(x) minimum(value_in(x))

min_value_out(x) minimum(value_out(x))

Keyword Equivalent

[back to topic contents]

This subtopic contains the following sections:

Non-numeric floating point values

Non-numeric values in OpenM++

Increments and accumulators

Invalid table increments

Disabling table increment errors

[back to topic contents]

A floating point number in OpenM++ is a C++ IEEE double or float , which is supported on most CPU hardware. It can hold an exact value like
123 or 0.5 or an approximation to a Real number like 0.1 or pi .

A floating point number can also hold one of three special non-numeric values: +inf , -inf , or NaN (indeterminate).

Non-numeric values arise naturally from arithmetic operations or function calls, e.g.

Expression Result

1.0 / 0.0 +inf

-1.0 / 0.0 -inf

0.0 / 0.0 NaN

log(0.0) -inf

log(-1.0) NaN

sqrt(-1.0) NaN

exp(710.0) +inf

Note: The C++ specification for std::exp guarantees a result of +inf if the argument is greater than 709.8 .

Numeric values can sometimes result from floating point operations or function calls with non-numeric arguments, e.g.

Expression Result

1.0 / +inf 0.0

atan(+inf) pi/2

exp(-inf) 0.0

exp(log(0.0)) 0.0

Logical comparison operators can have non-numeric arguments, e.g.

Increment Validity

Non-numeric floating point values

Expression Result

+inf > 42.0 true

-inf < +inf true

NaN < +inf false

NaN == NaN false

NaN != NaN false

Note: The C++ specification states that all operators with NaN return NaN, including all comparison operators, notably the == operator in the
preceding table. The C++ library contains functions to determine non-numeric values: std::isnan determines if a floating point number is NaN,
std::isinf if it is +inf or -inf, and std::isfinite() if it is finite, i.e. a garden variety floating point value.

Arithmetic operations involving +inf or -inf typically result in non-numeric values, e.g.

Expression Result

+inf + 1.0 +inf

+inf - 1.0 +inf

+inf + +inf +inf

sqrt(+inf) +inf

inf / inf NaN

This is notably the case for NaN , which propagates in arithmetic operations and mathematical functions, e.g.

Expression Result

NaN + 1.0 NaN

+inf + NaN NaN

sqrt(NaN) NaN

Sometimes operations involving +inf or -inf can produce NaN , e.g.

Expression Result

+inf - +inf NaN

+inf / +inf NaN

+inf / 0.0 NaN

A general rule of thumb is that non-numeric floating point values propagate to results in arithmetic operations and mathematical functions.

[back to increment validity]
[back to topic contents]

Non-numeric values are used in several ways in OpenM++:

1. Global time is initialized to -inf before each case or replicate/sub.

2. All event times are initialized to +inf before each case or replicate/sub.

3. Derived parameters of floating point type are initialized to NaN (all cells).

4. An attribute of floating point type (float , double , real , or Time) can have a non-numeric value, depending on model logic.

5. A maximum table accumulator is initialized to -inf , and a minimum table accumulator to +inf .

Non-numeric values in OpenM++

[back to increment validity]
[back to topic contents]

Each cell of an entity table contains one or more accumulators specified in the expression dimension of the table. As attributes change value
during a run, increments are pushed to accumulators of the current cell of the table. An accumulator might be a running count of increments, the
running sum of increments, the current maximum value, or a collection of all pushed values. When a run completes, statistics are extracted from
the table accumulators for each cell to compute final values for that table cell. For example, the median P50 for an attribute in a table cell is
extracted from the accumulator underlying P50 , which is a collection of all increments pushed to the cell during the run. The P50 statistic is
computed by sorting that collection and finding the middle value (or the average of the two middle values if the number of increments in the
collection is even).

[back to increment validity]
[back to topic contents]

Some accumulators handle increments of +inf or -inf in an expected and natural way, e.g. an increment of +inf to a maximum accumulator, or an
increment of +inf or -inf to a P50 accumulator.

However, a non-numeric increment can cause an accumulator to become pegged to a non-numeric value. This is particularly true for a NaN
increment.

Specifically,

1. Pushing an increment with value +inf or -inf to a sum or gini accumulator nullifies the effect of any previous or subsequent increment.

2. Pushing an increment with value NaN to any accumulator nullifies the effect of any previous or subsequent increments.

In other words, an increment of one single entity, perhaps the result of a rarely occurring corner condition in model code, can cause an entire
table cell to become empty. OpenM++ treats that as an error in table design or model logic, halts the run, and writes a log message like

Simulation error: Invalid increment -inf in table 'IncrementTestTable' using attribute 'my_dbl' on or after event 'MortalityEvent' in entity_id 208 in simulation member 0 with combined

seed 1637697257 when current time is 88.06346668067070

This particular error message manifested in a version of the Alpha2 model which was modified to deliberately produce an increment error in the
table

table Person IncrementTestTable
[integer_age >= 50]
{
 {
 value_out(my_dbl)
 }
};

The root cause of an invalid increment often occurs in a different event than the one responsible for pushing the increment. In the error message
above, the invalid increment was detected when the entity was exiting the simulation after the MortalityEvent . The attribute my_dbl likely assumed a
non-numeric value earlier in the simulation causing the invalid increment later.

The root cause of an invalid increment can be probed using Event Trace to examine the evolution of the specific attribute in the specific entity
given in the runtime error message.

To enable event trace in the model, the following statement must be added to model code:

options event_trace = on;

and the model executable must be invoked with the argument -OpenM.IniAnyKey .

The following EventTrace settings (in an ini file) output all events and all changes in my_dbl in entity 208:

Increments and accumulators

Invalid table increments

[OpenM]
LogToFile = true
TraceToFile = true

[EventTrace]
; format
ReportStyle = readable
NameColumnWidth = 20
; filters
SelectedEntities = 208
; events
ShowEvents = yes
; attributes
ShowAttributes = yes
SelectedAttributes = my_dbl

This produces the following trace file output:

 Time Entity Age Id Trace Value Name Remarks
 0.000000 Person 0.000000 208 ENTER
 0.000000 Person 0.000000 208 attr 0 my_dbl initial
 0.000000 Person 0.000000 208 EVENT SpawnEvent
 0.500000 Person 0.500000 208 EVENT EyeColourChangeEvent
 1.000000 Person 1.000000 208 EVENT FirstBirthdayEvent
 2.632435 Person 2.632435 208 EVENT HappinessReversalEvent
 2.632435 Person 2.632435 208 attr -inf my_dbl was 0
 10.105425 Person 10.105425 208 EVENT MoveEvent
 25.755745 Person 25.755745 208 EVENT HappinessReversalEvent
 26.741666 Person 26.741666 208 EVENT StartPlayingEvent
 30.141256 Person 30.141256 208 EVENT MoveEvent
 32.641206 Person 32.641206 208 EVENT MoveEvent
 34.927079 Person 34.927079 208 EVENT HappinessReversalEvent
 54.778775 Person 54.778775 208 EVENT HappinessReversalEvent
 59.496134 Person 59.496134 208 EVENT StartPlayingEvent
 60.500447 Person 60.500447 208 EVENT HappinessReversalEvent
 68.935493 Person 68.935493 208 EVENT MoveEvent
 76.110163 Person 76.110163 208 EVENT HappinessReversalEvent
 78.448787 Person 78.448787 208 EVENT StartPlayingEvent
 79.197382 Person 79.197382 208 EVENT MoveEvent
 87.282644 Person 87.282644 208 EVENT HappinessReversalEvent
 88.063467 Person 88.063467 208 EVENT MortalityEvent
 88.063467 Person 88.063467 208 EXIT

This trace output shows that the my_dbl attribute first assumed the non-numeric value -inf during the HappinessReversalEvent at an early age,
before the entity was in scope of the table filter.

Here's the model code responsible for the invalid increment error later in the simulation:

entity Person
{
 double my_dbl;
 void update_funny_numbers(void);
 hook update_funny_numbers, HappinessReversalEvent, 43;
};

void Person::update_funny_numbers(void)
{
 double x = 0.0;
 my_dbl = std::log(x); // is -inf
}

If necessary, a Debug version of the model can be built and run with a conditional break point added to the first line of code in the event identified
by Event Trace. In this example, the break point could be set to the first line of HappinessReversalEvent , with condition entity_id == 208 .

Here's the model source code of the event which was the root cause of the invalid increment.

void Person::HappinessReversalEvent()
{
 happy = !happy;
 if (!happy && playing) {
 // stop playing if unhappy
 playing = FALSE;
 }
 if (happy && my_first_happy_time == TIME_INFINITE) {
 my_first_happy_time = time;
 }
 hook_HappinessReversalEvent();
}

When the break point is hit, execution can be stepped line by line in the debugger until the code responsible for setting my_dbl to a non-numeric
value is found.

[back to increment validity]
[back to topic contents]

Normal handling of an invalid table increment can be controlled by the following option:

options verify_valid_table_increment = off; // default is on

If this option is off , a warning like the following will be written to the log on each run:

Warning : invalid table increment is not detected with verify_valid_table_increment = off

A table with a non-numeric cell will display as empty in the UI and in csv export.

[back to increment validity]
[back to topic contents]

Keyword Description

interval

event

[back to topic contents]

Disabling table increment errors

Operators

Home > Model Development Topics > Events

This topic describes events. This topic is under construction and consists mostly of stub subtopics.

Model Code

Event Trace: Probe a model run at the micro level

Time-like and Event-like Attributes: Definition of time-like and event-like attributes, and restrictions on use

Censor Event Time: How to activate and use the censor_event_time optimization option

Entity Function Hooks: Entity function hooks

under construction

Introduction and concepts

Event time function

under construction

Declaration syntax

Event life-cycle.

under construction

Changes attributes when the event occurs.

under construction

This subtopic contains the following sections:

Return value

Attributes affecting event time

[back to topic contents]

under construction

The return value of an event time function is the (conditional) time when the event will occur. It can be current time or future time. It can be infinity.
If it is a time in the past of the entity a run-time error will occur.

The WAIT function. WAIT(0) means now. But other events may occur first, depending on event priority and event tie rules.

Calling a time function must not influence the state of the simulation, because the associated event has not occurred (yet). Model code which
attempts to change an attribute during an event time calculation will cause a run-time error.

No side-effect means simulation framework can call freely.

Clock-like events and hazard-like events.

The event time is recalculated when specific attributes change.

Events

Related topics

Topic contents

Introduction and concepts

Event implement function

Event time function

Return value

An attempt to use a time-like attribute in an event time function causes a build-time error.

[back to event time function]
[back to topic contents]

When an attribute changes value, any event whose time depends on that attribute must have its occurrence time recalculated in order to remain
valid.

To determine which attributes affect which events, the OpenM++ compiler scans the C++ model code in the body of event time functions for
attribute names. The scan is not based on the logic of the code in the event time function, only on the presence of names of attributes. The
names can be attributes of the entity or attributes of another entity referenced directly through a link.

Modgen specific: Modgen does not support event dependency on linked attributes and forbids links to attributes in event time functions.

Consider the following code fragment (adapted from the Alpha2 test model):

entity Person
{
 //EN Integer age
 int integer_age = self_scheduling_int(age);
};
entity Thing
{
 //EN Count of celebratory birthday twirls performed
 int twirls = { 0 };
 //EN Do a twirl for the Person who spawned this Thing
 event timeTwirlEvent, TwirlEvent;
};

link Thing.spawner Person.things[];

TIME Thing::timeTwirlEvent()
{
 TIME event_time = TIME_INFINITE;
 if (spawner && (twirls < spawner->integer_age)) {
 event_time = WAIT(0); // twirl now!
 }
 return event_time;
}

void Thing::TwirlEvent()
{
 twirls++;
}

The TwirlEvent causes a Thing entity to twirl once on each birthday of the Person which spawned it.

The associated time function timeTwirlEvent uses three attributes:

spawner , a link attribute of Thing which connects it to the Person entity which spawned it,

twirls , an attribute of Thing which counts the number of times the Thing has twirled, and

spawner->integer_age , a self-scheduling attribute of Person which increases by 1 on each birthday.

The OpenM++ compiler notes the use of these three attributes in the event time function and generates run-time code which calls timeTwirlEvent in
a Thing entity if any of those three attributes changes value.

Specifically, when integer_age of a Person is incremented on a birthday, the event time of TwirlEvent of all Thing entities spawned by that Person

are recalculated. The code in timeTwirlEvent causes the TwirlEvent to be scheduled immediately by returning WAIT(0) . After TwirlEvent is
implemented and the twirl performed, timeTwirlEvent is called to schedule the next occurrence and returns infinity.

The OpenM++ compiler creates an output file which lists all attribute event dependencies. It is named EventDependencies.csv and is located in the
src output folder, which in Windows is MODEL/ompp/src and in Linux is MODEL/ompp-linux/src .

For the Alpha2 test model, EventDependencies.csv looks like this:

entity event attribute

Person BlowHornEvent blow_horns_now

Attributes affecting event time

Person EyeColourChangeEvent eye_colour_definitive

Person FirstBirthdayEvent over_1

Person MoveEvent city

Person SpawnEvent spawning_done

Person StartPlayingEvent happy

Thing BeingGoodEvent making_trouble

Thing TwirlEvent spawner

Thing TwirlEvent twirls

Thing TwirlEvent spawner->integer_age

Thing TwirlSpecialEvent my_person1

Thing TwirlSpecialEvent twirls_special

Thing TwirlSpecialEvent my_person1->integer_age

Toy DiscardEvent lifetime

entity event attribute

[back to event time function]
[back to topic contents]

under construction

Extract from OM_ROOT/include/omc/Event.h :

/**
* event comparison. This is a true observer function but is not declared as const due to issues
* with get_event_id().
*
* @param [in,out] rhs The right hand side.
*
* @return true if the right-hand side is less than the left-hand side (this object).
*/
bool operator< (BaseEvent& rhs)
{
 // earlier event time wins
 if (event_time < rhs.event_time) return true;
 if (event_time > rhs.event_time) return false;

 // higher event priority wins
 int event_priority = get_event_priority();
 int rhs_event_priority = rhs.get_event_priority();
 if (event_priority > rhs_event_priority) return true;
 if (event_priority < rhs_event_priority) return false;

 // lower event_id wins (earlier in alphabetic order by event name)
 int event_id = get_event_id();
 int rhs_event_id = rhs.get_event_id();
 if (event_id < rhs_event_id) return true;
 if (event_id > rhs_event_id) return false;

 // lower entity_id wins (created earlier)
 int entity_id = get_entity_id();
 int rhs_entity_id = rhs.get_entity_id();
 if (entity_id < rhs_entity_id) return true;
 else return false;
}

under construction

Each entity has a built-in event which maintains all self-scheduling attributes in the entity.

Event scheduling

Self-scheduling events

Hooking to a self-scheduling attribute.

under construction

under construction

under construction

[back to topic contents]

Tied events

The flow of time

Event loops

Home > Model Development Topics > Event Trace

This topic describes a model developer feature which reports the evolution of individual entities during a simulation.

Model Code

Test Models

Introduction and outline

Quick start How to build and run a model with event trace capability

Worked example 1 Using filters

Worked example 2 Tracing attributes

Worked example 3 Tracing links and multilinks

Worked example 4 Tracing table increments

General information General information

Event trace columns The seven columns of event trace output

Event trace messages The different kinds of messages in event trace output

Event trace options Reference to all event trace options

Trace file options Technical: Run options to specify trace file name, etc.

Trace file API Technical: How to toggle trace output from model code

Event trace allows a model developer to probe the simulation of individual entities or groups of entities in detail. This can help to understand a
model, to verify that it is working as intended, or to probe anomalies.

After an entity enters the simulation it undergoes a series of events which change attributes, either its own or those of linked entities. Changes in
attributes can in turn condition the time of future events. An entity in a model with event trace capability generates event trace messages when it
enters the simulation and during events. Event trace messages include simulation entry, simulation exit, event occurrence, conditional times of
future events, and changes in attributes, links, and multilinks. Event trace messages are blocked or passed depending on run-time event trace
options. Unblocked messages are written to the run trace file in a readable columnar format designed for visual scanning. Alternatively,
messages can be written in a csv format to facilitate use in external applications.

Quick Start shows how to build a model with event trace capability and how to enable that capability in a model run.

The quick start is followed by several worked examples with illustrative inputs and outputs using the RiskPaths and Alpha2 models:
Worked example 1 which illustrates tracing events,
Worked example 2 which illustrates tracing attributes,
Worked example 3 which illustrates tracing links and multilinks. and Worked example 4 which illustrates tracing table increments.

Please note that the output of the quick start and worked examples shown in this topic may differ slightly due to OpenM++ version differences.

The worked examples are followed by general information about event trace.

This is followed by three subtopics with reference material:
Event trace columns which describes the meaning of the output columns,
Event trace messages which describes all possible event trace messages,
and Event trace options which decribes all options to control and filter event trace messages.

This topic concludes with two specialized technical subtopics related to event trace.

Event Trace

Related topics

Topic contents

Introduction and outline

[back to topic contents]

This quick start example uses the RiskPaths model in OM_ROOT/models/RiskPaths in the OpenM++ distribution. By default a model is not built with
event trace functionality, and without it the examples in this topic will not work.

This subtopic contains the following sections.

1. Build model with event trace capability

2. Create model ini file with event trace options

3. Run model using event trace

[continue to worked example 1]
[back to topic contents]

Edit the model source code file RiskPaths/code/TraceOptions.mpp to change the event_trace option from off to on :

options event_trace = on;

Build the Release version of RiskPaths.
In Windows, the model executable will be RiskPaths/ompp/bin/RiskPaths.exe .
In Linux, the model executable will be RiskPaths/ompp-linux/bin/RiskPaths .

[back to quick start]
[back to topic contents]

In the same folder as the RiskPaths executable there may already be a copy of the default model ini file RiskPaths.ini . If not create it using your
IDE or a text editor such as Notepad.

Edit RiskPaths.ini to have the following content:

[OpenM]
TraceToFile = true

[Parameter]
SimulationCases = 5

[EventTrace]
ReportStyle = readable

The following Windows screenshot shows RiskPaths.ini being edited in Visual Studio in the RiskPaths project:

Quick start

1. Build model with event trace capability

2. Modify model ini file with event trace options

[back to quick start]
[back to topic contents]

Launch the model in its bin directory using the ini file created in the previous step, being sure to also specify the OpenM.IniAnyKey option.

RiskPaths -ini RiskPaths.ini -OpenM.IniAnyKey true

In Windows you can run the Release version of RiskPaths from inside Visual Studio as follows:

Solution Configurations to Release and Solution Platforms to x64

Project Properties > Configuration Properties > Debugging > Command Arguments to
-ini RiskPaths.ini -OpenM.IniAnyKey true

Project Properties > Configuration Properties > Debugging > Working Directory to $(TargetDir)

To launch the model, do Debug > Start without debugging or Press Ctrl-F5 .

After the model runs the trace file RiskPaths.trace.txt should be present in the model bin directory and look like this:

3. Run model using event trace

 Time Entity Age Id Trace Value Name Remarks
 0.000000 Person 0.000000 1 ENTER
 24.260999 Person 24.260999 1 EVENT Union1FormationEvent
 26.537813 Person 26.537813 1 EVENT FirstPregEvent
 27.260999 Person 27.260999 1 EVENT UnionPeriod2Event
 100.000000 Person 100.000000 1 EVENT DeathEvent
 100.000000 Person 100.000000 1 EXIT
 0.000000 Person 0.000000 2 ENTER
 22.052373 Person 22.052373 2 EVENT Union1FormationEvent
 24.678078 Person 24.678078 2 EVENT FirstPregEvent
 25.052373 Person 25.052373 2 EVENT UnionPeriod2Event
 100.000000 Person 100.000000 2 EVENT DeathEvent
 100.000000 Person 100.000000 2 EXIT
 0.000000 Person 0.000000 3 ENTER
 17.050111 Person 17.050111 3 EVENT Union1FormationEvent
 20.024665 Person 20.024665 3 EVENT FirstPregEvent
 20.050111 Person 20.050111 3 EVENT UnionPeriod2Event
 100.000000 Person 100.000000 3 EVENT DeathEvent
 100.000000 Person 100.000000 3 EXIT
 0.000000 Person 0.000000 4 ENTER
 17.410717 Person 17.410717 4 EVENT FirstPregEvent
 100.000000 Person 100.000000 4 EVENT DeathEvent
 100.000000 Person 100.000000 4 EXIT
 0.000000 Person 0.000000 5 ENTER
 24.157739 Person 24.157739 5 EVENT FirstPregEvent
 100.000000 Person 100.000000 5 EVENT DeathEvent
 100.000000 Person 100.000000 5 EXIT

The following Windows screenshot shows RiskPaths.trace.txt open in Visual Studio in the RiskPaths project. The screenshot also shows the
command window and log output for the run, and highlights the expected warning generated by a model with event trace capability.

[back to quick start]
[back to topic contents]

Worked example 1

This section continues the quick start example to explore using EventTrace filters to find and probe entities in the simulation.

This subtopic contains the following sections:

Find entities with a specific event

Report on specific entities

Report detailed history for a given entity

Probe a time window

[back to topic contents]

RiskPaths simulates how first and second unions affect first birth frequency. To probe entities which experience a second union, change
SelectedEvents to only show the event Union2FormationEvent .

[OpenM]
TraceToFile = true

[Parameter]
SimulationCases = 5

[EventTrace]
; format
ReportStyle = readable
NameColumnWidth = 20
; events
ShowEnterSimulation = no
ShowExitSimulation = no
ShowEvents = yes
SelectedEvents = Union2FormationEvent

The trace file RiskPaths.trace.txt now looks like this:

That's right, it's empty! That's because the run had only 5 cases and in those 5 cases the Union2FormationEvent never occurred. Expand the run to
10,000 cases by changing SimulationCases and set MaximumLines to report only the first 10. The width of the name column has been shortened to
20 from the default of 40 for more compact output.

[OpenM]
TraceToFile = true

[Parameter]
SimulationCases = 10000

[EventTrace]
; format
ReportStyle = readable
NameColumnWidth = 20
MaximumLines = 10
; events
ShowEnterSimulation = no
ShowExitSimulation = no
ShowEvents = yes
SelectedEvents = Union2FormationEvent

The trace file looks like this:

 Time Entity Age Id Trace Value Name Remarks
 85.748654 Person 85.748654 11 EVENT Union2FormationEvent
 46.987741 Person 46.987741 13 EVENT Union2FormationEvent
 24.942941 Person 24.942941 65 EVENT Union2FormationEvent
 26.208783 Person 26.208783 94 EVENT Union2FormationEvent
 67.733676 Person 67.733676 101 EVENT Union2FormationEvent
 36.152105 Person 36.152105 135 EVENT Union2FormationEvent
 22.466353 Person 22.466353 211 EVENT Union2FormationEvent
 20.010964 Person 20.010964 222 EVENT Union2FormationEvent
 60.116048 Person 60.116048 262 EVENT Union2FormationEvent
Maximum lines exceeded, increase using EventTrace.MaximumLines

Find entities with a specific event

[back to worked example 1]
[back to topic contents]

In the previous section, the entity_id of the youngest of the 10 is 222 and the oldest is 266. To probe those two entities in more detail, set
MaximumLines to 1000, set SelectedEvents to empty to report on all events, and set SelectedEntities to report only on those two entities. Also, set
SimulationCases to 500 to increase run speed (RiskPaths has only one entity in each case, so this is sufficient to simulate the two cases we're

after).

[OpenM]
TraceToFile = true

[Parameter]
SimulationCases = 500

[EventTrace]
; format
ReportStyle = readable
NameColumnWidth = 20
MaximumLines = 1000
; filters
SelectedEntities = 222,266
; events
ShowEnterSimulation = no
ShowExitSimulation = no
ShowEvents = yes
SelectedEvents =

Re-run RiskPaths. The trace file now looks like this:

 Time Entity Age Id Trace Value Name Remarks
 18.198452 Person 18.198452 222 EVENT Union1FormationEvent
 19.944885 Person 19.944885 222 EVENT Union1DissolutionEvent
 20.010964 Person 20.010964 222 EVENT Union2FormationEvent
 20.212818 Person 20.212818 222 EVENT FirstPregEvent
 21.198452 Person 21.198452 222 EVENT UnionPeriod2Event
 100.000000 Person 100.000000 222 EVENT DeathEvent
 39.395331 Person 39.395331 266 EVENT Union1FormationEvent
 42.395331 Person 42.395331 266 EVENT UnionPeriod2Event
 65.159506 Person 65.159506 266 EVENT Union1DissolutionEvent
 87.325967 Person 87.325967 266 EVENT Union2FormationEvent
 100.000000 Person 100.000000 266 EVENT DeathEvent

The evolution of entity_id 222 looks a bit odd. RiskPaths documents UnionPeriod2Event as a 3-year period after first union formation which can
affect fertility:

/*NOTE(Person.UnionPeriod2Event, EN)
 Clock event which changes the union duration state union_status from
 US_FIRST_UNION_PERIOD1 to US_FIRST_UNION_PERIOD2. This event occurs
 after 3 years in 1st union. The clock is set at first union formation.
*/

The event trace shows that for entity_id 222 a second union occurred at time=20.010964 and UnionPeriod2Event occurred later at time=21.198452
(exactly 3 years after the Union1FormationEvent event). It would be incoherent for union_status , which affects fertility, to change 3 years after the start
of a first union if the Person is already in a second union. It might be good to investigate the model logic to confirm that the UnionPeriod2Event

event has no effect if a second union has already formed.

[back to worked example 1]
[back to topic contents]

Probe entity_id 222 in more detail by setting SelectedEntities to 222 and observing scheduled future event times by turning on ShowQueuedEvents . All
model events except for DeathEvent are listed in SelectedEvents to remove DeathEvent messages from the report. Otherwise, the report would be
cluttered with lines showing the recomputation of time of death because the mortality rate changes at each birthday.

Report on specific entities

Report detailed history for a given entity

[OpenM]
TraceToFile = true

[Parameter]
SimulationCases = 500

[EventTrace]
; format
ReportStyle = readable
NameColumnWidth = 25
MaximumLines = 10000
; filters
SelectedEntities = 222
; events
ShowEnterSimulation = no
ShowExitSimulation = no
ShowEvents = yes
ShowQueuedEvents = yes
SelectedEvents = \
 FirstPregEvent, \
 Union1FormationEvent, \
 Union1DissolutionEvent, \
 Union2FormationEvent, \
 Union2DissolutionEvent, \
 UnionPeriod2Event

The line continuation character \ is used to split the list of event names into multiple lines for readability and ease of editing.

The resulting trace report looks like this:

 Time Entity Age Id Trace Value Name Remarks
 15.000000 Person 15.000000 222 queued 81.828627 FirstPregEvent was inf
 15.000000 Person 15.000000 222 queued 58.463729 Union1FormationEvent was inf
 17.500000 Person 17.500000 222 queued 18.987406 FirstPregEvent was 81.828627
 17.500000 Person 17.500000 222 queued 18.198452 Union1FormationEvent was 58.463729
 18.198452 Person 18.198452 222 EVENT Union1FormationEvent
 18.198452 Person 18.198452 222 queued 20.173365 FirstPregEvent was 18.987406
 18.198452 Person 18.198452 222 queued 53.059542 Union1DissolutionEvent was inf
 18.198452 Person 18.198452 222 queued inf Union1FormationEvent was 18.198452
 18.198452 Person 18.198452 222 queued 21.198452 UnionPeriod2Event was inf
 19.198452 Person 19.198452 222 queued 19.944885 Union1DissolutionEvent was 53.059542
 19.944885 Person 19.944885 222 EVENT Union1DissolutionEvent
 19.944885 Person 19.944885 222 queued 43.387166 FirstPregEvent was 20.173365
 19.944885 Person 19.944885 222 queued inf Union1DissolutionEvent was 19.944885
 19.944885 Person 19.944885 222 queued 20.010964 Union2FormationEvent was inf
 20.000000 Person 20.000000 222 queued 55.173852 FirstPregEvent was 43.387166
 20.010964 Person 20.010964 222 EVENT Union2FormationEvent
 20.010964 Person 20.010964 222 queued 20.212818 FirstPregEvent was 55.173852
 20.010964 Person 20.010964 222 queued 59.958810 Union2DissolutionEvent was inf
 20.010964 Person 20.010964 222 queued inf Union2FormationEvent was 20.010964
 20.212818 Person 20.212818 222 EVENT FirstPregEvent
 20.212818 Person 20.212818 222 queued inf FirstPregEvent was 20.212818
 20.212818 Person 20.212818 222 queued inf Union2DissolutionEvent was 59.958810
 21.198452 Person 21.198452 222 EVENT UnionPeriod2Event
 21.198452 Person 21.198452 222 queued inf UnionPeriod2Event was 21.198452

No events of interest occurred in entity_id 222 after UnionPeriod2Event . On the other hand, this entity does not probe what might happen if a first
birth had not already occurred prior to UnionPeriod2Event .

In this trace report, we see recalculation of future events triggered by other events. Recalculations are triggered by changes in an entity's
attributes, and that only happens at events. The report shows, however, a recomputation of the time of event Union1DissolutionEvent occurring at
time=19.198452, exactly one year after Union1FormationEvent occurs, with no associated event. This must be due to a self-scheduling event which
is not shown in the output.

[back to worked example 1]
[back to topic contents]

To probe in detail what's happening in entity_id 222 at time 19.198452 (the time of the event not shown in the previous run), turn on
ShowSelfSchedulingEvents and ShowQueuedSelfSchedulingEvents , and set up a time restriction window which brackets that time by setting
MinimumTime=19.1 and MaximumTime=19.2 .

Probe a time window

[OpenM]
TraceToFile = true

[Parameter]
SimulationCases = 500

[EventTrace]
; format
ReportStyle = readable
NameColumnWidth = 45
MaximumLines = 10000
; filters
SelectedEntities = 222
MinimumTime = 19.1
MaximumTime = 19.2
; events
ShowEnterSimulation = no
ShowExitSimulation = no
ShowEvents = yes
ShowSelfSchedulingEvents = yes
ShowQueuedEvents = yes
ShowQueuedSelfSchedulingEvents = yes
SelectedEvents = \
 FirstPregEvent, \
 Union1FormationEvent, \
 Union1DissolutionEvent, \
 Union2FormationEvent, \
 Union2DissolutionEvent, \
 UnionPeriod2Event

The trace report looks like this:

 Time Entity Age Id Trace Value Name Remarks
 19.198452 Person 19.198452 222 EVENT self_scheduling_split(active_spell_duration(in_union,true),UNION_DURATION)
 19.198452 Person 19.198452 222 queued 21.198452 self_scheduling_split(active_spell_duration(in_union,true),UNION_DURATION)
 19.198452 Person 19.198452 222 queued 19.944885 Union1DissolutionEvent was 53.059542

The missing event is revealed to be the self-scheduling attribute self_scheduling_split(active_spell_duration(in_union,true),UNION_DURATION) .
Perusing the RiskPaths code reveals that this self-scheduling attribute is assigned to the identity attribute union_duration , which is in turn used in
the computation of the time of the Union1DissolutionEvent event.

[back to worked example 1]
[back to topic contents]

This subtopic illustrates tracing attributes. It contains the following sections:

Attributes with event context

Attributes without event context

Find entities using an attribute

Using the case_seed attribute

[back to topic contents]

Worked example 1 suggested that the derived attribute union_duration played a role in explaining the recomputation of an event time. Trace that
attribute as well as in_union by turning on attribute tracing with ShowAttributes , and specifying the attributes to be traced with SelectedAttributes .

Worked example 2

Attributes with event context

[OpenM]
TraceToFile = true

[Parameter]
SimulationCases = 500

[EventTrace]
; format
ReportStyle = readable
NameColumnWidth = 20
MaximumLines = 10000
; filters
SelectedEntities = 222
; events
ShowEnterSimulation = yes
ShowExitSimulation = yes
ShowEvents = yes
; attributes
ShowAttributes = yes
SelectedAttributes = \
 in_union, \
 union_duration

The trace output looks like this:

 Time Entity Age Id Trace Value Name Remarks
 0.000000 Person 0.000000 222 ENTER
 0.000000 Person 0.000000 222 attr 0 in_union initial
 0.000000 Person 0.000000 222 attr 0 union_duration initial
 18.198452 Person 18.198452 222 EVENT Union1FormationEvent
 18.198452 Person 18.198452 222 attr 1 in_union was 0
 19.198452 Person 19.198452 222 attr 1 union_duration was 0
 19.944885 Person 19.944885 222 EVENT Union1DissolutionEvent
 19.944885 Person 19.944885 222 attr 0 in_union was 1
 19.944885 Person 19.944885 222 attr 0 union_duration was 1
 20.010964 Person 20.010964 222 EVENT Union2FormationEvent
 20.010964 Person 20.010964 222 attr 1 in_union was 0
 20.212818 Person 20.212818 222 EVENT FirstPregEvent
 21.010964 Person 21.010964 222 attr 1 union_duration was 0
 21.198452 Person 21.198452 222 EVENT UnionPeriod2Event
 23.010964 Person 23.010964 222 attr 2 union_duration was 1
 25.010964 Person 25.010964 222 attr 3 union_duration was 2
 29.010964 Person 29.010964 222 attr 4 union_duration was 3
 33.010964 Person 33.010964 222 attr 5 union_duration was 4
 100.000000 Person 100.000000 222 EVENT DeathEvent
 100.000000 Person 100.000000 222 EXIT

The output shows the the initial values of the attributes when the entity enters the simulation and changes in attributes as the simulation
progresses. The attribute in_union changes in response to union formation events as expected. The attribute union_duration changes with no
preceding event message because self-scheduling event messages are blocked with these EventTrace settings.

[back to worked example 2]
[back to topic contents]

Event messages can be be removed from the output by setting ShowEvents to off . The following settings trace some key attributes of RiskPaths for
a single case.

Attributes without event context

[OpenM]
TraceToFile = true

[Parameter]
SimulationCases = 500

[EventTrace]
; format
ReportStyle = readable
NameColumnWidth = 20
MaximumLines = 10000
; filters
SelectedEntities = 222
; events
ShowEnterSimulation = no
ShowExitSimulation = no
ShowEvents = no
; attributes
ShowAttributes = yes
SelectedAttributes = \
 case_seed, \
 union_status, \
 parity_status, \
 union_duration, \
 dissolution_duration

The trace output looks like this:

 Time Entity Age Id Trace Value Name Remarks
 0.000000 Person 0.000000 222 attr 1214330268 case_seed initial
 0.000000 Person 0.000000 222 attr 0 dissolution_duration initial
 0.000000 Person 0.000000 222 attr 0 parity_status initial
 0.000000 Person 0.000000 222 attr 0 union_duration initial
 0.000000 Person 0.000000 222 attr 0 union_status initial
 18.198452 Person 18.198452 222 attr 1 union_status was 0
 19.198452 Person 19.198452 222 attr 1 union_duration was 0
 19.944885 Person 19.944885 222 attr 0 union_duration was 1
 19.944885 Person 19.944885 222 attr 3 union_status was 1
 20.010964 Person 20.010964 222 attr 4 union_status was 3
 20.212818 Person 20.212818 222 attr 1 parity_status was 0
 21.010964 Person 21.010964 222 attr 1 union_duration was 0
 23.010964 Person 23.010964 222 attr 2 union_duration was 1
 25.010964 Person 25.010964 222 attr 3 union_duration was 2
 29.010964 Person 29.010964 222 attr 4 union_duration was 3
 33.010964 Person 33.010964 222 attr 5 union_duration was 4

[back to worked example 2]
[back to topic contents]

In this example, we use event trace to identify entities which were pregnant during a second union, and output a detailed history of the oldest.

First, we add the new attribute my_filter to RiskPaths by editing Fertility.mpp and adding the following lines:

actor Person
{
 //EN Pregnant in second union
 bool my_filter = (parity_status == PS_PREGNANT) && (union_status == US_SECOND_UNION);
};

and rebuild RiskPaths . Next we set event trace options to block all messages except attribute messages for my_filter which have the value true . In
C++ true has the value 1 and false has the value 0.

Find entities using an attribute

[OpenM]
TraceToFile = true

[Parameter]
SimulationCases = 500

[EventTrace]
; format
ReportStyle = readable
NameColumnWidth = 20
MaximumLines = 10000
; filters
; events
ShowEnterSimulation = no
ShowExitSimulation = no
ShowEvents = no
; attributes
ShowAttributes = yes
SelectedAttributes = my_filter
MinimumAttribute = 1
MaximumAttribute = 1

The output is:

 Time Entity Age Id Trace Value Name Remarks
 26.196550 Person 26.196550 65 attr 1 my_filter was 0
 26.395338 Person 26.395338 94 attr 1 my_filter was 0
 24.133799 Person 24.133799 211 attr 1 my_filter was 0
 20.212818 Person 20.212818 222 attr 1 my_filter was 0
 33.073613 Person 33.073613 279 attr 1 my_filter was 0
 32.492563 Person 32.492563 479 attr 1 my_filter was 0
 23.148798 Person 23.148798 481 attr 1 my_filter was 0

The output displays the 7 entities among the 500 which satisfied the condition during their lifetime. The Id column shows the entity_id of each,
and the Age column shows the age at which the condition first become true.

Among the 7, the oldest was entity_id 279.

The following settings probe the lifetime of that entity in more detail:

[OpenM]
TraceToFile = true

[Parameter]
SimulationCases = 500

[EventTrace]
; format
ReportStyle = readable
NameColumnWidth = 20
MaximumLines = 10000
; filters
SelectedEntities = 279
; events
ShowEnterSimulation = yes
ShowExitSimulation = yes
ShowEvents = yes

The output is

 Time Entity Age Id Trace Value Name Remarks
 0.000000 Person 0.000000 279 ENTER initial time=0.000000,age=0.000000
 27.167907 Person 27.167907 279 EVENT Union1FormationEvent
 29.155224 Person 29.155224 279 EVENT Union1DissolutionEvent
 30.167907 Person 30.167907 279 EVENT UnionPeriod2Event
 32.105193 Person 32.105193 279 EVENT Union2FormationEvent
 33.073613 Person 33.073613 279 EVENT FirstPregEvent
 100.000000 Person 100.000000 279 EVENT DeathEvent
 100.000000 Person 100.000000 279 EXIT

[back to worked example 2]
[back to topic contents]

The example Attributes without event context above traced case_seed , which is a built-in attribute of a case-based model. Case seeds of interest

Using the case_seed attribute

can also be obtained from aggregate output tables using an expression like max_value_out(case_seed) to identify the seed of a case for each
populated cell of a table.

case_seed can be useful to speed exploration of a specific case in a case-based model by arranging that a run simulate only that single case. The
following settings set the parameter SimulationSeed to 1214330268 from the previous trace output. The number of cases is also reduced from 500
to 1, for a very fast run. The SelectedEntities filter was removed.

[OpenM]
TraceToFile = true

[Parameter]
SimulationCases = 1
SimulationSeed = 1214330268

[EventTrace]
; format
ReportStyle = readable
NameColumnWidth = 20
MaximumLines = 10000
; filters
; events
ShowEnterSimulation = no
ShowExitSimulation = no
ShowEvents = no
; attributes
ShowAttributes = yes
SelectedAttributes = \
 case_seed, \
 union_status, \
 parity_status, \
 union_duration, \
 dissolution_duration

With these settings, the trace file looks like this:

 Time Entity Age Id Trace Value Name Remarks
 0.000000 Person 0.000000 1 attr 1214330268 case_seed initial
 0.000000 Person 0.000000 1 attr 0 dissolution_duration initial
 0.000000 Person 0.000000 1 attr 0 parity_status initial
 0.000000 Person 0.000000 1 attr 0 union_duration initial
 0.000000 Person 0.000000 1 attr 0 union_status initial
 18.198452 Person 18.198452 1 attr 1 union_status was 0
 19.198452 Person 19.198452 1 attr 1 union_duration was 0
 19.944885 Person 19.944885 1 attr 0 union_duration was 1
 19.944885 Person 19.944885 1 attr 3 union_status was 1
 20.010964 Person 20.010964 1 attr 4 union_status was 3
 20.212818 Person 20.212818 1 attr 1 parity_status was 0
 21.010964 Person 21.010964 1 attr 1 union_duration was 0
 23.010964 Person 23.010964 1 attr 2 union_duration was 1
 25.010964 Person 25.010964 1 attr 3 union_duration was 2
 29.010964 Person 29.010964 1 attr 4 union_duration was 3
 33.010964 Person 33.010964 1 attr 5 union_duration was 4

The trace output (and simulation) is identical to the previous output except for the Id column, which changed from 222 to 1. The Id column
shows the entity_id of the entity which produced the message. In a case-based model, entity_id is a unique sequentially increasing counter for
entities in the run.

Case-based models which construct cases by reading a file of microdata may not be able to reproduce a case of interest using this technique.
OzProj in the OpenM++ distribution is an example. Such models can filter on one or more case seeds directly using SelectedCaseSeeds , as in the

following example.

[OpenM]
TraceToFile = true

[Parameter]
SimulationCases = 500

[EventTrace]
; format
ReportStyle = readable
NameColumnWidth = 20
MaximumLines = 10000
; filters
SelectedCaseSeeds = 1214330268
; events
ShowEnterSimulation = no
ShowExitSimulation = no
ShowEvents = no
; attributes
ShowAttributes = yes
SelectedAttributes = \
 case_seed, \
 union_status, \
 parity_status, \
 union_duration, \
 dissolution_duration

With these options, the output is as before.

 Time Entity Age Id Trace Value Name Remarks
 0.000000 Person 0.000000 222 attr 1214330268 case_seed initial
 0.000000 Person 0.000000 222 attr 0 dissolution_duration initial
 0.000000 Person 0.000000 222 attr 0 parity_status initial
 0.000000 Person 0.000000 222 attr 0 union_duration initial
 0.000000 Person 0.000000 222 attr 0 union_status initial
 18.198452 Person 18.198452 222 attr 1 union_status was 0
 19.198452 Person 19.198452 222 attr 1 union_duration was 0
 19.944885 Person 19.944885 222 attr 0 union_duration was 1
 19.944885 Person 19.944885 222 attr 3 union_status was 1
 20.010964 Person 20.010964 222 attr 4 union_status was 3
 20.212818 Person 20.212818 222 attr 1 parity_status was 0
 21.010964 Person 21.010964 222 attr 1 union_duration was 0
 23.010964 Person 23.010964 222 attr 2 union_duration was 1
 25.010964 Person 25.010964 222 attr 3 union_duration was 2
 29.010964 Person 29.010964 222 attr 4 union_duration was 3
 33.010964 Person 33.010964 222 attr 5 union_duration was 4

If a case-based model is designed to generate multiple cloned entities within a case, SelectedCaseSeeds can be helpful to probe all clones within a
case.

[back to worked example 2]
[back to topic contents]

This subtopic illustrates tracing link attributes and multilinks. It contains the following sections:

Links and multiple entity types

Multilinks

Expanding the selected entities

[back to topic contents]

This section uses the Alpha2 model, which is part of the OpenM++ distribution. To make Alpha2 capable of event trace, the statement

options event_trace = on;

was added to the model source module ompp_framework.ompp , and a default ini file Alpha2.ini added to the model bin folder, as described in Quick
start. Also as described in Quick start, the model command line arguments were set to
-ini Alpha2.ini -OpenM.IniAnyKey true

Worked example 3

Links and multiple entity types

Alpha2 has several different kinds of entities, two of which are Person and Thing . A one-to-one link between a Person and a Thing is declared in
the model source statement

link Person.my_thing1 Thing.my_person1;

which declares the link attribute my_thing1 in Person and the reciprocal link my_person1 in Thing .

Both Person and Thing have an event named MortalityEvent . Person has a SpawnEvent which occurs immediately after a Person enters the
simulation and which creates other entities.

The following run settings in Alpha2.ini trace selected events and attributes for entities 1 and 2.

[OpenM]
TraceToFile = true

[Parameter]
SimulationCases = 1

[EventTrace]
; format
ReportStyle = readable
NameColumnWidth = 20
; filters
SelectedEntities = 1,2
; events
ShowEnterSimulation = yes
ShowExitSimulation = yes
ShowEvents = yes
SelectedEvents = \
 SpawnEvent, \
 MortalityEvent
; attributes
ShowAttributes = yes
SelectedAttributes = \
 my_thing1, \
 my_person1

The resulting trace output looks like this:

The answer is 42!
 Time Entity Age Id Trace Value Name Remarks
 0.000000 Person 0.000000 1 ENTER
 0.000000 Person 0.000000 1 link nullptr my_thing1 initial
 0.000000 Person 0.000000 1 EVENT SpawnEvent
 0.000000 Thing 0.000000 2 ENTER
 0.000000 Thing 0.000000 2 link nullptr my_person1 initial
 0.000000 Person 0.000000 1 link 2 my_thing1 was nullptr
 0.000000 Thing 0.000000 2 link 1 my_person1 was nullptr
 48.288955 Person 48.288955 1 EVENT MortalityEvent
 48.288955 Person 48.288955 1 EXIT
 48.288955 Thing 48.288955 2 link nullptr my_person1 was 1
 117.760965 Thing 117.760965 2 EVENT MortalityEvent
 117.760965 Thing 117.760965 2 EXIT

The first line in the trace output is produced by model code in Alpha2 which tests the trace file API. It is irrelevant to this example, but does
illustrate that the trace file can contain output from model code, not just from event trace.

The kind of entity (Person or Thing) is shown in the Entity column and the entity_id which produced the message is shown in the Id column.
MortalityEvent is actually two different events with the same name, one in Person and one in Thing . SpawnEvent in Person 1 creates a Thing

(entity_id 2) and links to it through the link attribute my_thing1 . Here's the corresponding model code extract:

void Person::SpawnEvent()
{
 // Create things and add to simulation
 Thing *thing1 = new Thing;
 thing1->Start();

 // Link Person to thing1
 my_thing1 = thing1;
...

When MortalityEvent causes Person 1 to exit the simulation, all its links are automatically emptied. That causes the link my_person1 in Thing 2 to
become nullptr as shown in the trace output above.

[back to worked example 3]
[back to topic contents]

In Alpha2 each Person can have more than one Thing . The relationship is declared in the one-to-many link statement in model code

link Thing.spawner Person.things[];

which associates the link attribute spawner in Thing to the Person that spawned the Thing . A Person has a reciprocal multilink things which
contains all the Thing entities it spawned. The following model code extract adds two Thing entities to the things multilink:

void Person::SpawnEvent()
{
 // Create things and add to simulation
 Thing *thing1 = new Thing;
 thing1->Start();

 Thing *thing2 = new Thing;
 thing2->Start();

 // populate multi-link of things
 things->Add(thing1);
 things->Add(thing2);
...
}

The statement things->Add(thing1); automatically assigns the reciprocal spawner attribute in Thing to the Person entity.

The following run settings explore the multilink things and the reciprocal spawner link attribute.

[OpenM]
TraceToFile = true

[Parameter]
SimulationCases = 1

[EventTrace]
; format
ReportStyle = readable
NameColumnWidth = 20
; filters
SelectedEntities = 1,2,13
; events
ShowEnterSimulation = yes
ShowExitSimulation = yes
ShowEvents = yes
SelectedEvents = \
 SpawnEvent, \
 MortalityEvent
; attributes
ShowAttributes = yes
SelectedAttributes = \
 spawner, \
 things

The resulting trace output is:

Multilinks

The answer is 42!
 Time Entity Age Id Trace Value Name Remarks
 0.000000 Person 0.000000 1 ENTER
 0.000000 Person 0.000000 1 multi things initial {}
 0.000000 Person 0.000000 1 EVENT SpawnEvent
 0.000000 Thing 0.000000 2 ENTER
 0.000000 Thing 0.000000 2 link nullptr spawner initial
 0.000000 Thing 0.000000 13 ENTER
 0.000000 Thing 0.000000 13 link nullptr spawner initial
 0.000000 Person 0.000000 1 multi++ 2 things is {2}
 0.000000 Thing 0.000000 2 link 1 spawner was nullptr
 0.000000 Person 0.000000 1 multi++ 13 things is {2,13}
 0.000000 Thing 0.000000 13 link 1 spawner was nullptr
 48.288955 Person 48.288955 1 EVENT MortalityEvent
 48.288955 Person 48.288955 1 EXIT
 48.288955 Thing 48.288955 2 link nullptr spawner was 1
 48.288955 Thing 48.288955 13 link nullptr spawner was 1
 117.760965 Thing 117.760965 2 EVENT MortalityEvent
 117.760965 Thing 117.760965 2 EXIT
 144.675208 Thing 144.675208 13 EVENT MortalityEvent
 144.675208 Thing 144.675208 13 EXIT

Each trace message for the things multilink shows the current contents of the multilink in the Remarks column. The initial value of things is empty,
and multi++ in the Trace column notes when an entity is added to the multilink. There are no multi-- messages in this example, because the two
Thing entities happened to outlive the Person entity. The spawner link attribute in each Thing was set automatically to nullptr when the Person

exited the simulation during age 48.

Incidentally, the second Thing has entity_id 13 because each Thing spawns 10 Toy entities, but that's another story!

[back to worked example 3]
[back to topic contents]

This example uses the option SelectLinkedEntities to automatically select entities added through a link or multilink to an active selected entity. The
following settings set selected entities to the single entity with 'entity_id' 1.

[OpenM]
TraceToFile = true
ProgressPercent = 25

[Parameter]
SimulationCases = 1

[EventTrace]
; format
ReportStyle = readable
NameColumnWidth = 20
; filters
SelectedEntities = 1
SelectLinkedEntities = yes
; events
ShowEnterSimulation = yes
ShowExitSimulation = yes
ShowEvents = yes
SelectedEvents = \
 SpawnEvent, \
 MortalityEvent

The trace output is

The answer is 42!
 Time Entity Age Id Trace Value Name Remarks
 0.000000 Person 0.000000 1 ENTER
 0.000000 Person 0.000000 1 EVENT SpawnEvent
 0.000000 Person 0.000000 1 selected++ 2 my_thing1
 0.000000 Person 0.000000 1 selected++ 13 my_thing2
 48.288955 Person 48.288955 1 EVENT MortalityEvent
 48.288955 Person 48.288955 1 EXIT
 117.760965 Thing 117.760965 2 EVENT MortalityEvent
 117.760965 Thing 117.760965 2 EXIT
 144.675208 Thing 144.675208 13 EVENT MortalityEvent
 144.675208 Thing 144.675208 13 EXIT

The messages with selected++ in the Trace column show two entities 2 and 13 added to the set of selected entities. Subsequent messages
include contributions from the three entities 1,2, and 13. Had entity 2 or 3 added links to other entities during the simulation, the set of selected

Expanding the selected entities

entities would have been expanded to include them, too.

[back to worked example 3]
[back to topic contents]

This worked example illustrates Event Trace options which show RiskPaths pushing table increments to accumulators for the entity table
T06_BirthsByUnion . Generally, model developers don't need to probe the low-level mechanics of entity tabulation in OpenM++, but it can

sometimes be useful.
Here's the declaration of that table:

table Person T06_BirthsByUnion //EN Pregnancies by union status & order
[trigger_entrances(parity_status, PS_PREGNANT)]
{
 {
 unit //EN Number of pregnancies
 }
 * union_status+ //EN Union Status at pregnancy
};

With a 5,000 case run, that table looks like this:

Union Status at pregnancy Number of pregnancies

Never in union 1,285

First union < 3 years 2,986

First Union > 3 years 293

After first union 11

Second union 57

After second union 1

All 4,633

When analyzing table increments, it's generally best to restrict the table to a single entity of interest, because otherwise the output may be too
voluminous to be useful.

Here's what that table looks like in a run with only 1 case:

Union Status at pregnancy Number of pregnancies

Never in union 0

First union < 3 years 1

First Union > 3 years 0

After first union 0

Second union 0

After second union 0

All 1

The table shows that the one Person in the run had a single pregnancy which occurred in the first 3 years of the first union. The marginal total
over all union_status categories is necessarily also 1.

The following run settings trace events, increments to this table, and changes to the two attributes parity_status and union_status used in the table
declaration:

Worked example 4

[OpenM]
TraceToFile = true

[Parameter]
SimulationCases = 1

[EventTrace]
ReportStyle = readable
NameColumnWidth = 25
MaximumLines = 20000
ShowEnterSimulation = yes
ShowExitSimulation = yes
ShowAttributes = yes
SelectedAttributes = parity_status, union_status
ShowEvents = yes
ShowTableIncrements = yes
SelectedTables = T06_BirthsByUnion

With these settings, the trace output looks like this:

 Time Entity Age Id Trace Value Name Remarks
 0.000000 Person 0.000000 1 ENTER
 0.000000 Person 0.000000 1 attr 0 parity_status initial
 0.000000 Person 0.000000 1 attr 0 union_status initial
 24.260999 Person 24.260999 1 EVENT Union1FormationEvent
 24.260999 Person 24.260999 1 attr 1 union_status was 0
 26.537813 Person 26.537813 1 EVENT FirstPregEvent
 26.537813 Person 26.537813 1 attr 1 parity_status was 0
 27.260999 Person 27.260999 1 EVENT UnionPeriod2Event
 27.260999 Person 27.260999 1 INCREMENT 1 T06_BirthsByUnion.acc0 cell=[1] accumulator=1
 27.260999 Person 27.260999 1 INCREMENT 1 T06_BirthsByUnion.acc0 cell=[6] accumulator=1
 27.260999 Person 27.260999 1 attr 2 union_status was 1
 100.000000 Person 100.000000 1 EVENT DeathEvent
 100.000000 Person 100.000000 1 EXIT

The trace output is coherent with the table shown above: The Person experienced a FirstPregEvent at age 26.537813 , when union_status was at its
second level First union < 3 years (which has integer value 1).

The event trace shows two INCREMENT lines. The first pushes an increment with value 1 to cell [1] of the table, which is correct (index [1] is the
second cell, corresponding to First union < 3 years). The second pushes the same increment to cell [6] of the table. That's correct because [6] is
the margin index for the table dimension. An increment is always pushed to the body and to all margin dimensions, and to all crossings of margin
dimensions. For example, if a table has two dimensions and both have a margin, an increment will be pushed to 4 cells: one for the table body,
one for each margin, and one for the crossed margins.

The INCREMENT lines above are correct, but their timing in the Person timeline may be puzzling. That's because by design a table increment is
pushed to an accumulator ‘lazily’. The push happens only when an upcoming attribute change would invalidate the pending increment. Pushes
can also happen when the entity exits the simulation. So, an increment may appear in the timeline later than might be expected. You can see that
in action in the event trace output above when an upcoming change to union_status at time 27.260999 causes the pending increment to be pushed
immediately before union_status changes. That increment was originally created when the table filter flashed true at time 26.537813 when the
pregnancy occurred.

Table increments are 'lazy' to ensure that changes in multiple classificatory dimensions and/or filter settle down before being treated as a single
finalized and coherent table increment.

For INCREMENT rows, the Value column is the value of the increment being pushed to an accumulator (always 1 in this example because ‘unit’).
There are two increments shown, one is for the body of the table, the other for the margin. Each cell of a table has an accumulator (more than
one if table expressions use multiple accumulators). The cell indices of the increment/accumulator are shown in the Remarks column, as is the
value of the accumulator after the increment (from all cases so far in the sub). The two accumulators shown in the trace output are both 1
because the run had no other cases.

[back to topic contents]

A model built with event trace capability can be run repeatedly with different trace options with no need to rebuild.

Event trace works with Release versions of models, so can be used to probe details in large simulations.

Event trace is intended for model development, not production. A model built with event trace will output the following warning to the log
whenever it is run:

General information

Warning : possible performance impact - model built with event_trace = on

A model built with event trace will also output the following warning to the log whenever it is run:

 Warning : model can expose microdata at run-time with event_trace = on

If this is not a concern, for example the model generates a synthetic population, this warning can be disabled by the following statement:

options event_trace_warning = off;

Some entity attributes are created by the OpenM++ compiler to implement model functionality. For example, if an entity table has a filter, an
identity attribute is created to implement it. These internal generated attributes are normally hidden but they can be made visible by the following
statement:

options all_attributes_visible = on;

An event trace message can only be produced by an active entity. Event trace messages are not produced before the entity enters the simulation
or after the entity exits the simulation.

Event trace messages are produced directly and immediately as model code executes. The messages are output to the trace file if EventTrace

filter conditions are met. For example, if an attribute is selected, an event trace message will be produced immediately whenever the valus
changes. If the attribute is changed more than once during the implementation of an event, each change will produce a separate message.

Trace output is disabled by default when a model is run. Use OpenM.TraceToFile to enable it, e.g.

[OpenM]
TraceToFile = true

See the subtopic Trace file options for a complete listing of trace file options.

Event trace options are processed only if the model is run with the command line option -OpenM.IniAnyKey true . Unlike other options,
OpenM.IniAnyKey must be specified on the command line, not in an ini file.

To avoid confusing output, event trace should be used in runs with a single sub/replicate/member.

A model can write lines to the trace file directly, in which case those lines will be interleaved with any event trace messages.

[back to topic contents]

Each event trace message has up to 8 columns of information. Values for Time , Entity , Age , Id , and Trace are always present. Values for
Value , Name , and Remarks may be absent, depending on the nature of the message.

The order, left- or right-justification, capitalization, and indentation of columns varies by message to help peruse voluminous output for salient
features.

Column
Column
header

Description

1 Time The time of the entity when it produced the message.

2 Entity The type of entity which produced the message, e.g. Person .

3 Age The age of the entity when it produced the message.

4 Id The entity_id of the entity which produced the message.

5 Trace
The kind of message, e.g. EVENT is a message for event occurrence. See Event trace messages for all
possible values.

6 Value A value associated with the message, e.g. the current value of an attribute.

7 Name A name associated with the message, e.g. the name of the event or attribute.

Event trace columns

8 Remarks Supplementary information, e.g. the value of the attribute before it changed, or the contents of a multilink

Column
Column
header

Description

If ReportStyle is csv , an additional leading column Line is present. For more information, see Event trace options - format.

[back to topic contents]

The following table lists all possible kinds of event trace message. Values noted as 'initial' are those when the entity first enters the simulation
before it experiences any events. The initial value of time does not necessarily correspond to the global time when the message was produced.

Kind of message Trace (5) Value (6) Name (7) Remarks (8)

Entity enters
simulation

ENTER

Entity exits
simulation

EXIT

Event occurrence EVENT event name

Event future time queued The future time event name The previous value of the future event time.

Attribute - initial attr The initial value
attribute
name

Attribute - change attr
The current
value

attribute
name

The previous value of the attribute.

Link - initial link
The entity_id or
nullptr

link name

Link - change link
The entity_id or
nullptr

link name The previous value of the link.

Multilink - initial multi
multilink
name

A list of all entities in the multilink.

Multilink - add multi++

The entity_id of
the added
entity

multilink
name

A list of all entities in the multilink.

Multilink - remove multi--

The entity_id of
the removed
entity

multilink
name

A list of all entities in the multilink.

Entity added to list
of selected entities

selected++

The entity_id of
the added
entity

link or
multilink
name

Table increment
pushed to
accumulator

INCREMENT
The value of
the increment

table name
and
accumulator
#

The table cell indices of the accumulator to which the
increment was pushed, and the updated value of the
accumulator.

[back to topic contents]

Event trace options fall into five broad categories which are described in the following sections.

Format ReportStyle , MaximumLines , NameColumnWidth

Filters Block/pass messages based on entity characteristics

Event trace messages

Event trace options

Events Block/pass messages on events and entity life cycle

Attributes Block/pass messages on attribute changes

Increments Block/pass messages on push table increment to accumulator

For reference, here is an extract of a model run .ini file with all event trace options:

;#==
;#
;# event trace model development options
;#
;# Requires activation of model development options using -OpenM.IniAnyKey (see above).
;# Requires that model code contains the statement
;# options event_trace = on;
;# Requires OpenM.TraceToFile = true
;#
;# See wiki for explanation of EventTrace options
;
; [EventTrace]
;
; format
;
; ReportStyle = readable ; "modgen", "readable", or "csv", default: modgen
; MaximumLines = 100000 ; integer value, default: 20000
; NameColumnWidth = 20 ; integer value, default: 40
;
; filters
;
; SelectedEntityKinds = e1,e2,e3 ; comma separated list of entity kinds, if empty all entity kinds
; SelectedEntities = 1,2,3 ; comma separated list of integers, if empty all entities
; SelectLinkedEntities = no ; default: no
; SelectedCaseSeeds = 1,2,3 ; comma separated list of case seeds, if empty all cases
; MinimumTime = 2025 ; double value, default: -inf
; MaximumTime = 2025 ; double value, default: +inf
; MinimumAge = 65 ; double value, default: -inf
; MaximumAge = 66 ; double value, default: +inf
;
; events
;
; ShowEnterSimulation = yes ; default: yes
; ShowExitSimulation = yes ; default: yes
; ShowEvents = yes ; default: yes
; SelectedEvents = e1,e2,e3 ; comma separated list of event names, if empty all events
; ShowQueuedEvents = no ; default: no
; ShowQueuedUnchanged = no ; default: no
; ShowSelfSchedulingEvents = no ; default: no
; ShowQueuedSelfSchedulingEvents = no ; default: no
;
; attributes
;
; ShowAttributes = no ; default: no
; SelectedAttributes = year,alive ; comma separated list of attribute names, if empty all attributes
; MinimumAttribute = 1 ; double value, default: -inf
; MaximumAttribute = 1 ; double value, default: +inf
;
; table increments
;
; ShowTableIncrements = no ; default: no
; SelectedTables = t1,t2,t3 ; comma separated list of table names, if empty all tables

[back to topic contents]

Option Type Default Description

ReportStyle string modgen One of readable , csv , or modgen (see below in this section).

MaximumLines integer 20000 Blocks messages if the line count exceeds this value. A final message is written to the trace.

NameColumnWidth integer 40 The width of the Name column (column 7) in message output.

The ReportStyle option specifies the content and format of trace output. It can be readable , csv , or modgen . For compatibility for x-compatible
models, the default value is modgen .

The examples earlier in this topic illustrate the readable style.

The csv style has almost the same content and layout as the readable style, except transformed into csv format for use by downstream

Event trace options - format

applications such as Excel. The csv style contains an additional leading column Line which contains the original line number. This can be useful
as a secondary sort key to disambiguate the order of otherwise tied records. In the example below, lines 8 and 9 have identical Time but Line

indicates the order in which the two attributes changed value. The exact order can be particularly important if events have tied times, or if an
attribute changes value more than once at a given time.

In csv format some columns may have additional numeric precision compared to readable format.

The trace file name extension can be changed from the default .txt to .csv using the OpenM.TraceFilePath model run option, e.g. in a run ini file.
See Trace file options.

Here is the output for the previous example Attributes with event context using ReportStyle = csv :

Line,Time,Entity,Age,Id,Trace,Value,Name,Remarks
1,0,"Person",0,222,"ENTER",,,
2,0,"Person",0,222,"attr",0,"in_union","initial"
3,0,"Person",0,222,"attr",0,"union_duration","initial"
4,18.19845239664,"Person",18.19845239664,222,"EVENT",,"Union1FormationEvent",
5,18.19845239664,"Person",18.19845239664,222,"attr",1,"in_union","was 0"
6,19.19845239664,"Person",19.19845239664,222,"attr",1,"union_duration","was 0"
7,19.94488519046,"Person",19.94488519046,222,"EVENT",,"Union1DissolutionEvent",
8,19.94488519046,"Person",19.94488519046,222,"attr",0,"in_union","was 1"
9,19.94488519046,"Person",19.94488519046,222,"attr",0,"union_duration","was 1"
10,20.01096416538,"Person",20.01096416538,222,"EVENT",,"Union2FormationEvent",
11,20.01096416538,"Person",20.01096416538,222,"attr",1,"in_union","was 0"
12,20.21281842274,"Person",20.21281842274,222,"EVENT",,"FirstPregEvent",
13,21.01096416538,"Person",21.01096416538,222,"attr",1,"union_duration","was 0"
14,21.19845239664,"Person",21.19845239664,222,"EVENT",,"UnionPeriod2Event",
15,23.01096416538,"Person",23.01096416538,222,"attr",2,"union_duration","was 1"
16,25.01096416538,"Person",25.01096416538,222,"attr",3,"union_duration","was 2"
17,29.01096416538,"Person",29.01096416538,222,"attr",4,"union_duration","was 3"
18,33.01096416538,"Person",33.01096416538,222,"attr",5,"union_duration","was 4"
19,100,"Person",100,222,"EVENT",,"DeathEvent",
20,100,"Person",100,222,"EXIT",,,

Here is the same output, displayed in a table as it might look in Excel:

Line Time Entity Age Id Trace Value Name Remarks

1 0 Person 0 222 ENTER

2 0 Person 0 222 attr 0 in_union initial

3 0 Person 0 222 attr 0 union_duration initial

4 18.19845239664 Person 18.19845239664 222 EVENT Union1FormationEvent

5 18.19845239664 Person 18.19845239664 222 attr 1 in_union was 0

6 19.19845239664 Person 19.19845239664 222 attr 1 union_duration was 0

7 19.94488519046 Person 19.94488519046 222 EVENT Union1DissolutionEvent

8 19.94488519046 Person 19.94488519046 222 attr 0 in_union was 1

9 19.94488519046 Person 19.94488519046 222 attr 0 union_duration was 1

10 20.01096416538 Person 20.01096416538 222 EVENT Union2FormationEvent

11 20.01096416538 Person 20.01096416538 222 attr 1 in_union was 0

12 20.21281842274 Person 20.21281842274 222 EVENT FirstPregEvent

13 21.01096416538 Person 21.01096416538 222 attr 1 union_duration was 0

14 21.19845239664 Person 21.19845239664 222 EVENT UnionPeriod2Event

15 23.01096416538 Person 23.01096416538 222 attr 2 union_duration was 1

16 25.01096416538 Person 25.01096416538 222 attr 3 union_duration was 2

17 29.01096416538 Person 29.01096416538 222 attr 4 union_duration was 3

18 33.01096416538 Person 33.01096416538 222 attr 5 union_duration was 4

19 100 Person 100 222 EVENT DeathEvent

20 100 Person 100 222 EXIT

Line Time Entity Age Id Trace Value Name Remarks

The modgen output style looks like this:

Person - actor_id=1 - case_seed=1 - : event=timeDeathEvent - time=100.000000000000000
Person - actor_id=1 - case_seed=1 - : event=timeFirstPregEvent - time=inf
Person - actor_id=1 - case_seed=1 - : event=timeUnion1DissolutionEvent - time=inf
Person - actor_id=1 - case_seed=1 - : event=timeUnion1FormationEvent - time=inf
Person - actor_id=1 - case_seed=1 - : event=timeUnion2DissolutionEvent - time=inf
Person - actor_id=1 - case_seed=1 - : event=timeUnion2FormationEvent - time=inf
Person - actor_id=1 - case_seed=1 - : event=timeUnionPeriod2Event - time=inf
Person - actor_id=1 - case_seed=1 - : event=scheduled - 0 - time=1.000000000000000
Person - actor_id=1 - case_seed=1 - : event=timeDeathEvent - time=100.000000000000000
Person - actor_id=1 - case_seed=1 - : event=scheduled - 0 - time=2.000000000000000
Person - actor_id=1 - case_seed=1 - : event=timeDeathEvent - time=100.000000000000000
...

The modgen report style allows detailed comparison of modgen and ompp versions of a x-compatible model. The Test Models utility rearranges,
reformats, and normalizes modgen style of event trace output of both Modgen and OpenM++ versions of a model to improve comparability and
help understand differences.

[back to event trace options]
[back to topic contents]

Filter options pass or block any kind of event trace message based on the characteristics of the entity when it produced the message.

Option Type Default Description

SelectedEntityKinds
comma separated
list

empty
Block any message if entity kind (e.g. Person) not in this list (unless list is
empty).

SelectedEntities
comma separated
list

empty Block any message if entity not in this list (unless list is empty).

SelectLinkedEntities yes/no no An active entity in SelectedEntities will add new linked entities to SelectedEntities .

SelectedCaseSeeds
comma separated
list

empty Block any message if case seed not in this list (unless list is empty).

MinimumTime
floating point
number

-inf Block any message if global time < this.

MaximumTime
floating point
number

+inf Block any message if global time > this.

MinimumAge
floating point
number

-inf Block any message if entity age < this.

MaximumAge
floating point
number

+inf Block any message if entity age > this.

For examples, see Worked example 1 Using filters

[back to event trace options]
[back to topic contents]

Event options pass or block specific kinds of message associated with entity lifecycle and events.

Option Type Default Description

Event trace options - filters

Event trace options - events

ShowEnterSimulation yes/no yes Pass/block entity entrance message.

ShowExitSimulation yes/no yes Pass/block entity exit message.

ShowEvents yes/no yes Pass/block event occurrence message.

SelectedEvents
comma separated
list

empty
Block event message if event not in this list (unless list is
empty).

ShowQueuedEvents yes/no no Pass/block event time message.

ShowQueuedUnchanged yes/no no Pass/block event time message if future time did not change.

ShowSelfSchedulingEvents yes/no no Pass/block self-scheduling event occurrence message.

ShowQueuedSelfSchedulingEvents yes/no no Pass/block self-scheduling event time message.

Option Type Default Description

An entity produces a message when it recalculates the future scheduled time of an event. However, the default setting ShowQueuedUnchanged = no

blocks the message if the recalculated future scheduled time did not change.

For examples, see Worked example 1 Using filters

[back to event trace options]
[back to topic contents]

Attribute options pass or block messages for attributes, links, and multilinks. An entity produces a message for an attribute when it enters the
simulation and whenever the attribute changes.

Option Type Default Description

ShowAttributes yes/no no Pass/block attribute message

SelectedAttributes comma separated list empty Block attribute message if attribute not in this list (unless list is empty).

MinimumAttribute floating point number -inf Block attribute message if attribute value < this.

MaximumAttribute floating point number +inf Block attribute message if attribute value > this value.

If SelectedAttributes is not specified, all attribute messages are passed, including for attributes created by the OpenM++ compiler.

MinimumAttribute and MaximumAttribute apply only to normal numerical attributes, not links or multilinks.

The value of an attribute of type bool is 0 for false and 1 for true . The value of an attribute of type classification or partition is {0,1,2,...} .

For examples, see
Worked example 2 Tracing attributes
Worked example 3 Tracing links and multilinks

[back to event trace options]
[back to topic contents]

Table increment options pass or block messages related to pushing table increments to accumulators. An entity produces a table increment
message whenever it pushes a completed increment to an accumulator.

Option Type Default Description

ShowTableIncrements yes/no no Pass/block push increment message

SelectedTables comma separated list empty Block table increment message if table not in this list (unless list is empty).

If SelectedTables is not specified, all push increment messages are passed.

Event trace options - attributes

Event trace options - table increments

For an example, see Worked example 4.

[back to event trace options]
[back to topic contents]

A number of OpenM options control if, how, and where the trace file is produced. The following is extracted from OM_ROOT/props/model/Model-

example.ini .

;# trace settings:
;# trace can be enabled/disabled for 3 independent streams:
;# console - cout stream
;# "last run" file - trace file with specified name, overwritten on every model run
;# "stamped" file - trace file with unique name, created for every model run
;#
;# "stamped" name produced from "last run" name by adding time-stamp and/or pid-stamp, i.e.:
;# trace.txt => trace.2012_08_17_16_04_59_148.987654.txt
;#
;# If trace to file is enabled
;# then existing "last run" trace file is overwritten even if model does not write anything to trace output
;
; TraceToConsole = false ; trace to console, default false
; TraceToFile = false ; trace to file
; TraceToStampedFile = false ; trace to "stamped" file
; TraceFilePath = trace.txt ; trace file path, default: current/dir/modelExeName.trace.txt
; TraceUseTimeStamp = false ; use time-stamp in trace "stamped" file name
; TraceUsePidStamp = false ; use pid-stamp in trace "stamped" file name
; TraceNoMsgTime = true ; if true then do not prefix trace messages with date-time
; TraceRank = false ; if true then prefix trace messages with MPI process rank

[back to topic contents]

Trace output can be toggled off or on from model code provided the model was built with event trace capability. The API consists of the two
functions

void StartEventTrace(void);
void StopEventTrace(void);

This can be helpful in situations where the filtering functionality described in this topic is insufficient. For example, a rare condition in model code
can be used to toggle event trace on to identify entities which experienced the condition for further exploration. Event trace is on at the beginning
of a run, so an initial call to StopEventTrace at the beginning of a run (or case) is required for a subsequent call to StartEventTrace to have an effect.

[back to topic contents]

Trace file options

Trace file API

Home > Model Development Topics > External Names

This topic describes how to specify the names exposed to external software for parameter and table dimensions, table expressions, and
enumerations of classifications. These names are used in csv files produced by dbcopy and in downloads from the OpenM++ UI.

Model Code

Default name

Explicit name

Identifying missing explicit names

Heuristic name

Name restrictions

All generated names

Each dimension of a parameter or table, each expression of a table, and each enumerator of a classification has an associated external name.
The OpenM++ compiler provides a default name for each external name. The default name can be overridden by an explicit name or a heuristic
name.

The default name for a parameter dimension has the form ParameterName.DimN , where N is {0,1,...,rank-1} , and rank is the number of parameter
dimensions.

The default name for a table dimension has the form TableName.DimN , where N is {0,1,...,rank-1} , and rank is the number of classificatory
dimensions in the table, i.e. the number of dimensions not counting the expression 'dimension'. Because rank excludes the expression dimension
of a table, the expression dimension is skipped over in the numbering of a table dimension default name.
Note: The default name of a table dimension may differ from what's used to identify a dimension in //LABEL and /*NOTE documentation
comments. For compatibility with Modgen models, documentation comments count the expression dimension of the table in the numbering
scheme. For more on labels and notes, see symbol labels.

The default name for a table expression has the form TableName.ExprN , where N is {0,1,...,expressions-1} , and expressions is the number of
expressions in the table.

The default name of an enumerator of a classification is the same as the enumerator name in model code.

Here's an example of the default names for a 1-dimensional table:

table Person T02_TotalPopulationByYear //EN Life table
{
 //EN Curtate age
 integer_age *
 {
 unit, //EN Population start of year
 duration() //EN Average population in year
 }
};

This table has a single classificatory dimension with default name Dim0 and two expressions with default names Expr0 and Expr1 . These names
identify individual cells in the table. If a run with this table is exported in .csv format, an extract of the file T02_totalPopulationByYear.csv might look
like this:

expr_name Dim0 expr_value

Expr0 0 5000

Expr0 1 5000

External Names

Related topics

Topic contents

Default name

Expr0 2 5000

...

Expr0 99 5000

Expr0 100 5000

Expr1 0 5000

Expr1 1 5000

Expr1 2 5000

...

expr_name Dim0 expr_value

Where Dim0 identifies the cell coordinates and Expr0 and Expr1 identify the expression. The generated default names Dim0 , Expr0 , and Expr1

are positional, not descriptive. That can make downstream use of exported results difficult and error-prone.

Here's an example of the default names of the enumerators of a classification, taken from the RiskPaths model. The UNION_ORDER classification
has the following declaration:

classification UNION_ORDER //EN Union order
{
 UO_FIRST, //EN First union
 UO_SECOND //EN Second union
};

The default names of the two enumerators are the same as the codes in the declaration: UO_FIRST and UO_SECOND .

[back to topic contents]

An explicit name can be assigned to dimension and expressions in model source code using the naming operator => , in which case it replaces
the default name. The following example replaces the default names Dim0 , Expr1 , and Expr2 with more descriptive names:

table Person T02_TotalPopulationByYear //EN Life table
{
 //EN Curtate age
 age => integer_age *
 {
 pop => unit, //EN Population start of year
 py => duration() //EN Average population in year
 }
};

The table dimension is now named age and the measures are named pop and py . The .csv file would now look something like:

expr_name age expr_value

pop 0 5000

pop 1 5000

pop 2 5000

...

pop 99 5000

pop 100 5000

py 0 5000

py 1 5000

py 2 5000

Explicit name

...

expr_name age expr_value

An explicit name can also be specified with a comment-based syntax using the default name. The following lines have the same effect as the
preceding example:

//NAME T02_TotalPopulationByYear.Dim0 age
//NAME T02_TotalPopulationByYear.Expr0 pop
//NAME T02_TotalPopulationByYear.Expr1 py

Modgen-specific: The naming operator => is not recognized by Modgen and will produce a syntax error. For x-compatible model code, use the
//NAME syntax.

Explicit names can be specified for dimensions of a parameter. For example, the parameter declaration

double UnionDurationBaseline[UNION_ORDER][UNION_DURATION];

can incorporate explicit names using the naming operator before a dimension:

double UnionDurationBaseline
 Order => [UNION_ORDER]
 Duration => [UNION_DURATION];

or by using the comment-based syntax:

//NAME UnionDurationBaseline.Dim0 Order
//NAME UnionDurationBaseline.Dim1 Duration

Explicit names can be specified for an enumerator of a classification. For the classification declaration

classification UNION_ORDER //EN Union order
{
 UO_FIRST, //EN First union
 UO_SECOND //EN Second union
};

an explicit name can be specified using the naming operator before the enumerator:

classification UNION_ORDER //EN Union order
{
 First => UO_FIRST, //EN First union
 Second => UO_SECOND //EN Second union
};

or by using the comment-based syntax

//NAME UO_FIRST First
//NAME UO_SECOND Second

[back to topic contents]

If a default name is being used, a downloaded parameter or table has column names like Dim0 or Dim2 , and table expressions like Expr2 or
Expr5 , which are less than helpful for model users. An issue for model developers is to identify missing explicit names like these, and, once

identified, to insert the missing explicit name in the model code.

The OpenM++ compiler supports a family of options to aid that process. Each member of the family targets a specific kind of missing explicit
name. When an option is set to on , the compiler will generate a warning for each missing explicit name of that kind. The warning includes the
model code file and line where the symbol was declared. In an IDE like Visual Studio, double-clicking on the warning in the log window navigates
immediately to that model source code location in the IDE editor.

By default these options are off . Multiple options can be turned on at the same time.

Identifying missing explicit names

The following example identifies all dimensions and expressions of published tables in RiskPaths which lack an explicit name.
Inserting the following line in ompp_framework.ompp

options missing_name_warning_published_table = on;

causes the compiler to emit warnings like:

1>../code/Tables.mpp(40): warning : missing explicit name for dimension 0 of published table 'T02_TotalPopulationByYear'
1>../code/Tables.mpp(42): warning : missing explicit name for expression 0 of published table 'T02_TotalPopulationByYear'
1>../code/Tables.mpp(43): warning : missing explicit name for expression 1 of published table 'T02_TotalPopulationByYear'

Double-clicking one of these warnings navigates directly to the model code line of the dimension or expression.

The following table lists the available options to emit warnings for missing explicit names, grouped by category. The Scope column shows what
produces a warning for the given option.

Option Scope

All

 missing_name_warning_classification classification level (enumerator)

 missing_name_warning_parameter dimension

 missing_name_warning_table dimension, expression

Published only

 missing_name_warning_published_classification as above, but only for published symbols

 missing_name_warning_published_parameter as above, but only for published symbols

 missing_name_warning_published_table as above, but only for published symbols

[back to topic contents]

A heuristic name is a name which replaces a default name with a name generated by the OpenM++ compiler. A heuristic name is generated
based on contextual information about the dimension or expression, if no explicit name was provided in model code. Explicit names are generally
preferable to heuristic names. Heuristic names can provide an immediate improvement in the usability of downloaded parameters and tables,
replacing default names like Dim2 or Expr5 with something better.

Heuristic names are not generated by default. To generate heuristic names, include the following statement in model source code:

options use_heuristic_short_names = on;

The table in the previous example, with no explicit names, would produce the following exported csv :

expr_name Curtate_age expr_value

Population_start_of_year 0 5000

Population_start_of_year 1 5000

Population_start_of_year 2 5000

...

Population_start_of_year 99 5000

Population_start_of_year 100 5000

Average_population_in_year 0 5000

Average_population_in_year 1 5000

Heuristic name

Average_population_in_year 2 5000

...

expr_name Curtate_age expr_value

In this example, the OpenM++ compiler generated heuristic names using //EN labels found in the model source code (EN is the default language
of this model). However, the OpenM++ compiler may, particularly if a label exceeds the name length limit, create a heuristic name based on other
information, such as the name of the classification underlying the dimension of a table. To respect name length limits, a heuristic name may be
based on a label with an interior portion snipped out and replaced by _X_ , or prefixed by X_ so that the name starts with an alphabetic
character.

If a heuristic name clashes with the name of a previous dimension or measure, a disambiguating suffix will be appended to the heuristic name.
For example the parameter k_year declared as

parameters {
 YEAR k_year[REGION][REGION];
};

has a repeated dimension REGION . The heuristic name for the second repeated dimension of k_year will be disambiguated by appending Dim1 :

// Parameter k_year: k_year
//NAME k_year.Dim0 Region
//NAME k_year.Dim1 RegionDim1

The maximum length of heuristic names can be controlled by the following option:

options short_name_max_length = 32;

Heuristic name generation for enumerators of classifications can be disabled by the following option:

options enable_heuristic_names_for_enumerators = off;

By default, this option is on . If this option is off , the name of a classification enumerator will always be the same as the enumerator model code
name. This option has effect only if the option use_heuristic_short_names is on .

[back to topic contents]

Dimension and measure names in exported files facilitate direct use in downstream analysis. For example, a .csv could be opened in Excel and
used as a pivot table, or imported into R or SAS, with meaningful column names. A wide variety of applications can be used to do downstream
analysis, each with its own name restrictions. OpenM++ imposes the following restrictions to explicit names to reduce potential problems in
downstream analysis:

A name

has a maximum length in characters given by the option short_name_max_length (default 32)

has characters in uppercase A-Z, lowercase a-z, digits 0-9, and the _ character

is unique within the dimensions or expressions of the parameter or table

If a name does not meet these restrictions, the OpenM++ compiler will emit a warning and 'mangle' the name to meet the restrictions, e.g. by
replacing forbidden characters by _, by truncating the name, or by appending a trailing numeric suffix to disambiguate identical names.

If Default values for a parameter are provided using a .csv file, any name used in the file must correspond to the corresponding external name in
the model. The same applies to uploads of parameter data in .csv files, or to parameters supplied programmatically using an external script.

[back to topic contents]

Any name generated or modified by the OpenM++ compiler is written to a file named GeneratedNames.ompp in the compiler output directory, which

Name restrictions

All generated names

in Windows is MODEL/ompp/src/GeneratedNames.ompp . GeneratedNames.ompp does not contain explicit names given in model source code using => or
//NAME , unless for some reason the OpenM++ compiler needed to modify them.

The content of GeneratedNames.ompp uses //NAME statements to make it suitable as a starting point to specify explicit names in model source
code, for example in a separate source code module named code/ExplicitNames.ompp , or perhaps immediately following the declaration of a
classification, parameter or table.

Here is an extract of src/GeneratedNames.ompp from the RiskPaths model:

// Parameter AgeBaselineForm1: Age baseline for first union formation
//NAME AgeBaselineForm1.Dim0 X_2_5_year_age_intervals

// Parameter AgeBaselinePreg1: Age baseline for first pregnancy
//NAME AgeBaselinePreg1.Dim0 X_2_5_year_age_intervals

// Parameter ProbMort: Death probabilities
//NAME ProbMort.Dim0 Simulated_age_range

// Table T01_LifeExpectancy: Life Expectancy
//NAME T01_LifeExpectancy.Expr0 Total_simulated_cases
//NAME T01_LifeExpectancy.Expr1 Total_duration
//NAME T01_LifeExpectancy.Expr2 Life_expectancy

// Table T02_TotalPopulationByYear: Life table
//NAME T02_TotalPopulationByYear.Dim0 Curtate_age
//NAME T02_TotalPopulationByYear.Expr0 Population_start_of_year
//NAME T02_TotalPopulationByYear.Expr1 Average_population_in_year

// Table T04_FertilityRatesByAgeGroup: Fertility rates by age group
//NAME T04_FertilityRatesByAgeGroup.Dim0 Age_interval
//NAME T04_FertilityRatesByAgeGroup.Dim1 Union_Status
//NAME T04_FertilityRatesByAgeGroup.Expr0 Fertility

Home > Model Development Topics > Generated Model Documentation

This topic describes one of the two components of model documentation: the generated Symbol Reference.

This topic is under construction and/or revision.

Model Documentation: Home topic on model documentation

Authored Model Documentation: The autonomous authored component of model documentation

Model Symbols: Symbols in model code and in the user interface

Symbol Labels and Notes: Human-language labels and notes for model symbols

Introduction and outline

Symbol Reference - User Edition

Customizing the Symbol Reference

Symbol Reference - Developer Edition

Navigation Aid Topics

Model Documentation has two components: An autonomous authored component and a generated Symbol Reference component. This topic
describes the latter.

Human-language labels and notes for model symbols are combined with symbol metadata and cross-reference information to produce a Symbol
Reference for a model. There are two versions of the Symbol Reference, one targeted to model users and one to model developers. Each
version can be customized using options statements in model code.

The User Edition of the Symbol Reference is targeted to model users. It documents all symbols exposed to users and deliberately excludes
aspects of a model not exposed to users. Here are some examples of aspects excluded in the User Edition:

Parameters deliberately suppressed from the UI using parameters_retain .

Derived parameters

Enumerations used only in model code

Entity Table filters

Attributes not exposed to users

Modules

cross-reference information on symbol use in model code

The Developer Edition of the Symbol Reference is targeted to model developers. It includes all content in the User Edition, and adds symbols,
topics and topic sections for aspects of a model not exposed to users. For example, the Developer Edition includes a topic which lists all model
code modules, as well as a topic for each module.

Independent of the Symbol Reference, labels and notes for all symbols exposed in the model UI are published to the model database, for all
human languages declared in the model.

The Symbol Reference component of Model Documentation can be disabled by an option in model code:

options generated_documentation = off;

[back to topic contents]

Generated Model Documentation

Related topics

Topic contents

Introduction and outline

To explore the User Edition of the Symbol Reference for RiskPaths , turn off Developer Edition by commenting the following line in
RiskPaths/code/ompp_options.ompp so that it looks like this:

//options symref_developer_edition = on;

Next, rebuild the model, run it, click the 'book' icon, and from the RiskPaths Home topic click Symbol Reference .

The browser should look like this:

By default, a model's Symbol Reference documents only symbols which are exposed to users. Labels and notes for model symbols which are not
available to users when the model is run are not published, and are not present in the Symbol Reference. This includes parameters and tables
suppressed from the model at build time and associated classifications, ranges, and partitions not used by other published symbols. Information
on attributes is published only if the model was built with microdata output enabled using the statement:

options microdata_output = on;

Status of symbol topics in the User Edition of the Symbol Reference:

Symbol kind Status

parameter Complete

table Complete

enumeration Complete

attribute incomplete

To explore the Developer Edition of the Symbol Reference for RiskPaths , turn on Developer Edition by uncommenting the following line in
RiskPaths/code/ompp_options.ompp so that it looks like this:

options symref_developer_edition = on;

Next, rebuild the model, run it, click the 'book' icon, and from the RiskPaths Home topic click Symbol Reference .

The browser should look like this:

Symbol Reference - User Edition

Symbol Reference - Developer Edition

The Developer Edition of the Symbol Reference augments the User Edition as follows:

Topics for unpublished parameters, tables, attributes, and enumerations.

Cross-reference tables in each symbol topic.

Module topics

[back to topic contents]

Options which suppress the main topic:

Option Default Effect if changed from default

symref_main_topic on Removes the main topic including the navigation aid table.

symref_model_symbol on Removes the topic for the unique model symbol, if declared in the model.

Options which suppress navigation aids:

Option Default Effect if changed from default

symref_parameters_alphabetic on Removes the parameters alphabetic list topic.

symref_parameter_major_groups on Removes the parameter major groups topic.

symref_parameter_hierarchy on Removes the parameter hierarchy topic and parameter hierarchy breadcrumbs.

symref_tables_alphabetic on Removes the tables alphabetic list topic.

Customizing the Symbol Reference

symref_table_major_groups on Removes the table major groups topic.

symref_table_hierarchy on Removes the table hierarchy topic and table hierarchy breadcrumbs.

symref_attributes_alphabetic on Removes the attributes alphabetic list topic.

symref_enumerations_alphabetic on Removes the enumerations alphabetic list topic.

Option Default Effect if changed from default

Options which suppress individual topics:

Option Default Effect if changed from default

symref_topic_parameters on Removes parameter topics and parameter cross-reference sections in other topics.

symref_topic_tables on Removes table topics and table cross-reference sections in other topics.

symref_topic_attributes on Removes attribute topics.

symref_topic_enumerations on Removes enumeration topics and enumeration cross-reference sections in other topics.

Options controlling symbol notes:

Option Default Effect if changed from default

symref_topic_notes on Removes the note sections of all symbol topics.

symref_topic_notes_early on Places notes after other sections in symbol topics.

symref_topic_note_heading on Suppresses the Note: heading in symbol topics.

Options affecting only the Developer Edition:

Option Default Effect if changed from default

symref_developer_edition off
Turns on symbols not exposed to users and appends "(Developer Edition)" to title in main
topic.

symref_unpublished_symbols on
Removes unpublished symbols, e.g. those absent due to parameters_retain or tables_retain

statements in model code.

symref_global_functions on Removes global function cross-reference sections in symbol topics.

symref_entity_functions on Removes entity function cross-reference sections in symbol topics.

symref_identity_attributes on Removes identity attribute cross-reference sections in symbol topics.

symref_topic_entity_sets on Removes entity set alphabetic list, topics, and cross-reference sections in symbol topics.

symref_topic_modules on Removes module alphabetic list, topics, and cross-reference sections in symbol topics.

symref_topic_modules_use off Includes use module topics.

symref_topic_modules_symbols_declared on Turns off the alphabetic "symbols declared" section in individual module topics.

symref_topic_attributes_internal on Turns off attribute topics for internally-generated attributes, including derived attributes.

[back to topic contents]

The following table lists navigation aid topics in the Symbol Reference.

Navigation aid Topic name Description and notes

Symbol Reference symbol-reference The Symbol Reference main topic.

Navigation Aid Topics

Parameters in
alphabetic order

parameters-alphabetic

Parameter hierarchy parameter-hierarchy
Present if the model has at least one published parameter group. May contain a
trailing 'Orphan parameters' group.

Parameter major groups parameter‑major‑groups Present if parameter hierarchy present.

Tables in alphabetic
order

tables-alphabetic

Table hierarchy table-hierarchy
Present if the model has at least one published table group. May contain a trailing
'Orphan tables' group.

Table major groups table-major-groups Present if table hierarchy present.

Enumerations in
alphabetic order

enumerations‑alphabetic

Modules in alphabetic
order

modules-alphabetic

Attributes in alphabetic
order

attributes-alphabetic

Entity sets in alphabetic
order

entity-sets-alphabetic

Navigation aid Topic name Description and notes

Note that derived parameters published as tables group with tables in the navigation aid topics, not with parameters.

[back to topic contents]

Home > Model Development Topics > Illustrative Model Align1

Align1 is an experimental model which manipulates the event queue to align with external counts. This topic describes the approach and
implementation, and includes some experiments and notes.

Model Code

Introduction and description

Experiment #1 Illustrative run

Experiment #2 Computational cost

Remarks Some notes on the approach and possible future steps

Align1 code Model code module Alignment.mpp

Align1 input Default parameter values Alignment.dat

The Align1 model is a proof of concept and testbed for dynamic alignment of time-based models using event queue look-ahead. Align1 steers
itself to aggregate annual targets by reading and modifying the event queue dynamically at the beginning of each year.

Align1 is based on the NewTimeBased model which is part of the OpenM++ distribution. It adds alignment apparatus in a new module Alignment.mpp

and associated parameters in Alignment.dat but is otherwise unmodified. NewTimeBased has a Ticker entity with a timekeeping TickEvent and
Person entities with Mortality events. Align1 adds a new event AlignmentEvent to Ticker , which occurs at the same time as TickEvent but at lower

priority. The input parameter MortalityAlignmentTarget contains target mortality counts by year. At the beginning of each year AlignmentEvent reads the
event queue and counts the number of deaths scheduled to occur during that year. If the count is higher than the target for the year, enough
scheduled events are deferred to the subsequent year to hit the target. If the count is lower than the target, enough scheduled events are
advanced from subsequent years to the current year to hit the target. The exact rules are mechanical and described in model code comments.
This process is repeated at the beginning of each year.

The events which are deferred or advanced to hit alignment targets are those which are closest to the upper boundary of the current alignment
year.

The Default run has 10,000 Persons and sets MortalityAlignmentTarget to the mortality counts which would occur in the absence of alignment (using
table MortalityCounts from a previous run with alignment off).

[back to topic contents]

This experiment sets target mortality to 122 in each of the 20 years. 122 is the average annual mortality in the 20 years in the Default run with no
alignment. The first column shows mortality counts in the Default run with no alignment. One observes a secular decrease (with some noise)
because the population is progressively smaller so fewer die each year due to the lower base population (the morality hazard is constant). The
target column, in contrast, sets the number of deaths to a fixed value in each year. Compared to the Default run, deaths need to be decreased in
early years and increased in later years to hit the target.

Year Mortality (Default) Target Mortality (Aligned) Events Deferred Events Advanced

0 141 122 122 19 0

1 144 122 122 41 0

2 114 122 122 33 0

3 146 122 122 57 0

4 142 122 122 77 0

Illustrative Model Align1

Related topics

Topic contents

Introduction and description

Experiment #1

5 126 122 122 81 0

6 129 122 122 88 0

7 139 122 122 105 0

8 111 122 122 94 0

9 118 122 122 90 0

10 112 122 122 80 0

11 118 122 122 76 0

12 102 122 122 56 0

13 110 122 122 44 0

14 104 122 122 26 0

15 116 122 122 20 0

16 114 122 122 12 0

17 124 122 122 14 0

18 112 122 122 4 0

19 112 122 122 0 6

Year Mortality (Default) Target Mortality (Aligned) Events Deferred Events Advanced

The algorithm attained the annual targets by deferring mortality events in each of the first 19 years and advancing 6 mortality events for the final
year. Mortality events were advanced only in the final year of the run because for all other years sufficient deaths had been deferred in previous
years. The annual targets are hit exactly because event times are not recalculated during the year-in-progress in this model.

[back to topic contents]

This second experiment explored computational cost and scaling behaviour, using a run with 10 million Person entities. With this population size,
there were over 100,000 mortality events per year. Three runs were done.

Run Description Time

1 No alignment 1m25s

2 Alignment with targets=actual 1m27s

3 Alignment with targets=+/- 5% actual 1m26s

Run 1 had alignment disabled. Run 2 had alignment enabled, but the targets were the same as the results without alignment. So, no adjustment
of the event queue was done, but the event queue was probed each year. Run 3 had random targets within +/- 5% of the original mortality
results. So alignment was doing some work with the event queue to hit the targets in run 3.

The table shows that the run times were indistinguishable. For this model, anyway, the incremental cost of alignment was barely detectable.

[back to topic contents]

1. A natural way for continuous time models to align is to tinker with the timing of events which “would have occurred anyway”. This helps
preserve aspects of model logic, since prohibited events remain prohibited under alignment.

2. An event which was deferred or advanced by alignment will still have its event time recomputed if entity attributes change (perhaps to +inf if
the entity is no longer eligible for the event). This maintains aspects of the internal causative logic of the model, even under alignment.

3. The ‘event censoring’ optimization should perhaps not be used in models using this alignment technique, since that might deplete the pool of
future events which can be advanced into an alignment interval. For example, in experiment 1 above, the 6 events which were advanced to

Experiment #2

Remarks

year 19 to hit the target had original times beyond the end of the run (which ended at time=20). They would have been right censored hence
never placed in the queue.

4. In the current version of Align1 , event times do not change during the simulation within an alignment window (year). It might be interesting to
add a birthday event to the model and have a mortality schedule which varies by single year of age, to make tests more realistic.

5. The algorithm could be adapted to split an alignment interval (year) into sub-intervals (e.g. 10 equal intervals in each year), with recalculation
of progress to the target for the current year. That would allow the algorithm to adjust for interacting events during the simulation of the
current year. That would require counting events as they occur during the alignment interval, which was not needed in this version of Align1 .

6. As the number of alignment targets increases, and if targets are classified by entity characteristics (e.g. age group), the code volume for
alignment could become massive and error-prone (even though mechanical). That makes it a tempting candidate for new supporting
functionality to automate some aspects.

[back to topic contents]

Below is the model source code for the module Alignment.mpp :

//LABEL (Alignment, EN) Alignment using event queue

#include "omc/optional_IDE_helper.h" // help an IDE editor recognize model symbols

#if 0 // Hide non-C++ syntactic island from IDE

parameters {
 bool EnableAlignment;
 int MortalityAlignmentTarget[REPORT_TIME];
};

actor Ticker
{
 //EN Time of next Alignment event
 TIME next_alignment;

 //EN Mortality events deferred by alignment (cumulative)
 int mortality_deferred;

 //EN Mortality events advanced by alignment (cumulative)
 int mortality_advanced;

 //EN Deficit in advanced mortality events because queue was exhausted (cumulative)
 int mortality_deficit;

 // AlignmentEvent should be lower priority than any other event
 // so that it executes after other tied events which might influence
 // events in the current alignment interval.
 event timeAlignmentEvent, AlignmentEvent, 1; //EN Alignment event
};

table Person MortalityCounts
{
 report_time
 * {
 entrances(alive, false) //EN Mortality events
 }
};

table Ticker AlignmentReport
{
 report_time
 * {
 mortality_deferred, //EN Mortality events deferred
 mortality_advanced, //EN Mortality events advanced
 mortality_deficit //EN Mortality target deficit
 }
};

#endif // Hide non-C++ syntactic island from IDE

TIME Ticker::timeAlignmentEvent()
{
 // is synchronous with TickEvent, but lower priority
 return EnableAlignment ? next_alignment : time_infinite;
}

void Ticker::AlignmentEvent(void)
{
 // get event_id of MortalityEvent

Model code

 // get event_id of MortalityEvent
 int event_id_mortality = omr::event_name_to_id("MortalityEvent");
 assert(event_id_mortality != -1); // MortalityEvent not found

 // width of the target window
 TIME alignment_window_width = 1.0;

 // The upper bound of the target window, NB is just beyond the current alignment window
 TIME alignment_window_upper_bound = time + alignment_window_width;

 int alignment_window_target_count = MortalityAlignmentTarget[report_time];

 //
 // walk the event queue, from present to future
 //
 // add events to defer_list or advance_list
 // as needed to hit the target count in the alignment time window
 //
 auto& event_queue = *BaseEvent::event_queue; // alias for the model event queue
 std::forward_list<BaseEvent*> defer_list; // list of events to defer
 std::forward_list<BaseEvent*> advance_list; // list of events to advance
 int unadjusted_count = 0; // count of scheduled events in the alignment time window before alignment
 int deferred_events = 0; // count of scheduled events deferred to the future beyond the alignment time window
 int advanced_events = 0; // count of scheduled events advanced from the future to within the alignment time window
 for (auto evt : event_queue) {
 int id = evt->get_event_id();
 if (id != event_id_mortality) {
 // not a mortality event, skip
 continue;
 }
 double evt_time = evt->event_time;
 if (evt_time < alignment_window_upper_bound) {
 // we are inside the target alignment time window
 // update the count of currently scheduled events within the window
 ++unadjusted_count;
 if (unadjusted_count > alignment_window_target_count) {
 // there is an excess of scheduled events within the alignment time window
 // so add this event to the defer list
 defer_list.push_front(evt);
 ++deferred_events;
 }
 }
 else {
 // we are beyond the alignment time window
 if (advanced_events + unadjusted_count >= alignment_window_target_count) {
 // no need to find more events to advance, have found what's needed
 // so stop queue walk
 break;
 }
 // there is a deficit of events within the alignment time window
 // so add this event to the advance list
 advance_list.push_front(evt);
 ++advanced_events;
 }
 }

 if (alignment_window_target_count > unadjusted_count && unadjusted_count - alignment_window_target_count != advanced_events) {
 // there were insufficient events in the queue beyond the alignment window to meet the target
 mortality_deficit += alignment_window_target_count - unadjusted_count - advanced_events; // for AlignmentReport
 }

 if (deferred_events > 0) {
 mortality_deferred += deferred_events; // for AlignmentReport
 assert(advanced_events == 0);
 for (auto evt : defer_list) {
 // defer this event
 // remove it from the event queue
 event_queue.erase(evt);
 // postpone the event time by one alignment interval
 evt->event_time += alignment_window_width;
 // re-insert it to the event queue
 event_queue.insert(evt);
 }
 }
 else if (advanced_events > 0) {
 mortality_advanced += advanced_events; // for AlignmentReport
 // advance this event
 for (auto evt : advance_list) {
 // advance this event
 // remove it from the event queue
 event_queue.erase(evt);
 // advance the event time by an integral number of alignment intervals
 // until it falls within the alignment window
 TIME new_time = evt->event_time;
 while (new_time >= alignment_window_upper_bound) {
 new_time -= alignment_window_width;
 }
 evt->event_time = new_time;
 // re-insert it to the event queue

 // re-insert it to the event queue
 event_queue.insert(evt);
 }
 }
 else {
 // nothing to do
 }

 {
 // schedule next alignment
 Time t = next_alignment + alignment_window_width;
 if (t >= SimulationEnd) {
 next_alignment = time_infinite;
 }
 else {
 next_alignment = t;
 }
 }
}

[back to topic contents]

Below is the Default model input parmeters in Alignment.dat :

parameters {
 bool EnableAlignment = true;
 int MortalityAlignmentTarget[REPORT_TIME] = {
 141, //141,
 144, //144,
 114, //114,
 146, //146.
 142, //142,
 126, //126,
 129,
 139,
 111,
 118,
 112,
 118,
 102,
 110,
 104,
 116,
 114,
 124,
 112,
 112,
 };
};

[back to topic contents]

Model input

Home > Model Development Topics > Local Random Streams

Model code can optionally specify that the state of random number streams be maintained locally for each entity rather than shared among
entities. This can significantly reduce variance in run comparisons of models which simulate multiple instances of entities together, such as time-
based models or case-based models with multiple entities in a case. It can also make run comparisons at the microdata level feasible for such
models. Local random streams are not relevant for case-based models with a single entity per case. To jump to charts comparing the effect with
and without local random streams in a highly interacting time-based model, click here.

Model Code

Microdata Output

Model Resource Use

Background and overview

Syntax and use

Illustrative example Shows decoherence reduction graphically in a time-based model

Model code can draw random values from selected statistical distributions using built-in random number generator (RNG) functions, for example:

 double x = RandUniform(1);
 double y = RandNormal(2);
 double z = RandPoisson(3);

These functions return pseudo-random streams of numbers. The streams appear random but are actually produced by a deterministic algorithm
which generates a fixed sequence of values. That algorithm knows which value to return next by maintaining an internal state which changes
from one function call to the next.

The sequence of numbers returned depends on the SimulationSeed for the run, on the run member (aka sub, replicate), on the case for case-based
models, and on the random stream number (the small integer argument in RNG function calls).

The random stream number in an RNG function call specifies a distinct underlying random stream which produces values independent of those
produced by other random streams. This avoids spurious interactions among unrelated random processes in the model. For example, values
returned by calling RandUniform(4) in a Fertility module will not affect values returned by calling RandUniform(6) in a Migration module.

Independent random streams can reduce statistical noise in the difference of two model runs, reducing the run size needed to obtain reliable
results for run differences. They also make microdata comparisons of two runs correspond better with model logic. For example, if there is no
logical dependence between Fertility and Migration in the model, changing a Fertility parameter should not, logically, affect Migration . Had the
same random stream, e.g. stream 4 in RandUniform(4) , been used in both Fertility and Migration , a call to RandUniform(4) in Fertility would affect the
value returned in a subsequent call to RandUniform(4) in Migration . That would produce a spurious (but statistically neutral) interaction between
Fertility and Migration . That can be avoided by using a different random stream in Migration , e.g. by calling RandUniform(6) to specify stream 6

instead of stream 4. Spurious correlation of random streams can be avoided by specifying a distinct random stream in each call to an RNG
function throughout model code.

However, a model which simulates multiple instances of an entity together, e.g. multiple Person entities, could have spurious interactions of
random streams among those entities. For example, a call to RandUniform(4) in Fertility in Person A will affect the result from a subsequent call in
Fertility to RandUniform(4) in Person B, because the same random stream 4 is used in both. In a time-based model with many entities, a spurious

interaction could extend from one entity to the entire population. Such spurious interactions do not affect the statistical validity of aggregate model
results, but they can create additional statistical noise in run comparisons, and produce differences at the microdata level which are not explained
by model logic.

This issue can be resolved by maintaining independent local random streams in each entity, rather than global random streams shared among
entities. For example, using local random streams, a call to RandUniform(4) in Person A uses a different random stream from a call to
RandUniform(4) in Person B.

Local Random Streams

Related topics

Topic contents

Background and overview

Local random streams require additional memory in each entity to maintain the state of the pseudo-random number generator for each stream.
This additional memory can be significant for time-based models with many entities and many random streams.

Local random streams must also be initialized distinctly in each entity so that different entities produce different random streams. That
requirement is met by providing a unique key for each entity. The entity key is used to initialize local random streams independently in each each
entity before it enters the simulation. The entity key needs to be stable from one run to another so that local random streams are the same for the
same entity in two different runs. The code to specify the unique entity key is, in general, model dependent.

Given these trades, local random streams are not implemented by default in OpenM++.

However, a model coded to use local random streams can turn them off by changing a single line of model code and rebuilding, and reduce
memory requirements when local random streams are not required for analysis.

[back to topic contents]

Sections:

Activation

Entity key

RNG use in entity initialization

RNG use before simulation

Memory use

Internals

[back to topic contents]

Use the option local_random_streams to implement local random streams for all instances of a given entity, e.g.

options local_random_streams = Host;

to implement local random streams for all instances of the Host entity. Use multiple options statements to implement local random streams for
more than one kind of entity.

During model build, a log message like

Entity 'Host' has 11 local random streams, of which 1 are Normal

is issued for each entity with local random streams. The message indicates how many of the local streams use a Normal distribution, because
those use additional memory in the entity to maintain state.

[back to syntax and use]
[back to topic contents]

As mentioned in Background and overview, an entity with local random streams needs a unique identifier to produce random streams which differ
among entities.

The entity key needs to be not only unique in a run, but must also uniquely identify the same entity in the model runs being compared.

The entity key is provided by the entity member function get_entity_key() . get_entity_key returns a 64-bit value which is used internally by the built-in
function initialize_local_random_streams() to initialize the local random streams of the entity before it enters the simulation.

If model code does not supply a definition for get_entity_key() a definition like the following is generated by the OpenM++ compiler:

Syntax and use

Activation

Entity key

uint64_t Host::get_entity_key()
{
 // This function definition was generated by omc because none was supplied in model code.
 // It returns the value of the built-in attribute entity_id.
 uint64_t entity_key = entity_id;
 return entity_key;
}

This default definition uses the built-in attribute entity_id as the entity key. entity_id is guaranteed to be unique for all entities in a run, making it a
natural candidate for the entity key. However, entity_id might not identify the same entity in two different runs. That can happen if model code
generates entities dynamically, or if the runs being compared have different numbers of entities or members (aka subs, replicates).

A model might already have an attribute which uniquely identifies the same entity in two different runs. For example, the model might be based on
microdata which contains a unique personal identifier for each record/entity.

If the definition of get_entity_key() is supplied in model code, it would typically create the entity key using the values of one or more entity attributes
before the entity enters the simulation.

The following hypothetical definition of get_entity_key() uses the helper function xz_crc64 to combine the starting value of age and time to create
the entity key. xz_crc64 creates a 64-bit key using the crc-64 open source checksum (hash) algorithm, and can use one value or combine multiple
values together using successive calls.

uint64_t Host::get_entity_key()
{
 uint64_t key64 = 0;
 key64 = xz_crc64((uint8_t*)&age, sizeof(age), key64);
 key64 = xz_crc64((uint8_t*)&time, sizeof(time), key64);
 return key64;
}

[back to syntax and use]
[back to topic contents]

This section applies only to calls to RNG functions in entity context. See section RNG use before simulation for information about using RNG
functions outside of entity context before the simulation starts.

If an entity uses local random streams they must be initialized before use. If they are not initialized a fatal error like the following will be raised
when the model is run:

Simulation error: RandUniform called with uninitialized local random streams.

By default, initialization is performed automatically when an entity enters the simulation, after starting values of all attributes have been assigned.

However, if model code in entity scope calls an RNG function before the entity enters the simulation, the local random streams of the entity will
not have been initialized, causing the run-time error.

For example, the following code

void Host::Start()
{
 // Initialize all attributes (OpenM++).
 initialize_attributes();

 z_score = RandNormal(11);

 // Have the entity enter the simulation (OpenM++).
 enter_simulation();
}

assigns a random value to the Host attribute z_score before the Host enters the simulation. If Host uses local random streams, the run-time error
would occur.

However, model code can explicitly initialize local random streams before the entity enters the simulation by calling the provided function
initialize_local_random_streams() .

The following modified code

RNG use in entity initialization

void Host::Start()
{
 // Initialize all attributes (OpenM++).
 initialize_attributes();

 // Need to explicitly initialize local random streams here
 // because they are used before the entity enters the simulation.
 initialize_local_random_streams();

 z_score = RandNormal(11);

 // Have the entity enter the simulation (OpenM++).
 enter_simulation();
}

initializes local random streams for the Host before the call to RandNormal , avoiding the error.

initialize_local_random_streams() uses get_entity_key() internally. If the definition of get_entity_key() is supplied in model code, assign all attributes used in
get_entity_key() before the call to initialize_local_random_streams() .

initialize_local_random_streams() can be called (with no effect) even if the entity does not use local random streams, so there is no need to remove the
call from model code if local random streams are not used in the entity.

Modgen specific: Modgen does not recognize the function initialize_local_random_streams . That causes an error when building the Modgen version of
a x-compatible model. For x-compatible models, use code like:

#if !defined(MODGEN)
 initialize_local_random_streams();
#endif

[back to syntax and use]
[back to topic contents]

Use of local random streams in one or more entities does not preclude use of global (shared) random streams.

Global random streams work normally in an entity not specified in a local_random_streams options statement.

Global streams also work normally in PreSimulation and in Simulation , before the simulation starts. For example, the IDMM model used in the
Illustrative example uses two shared RNG streams in Simulation , one (random stream 5) to randomly infect a portion of the population at the
beginning of the simulation:

// Create the initial population of Hosts, and infect some probabilistically.
for (int nJ = 0; nJ < NumberOfHosts; nJ++) {
 auto prHost = new Host();
 prHost->Start();
 if (InitialDiseasePrevalence > RandUniform(5)) {
 prHost->Infect();
 }
}

and another (random stream 3) to construct the starting social network:

// Construct the initial social network.
int nHosts = asAllHosts->Count();
for (int nJ = 0; nJ < nHosts; nJ++) {
 auto prHost = asAllHosts->Item(nJ);
 for (int nK = 0; nK < ContactsOutPerHost; nK++) {
 // Choose a host randomly from all hosts
 auto prContact = asAllHosts->GetRandom(RandUniform(3));
 // Add it to the outgoing contacts link.
 // Note that if the contact happens to already be a contact, it will not be added.
 // because links contain no duplicates.
 if (prContact != prHost) {
 // do not link to self
 prHost->mlContactsOut->Add(prContact);
 }
 }
}

A global random stream does not affect a local random stream with the same number. However, best practice uses a unique random stream for
each call to an RNG function in model code.

RNG use before simulation

[back to syntax and use]
[back to topic contents]

Memory impacts of local random streams are incorporated into the Resource Use Report in the run log, if resource use monitoring is on. To turn
resource use monitoring on, add the following statement to model code:

options resource_use = on;

For example, here's the Resource Use Summary table from a 1,000,000 Hosts run of IDMM with local random streams:

+---------------------------+
| Resource Use Summary |
+-------------------+-------+
| Category | MB |
+-------------------+-------+
| Entities | 448 |
| Host | 448 |
| Ticker | 0 |
| Multilinks | 63 |
| Events | 95 |
| Sets | 48 |
| Tables | 0 |
+-------------------+-------+
| All | 655 |
+-------------------+-------+

The same table without local random streams looks like this:

+---------------------------+
| Resource Use Summary |
+-------------------+-------+
| Category | MB |
+-------------------+-------+
| Entities | 384 |
| Host | 384 |
| Ticker | 0 |
| Multilinks | 63 |
| Events | 95 |
| Sets | 48 |
| Tables | 0 |
+-------------------+-------+
| All | 591 |
+-------------------+-------+

In this example, memory requirements for the run increased from 591 MB to 655 MB in the version built with local random streams.

Additional lines appear in the entity member detail section of the report in a model with local random streams.

An additional row for the random state arrays is present in the member count table. The count is 1 if the entity does not use RandNormal or 3 if it
does. This line counts the number of arrays used to maintain the state of local random streams, not the size of those arrays.

+-----------------------------+
| Host Members |
+---------------------+-------+
| Member | Count |
+---------------------+-------+
| Attributes | 19 |
| Built-in | 6 |
| Simple | 12 |
| Maintained | 1 |
| Link | 0 |
| Events | 3 |
| Increments | 2 |
| Multilink | 2 |
| Internal | 6 |
| Array | 0 |
| Foreign | 0 |
| Random state arrays | 3 |
+---------------------+-------+
| All | 35 |
+---------------------+-------+

Memory use

Additional lines appear in the entity member detail table.

Here's an extract from IDMM with local random streams:

+---+
| Host Members (detail) |
+---+-------+
| member | bytes |
+---+-------+
| Attributes: | |
| Built-in: | |
| age | 8 |
| case_seed | 8 |
...
| Internal: | |
| X01_History (in) om_duration | 8 |
| X02_Host_Events (inevent) event_count | 4 |
| asAllHosts (current cell) | 4 |
| event_count (lagged) | 4 |
| event_count (counter at lagged) | 8 |
| om_local_rng_streams_initialized | 1 |
| Array: | |
| Foreign: | |
| Random state arrays: | |
| om_stream_X | 40 |
| om_other_normal | 8 |
| om_other_normal_valid | 1 |
+---+-------+
| Sum of member bytes | 372 |
| Bytes per entity | 448 |
| Storage efficiency (%) | 83.0 |
+---+-------+

An additional Internal member om_local_rng_streams_initialized is used to manage the entity life cycle of local random streams.
Additional lines towards the end of the table show the memory used by the arrays which maintain random state.

[back to syntax and use]
[back to topic contents]

Local random streams are implemented using a multiplicative congruential generator (MCG), with an unused multiplier mentioned in the module
OM_ROOT/use/random/random_lcg200.ompp . The multiplier of the MCG is 1187848453 and the modulus is the Mersenne prime 2^31-1.

For memory efficiency, the state of local random streams is maintained only for streams used in the entity. For example, IDMM model code in the
Illustrative example uses 12 random streams, but only 10 are used in the Host entity. Local random state is maintained in each Host for just the
10 streams used in Host . The other 2 random streams are global and are used in Simulation to create the starting population before the
simulation starts, as described in RNG use before simulation.

A random stream associated with the RandNormal RNG function requires additional memory to maintain state, because the underlying algorithm
produces a pair of draws from N(0,1), and memory is required to save the second value of the pair which is returned by the next call to
RandNormal for the stream.

Local random streams are seeded before the entity enters the simulation using 4 integer values: 1) the value returned by get_entity_key() , 2) the
run seed for a time-based model or the case seed for a case-based model, 3) the run member (aka sub, replicate), and 4) the random stream
number.

A local random stream thus depends on all 4 of these values, as required by the role of each.

These 4 values are combined using the xz_crc64 hash function and the 64-bit result reduced to the allowed range of the MCG using the
remainder of an appropriate integer division.

For more details, see the commented function definition of initialize_local_random_streams in the C++ file src/om_declarations.h which is generated by the
OpenM++ compiler.

[back to syntax and use]
[back to topic contents]

This example illustrates how local random streams can improve run coherence in a time-based model. Click here to jump directly to the graphical
comparison.

Internals

Illustrative example

Sections:

Summary

IDMM overview

Base run

Variant run

Base-Variant coherence

IDMM differences

[back to topic contents]

This example illustrates the effect of local random streams vs. global random streams on run coherence. It uses the time-based IDMM model with
minor modifications. Microdata is output at 100 time points during the simulation, and later merged and compared between Base and Variant runs
to measure how run coherence evolves during the simulation.

Four runs are used in this example , a Base and a Variant with two versions of the model:

1. Base run with shared random streams

2. Variant run with shared random streams

3. Base run with local random streams

4. Variant run with local random streams

The same version of IDMM was used for runs 1 and 2. A different version of IDMM was used for runs 3 and 4, the only difference being activation
of local random streams.

All 4 runs have the same number of Hosts and an identical contact network created before the simulation starts using global random streams.
That means that entity_id refers to the same Host in all 4 runs, so the default version of get_entity_key() can be used.

The Base runs have identical inputs in runs 1 and 3. The Variant runs have identical inputs in runs 2 and 4. A single parameter differs slightly
between the Variant runs and the Base runs. That change causes only 2 entities to differ at the start of the Variant runs compared to the Base

runs.

Aggregate outputs over time for the 4 runs are so similar that they are visually indistinguishable (see below). However, the degree of coherence
at the microdata level between runs 3 and 4 (with local random streams) is noticeably different than that between runs 1 and 2 (with shared
random streams).

Run-time resource reports were used to compare memory use for the two versions of IDMM .
Without local random streams, each Host entity was 384 bytes in size.
With local random streams, each Host entity was 448 bytes in size, an increase of 64 bytes or 17%.

[back to illustrative example]
[back to topic contents]

IDMM simulates an interacting dynamic contact network of Host entities, together with a disease which can be transmitted over that contact
network. The contact network is initialized randomly at the start of the simulation. During the simulation, each Host interacts with other Hosts in
contact events. Each Host can change its connected Hosts in contact change events. Optionally, a Host can change a connected Host in a
contact event, if that host is infectious.

During a contact event, the disease can propagate between the two Hosts , depending on the disease status of each Host . An infected Host

progresses through 4 fixed length disease phases: susceptible, latent, infectious, and immune. On infection, a Host enters the latent phase,
during which it is both asymptomatic and non-infectious. After the latent phase, the Host enters an infectious phase during which it can infect
another Host during a contact event. After the infectious phase, the Host enters an immune phase. After the immune phase, the Host returns to
the susceptible state.

Before the simulation starts, all Host entities are in the susceptible state. After a Host enters the simulation but before the first simulated event, it

Summary

IDMM overview

is randomly infected at a given probability.

For this example, some mechanical changes were made to the version of IDMM in the OpenM++ distribution.

[back to illustrative example]
[back to topic contents]

The Base run consists of 5,000 Hosts simulated for 100 time units, with the initial probability of infection set to 0.1000. All other parameters are
left at Default values, which are as follows:

parameters {
 int NumberOfHosts = 5000; //EN Number of hosts
 int ContactsOutPerHost = 4; //EN Number of outgoing contacts per host
 double MeanContactInterval = 1.00; //EN Mean time between social interactions
 double MeanChangeContactsInterval = 5.00; //EN Mean time between changing social contact network
 double DumpSickContactProbability = 0.0; //EN Probability of dumping a sick contact
 double InitialDiseasePrevalence = 0.1000; //EN Disease prevalence at start of simulation
 double TransmissionEfficiency = 0.10; //EN Probability of transmitting disease during a social contact
 double LatentPhaseDuration = 5.0; //EN Duration of latent phase
 double ContagiousPhaseDuration = 10.0; //EN Duration of contagious phase
 double ImmunePhaseDuration = 20.0; //EN Duration of immune phase
 logical EnableChangeContactsEvent = TRUE; //EN Enable the change contacts event
};

The ini file for the Base run looks like this:

[OpenM]
RunName = Base

[Parameter]
InitialDiseasePrevalence = 0.1000

[Microdata]
ToDb = yes
Host = report_time, disease_phase, age_infected

In the Base run, 501 Hosts are infected at the beginning of the simulation.

The time evolution of the susceptible population in Run 1 (Base with shared random streams) looks like this:

Base susceptibles, with shared random streams

Before the simulation starts, all 5,000 Hosts are in the susceptible state. Next, 501 Hosts are randomly infected and change disease status from
susceptible to latent. This is the cause of the immediate drop of the count of susceptible Hosts from 5,000 to 4,499 in the chart. The following

Base run

plateau is caused by the length 5.0 latent period of the 501 infected hosts during which no forward infections occur. At the end of the plateau, the
501 Hosts leave the latent phase and enter the infectious phase. Then the infection spreads through the social network, progressively reducing
the susceptible population. At around time 30.0, almost all Hosts have been infected and less than 25 susceptible Hosts remain. At time 35.0 the
501 initially infected Hosts lose protective immunity and become susceptible once again, causing a new plateau in the count of susceptible
Hosts . Starting at time 41.0 progressively more Hosts lose protective immunity. The disease then propagates among the new and growing

population of susceptible Hosts . The number of susceptible Hosts peaks at around time 57, and decreases subsequently as the disease infects
more and more susceptibles. At time 82 less than 100 susceptible hosts remain. A new epidemic wave, with initial conditions smoothed out,
commences towards the end of the simulation.

The same chart for Run 3 (Base with local random streams) looks like this:

Base susceptibles, with local random streams

This Base run with local random streams looks very similar to the Base run with shared random streams immediately above, despite all RNG
draws differing during the simulation phase of the two runs. This is because the size of the population and the number of RNG draws dominates
the effects of individual idiosyncratic RNG draws in the two runs. Put another way, the two versions of IDMM are statistically equivalent.

Exactly the same 501 Hosts are infected in Run 1 and Run 3, despite Run 3 using the version of IDMM with local random streams. That's
because the initial infections are implemented during the creation of the starting population, before the simulation begins. Calls to RNG functions
before the simulation starts use the usual shared random streams, not local random streams, as explained in RNG use before simulation.

[back to illustrative example]
[back to topic contents]

The Variant runs are the same as the Base runs, except for a very slightly higher probability of initial infection of 0.1001 versus 0.1000 in the
Base runs.

The ini file for the Variant runs looks like this:

[OpenM]
RunName = Variant

[Parameter]
InitialDiseasePrevalence = 0.1001

[Microdata]
ToDb = yes
Host = report_time, disease_phase, age_infected

503 Hosts are infected at the beginning of the simulation in the Variant run. That's 2 more than in the Base run. In the Variant runs, 501 of the
503 infected Hosts are identical to those infected at the beginning of the Base runs. The same 2 additional Hosts are infected in Variant runs 2

Variant run

and 4.

The time evolution of the susceptible population in Run 2 (Variant with shared random streams) looks like this:

Variant susceptibles, with shared random streams

The aggregate effect of 503 initially infected Hosts vs. 501 initially infected Hosts is not visually perceptible, as might be expected.

The time evolution of the susceptible population in Run 4 (Variant with local random streams) looks like this:

Variant susceptibles, with local random streams

Run 2 and Run 4 are indistinguishable visually, despite having entirely different RNG draws in the simulation phase. They are by construction
statistically equivalent.

[back to illustrative example]
[back to topic contents]

Base-Variant coherence

Base-Variant coherence is measured by counting the number of Hosts which have an identical infection history in the Base and Variant runs. The
infection history of each Host is summarized in a 64-bit hash which combines the exact (fractional) ages of all previous infections experienced by
the Host . Base-Variant coherence is evaluated at each of 101 time points in the runs by merging Base and Variant microdata population
snapshots which are output at each time point.

The time evolution of Base-Variant coherence with shared random streams (runs 1 and 2) looks like this:

Base-Variant population coherence with shared random streams

Base-Variant coherence from time 0 to time 5 is constant at 4,998. As explained previously, exactly 2 Hosts differ between Base and Variant at
the beginning of the runs, and no forward infections occur during the latent phase.

Base-Variant coherence is lost precipitously when the infectious phase begins, because of shared random streams among all Hosts in the
population.

Virtually no coherence remains by time 72.

The time evolution of Base-Variant coherence with local random streams (runs 3 and 4) looks like this:

Base-Variant population coherence with local random streams

As in the previous chart, Base-Variant coherence starts at 4,998, with exactly 2 Hosts differing at the beginning of the simulation. The same initial
plateau is present, but is difficult to distinguish visually. Coherence remains very high but is gradually lost as the effects of the tiny difference in
initial conditions propagate in a causative way through the contact network and affect progressively more of the population.

Coherence remains above 99% until time 56. Coherence then decreases more rapidly until time 75, perhaps because of surging infections during
that interval. Coherence drops to 90% by the end of the simulation.

The two versions of IDMM in this example, the one with and the one without local random streams, are statistically equivalent at the aggregate
level. However, the difference in coherence at the micro level is striking.

The population of Hosts in IDMM is highly connected and interactive. Models with less connected and less interactive populations may well have
very high coherence if they use local random streams.

[back to illustrative example]
[back to topic contents]

The version of IDMM used in this example differs slightly from the version in the OpenM++ distribution in OM_ROOT/models/IDMM .

The differences are as follows:

1. The Host attributes age_infected and history_hash were added and implemented to measure coherence between runs.

2. Code to infect a portion of the population at the beginning of the simulation was moved from Host::Start to the Simulation function, so that the
same global random streams are used in all 4 runs in the example, ensuring that the starting populations are the same.

3. A custom version of Host::get_microdata_key() was added to provide a unique microdata key for each Host at each value of report_time .

4. initialize_local_random_streams was called explicitly in Host::Start to permit use of RandUniform later in Host::Start to schedule the first ContactEvent

and the first ChangeContactsEvent .

5. Ticker::TickEvent was modified to write microdata for each Host at each time tick.

6. The REPORT_TIME range was enlarged from 20 to 100.

7. The options local_random_streams , microdata_output , and resource_use were enabled.

8. Two unused Host attributes z_score and l_score were added and implemented to test the local random streams implementation of
RandNormal and RandLogistic .

[back to illustrative example]

IDMM differences

[back to topic contents]

Home > Model Development Topics > Memory Use

This topic opens with a general discussion of memory use in models and follows with a compendium of techniques to optimize memory use in
time-based models.

Model Code

Model Resource Use

Introduction and Background

Bag of Tricks Techniques to economize memory

This topic describes techniques to simulate large populations of entities in time-based models by reducing per-entity memory requirements. It is
not applicable to case-based models which by design can simulate populations of unlimited size in a fixed amount of memory.

A computer's physical memory is a limited fixed resource, whether the computer is a desktop, a server, or a component of a cloud service. If
memory requested by an application exceeds the computer's available physical memory, the request may be denied, causing the application to
fail. More typically the computer will attempt to ration physical memory by swapping less-used portions of application memory to disk and bringing
them back on demand, a process called paging. Paging is very slow relative to the speed of physical memory, but can work well if memory
demands over time are concentrated in some regions of memory while being infrequent in others.

Models can request large amounts of memory, and use that memory frequently and intensively. A time-based model with a large interacting
population of entities will access and update those entities frequently during a run over large regions of memory. Because the model accesses
large regions of memory in a scattered rather than a concentrated way, models respond poorly to paging. When models are starved for memory
and start paging, they may slow down by orders of magnitude and become unusable. So in practice the entities in the population need to all fit
into the physical memory of the target computer.

Reducing per-entity memory use increases the maximum number of entities which can be in memory simultaneously. The techniques in this topic
can help reduce per-entity memory use without changing model logic.

Time-based models have an inherent tradeoff between population size and model complexity, because the size of an entity increases with model
complexity. Case-based models have no such tradeoff between population size and complexity, but they can't represent large interacting
populations. When the modelling problem to be solved requires both large population size and high complexity, it may be possible to factor it into
two models which are run sequentially: an upstream time-based model which simulates an interacting population with limited complexity paired
with a downstream case-based model with no population interactions but unlimited complexity. An example is the combination HPVMM and
OncoSim, where the upstream time-based HPVMM model simulates infectious disease dynamics and the downstream case-based OncoSim
model simulates disease screening, diagnosis, treatment, health consequences, and health system resources and costs. In the HPVMM-
OncoSim pairing, HPVMM results on disease incidence (rates of infection) are communicated as inputs to the downstream OncoSim model.

[back to topic contents]

This subtopic contains links to sections which describe techniques to manage memory use. It is not always appropriate to apply one of these
techniques. It may not be worth the effort or additional model complexity, or there may be a functionality trade-off which is not worth making. The
Entity Member Packing report can help identify which techniques will be most fruitful. The list of links is followed by another list of BoT candidates.

Exploit the resource use report Use the report to focus efforts fruitfully

Suppress table groups: Use and suppress table groups

Change time type to float: Use time_type to halve time storage

Use value_out with flash tables: Use value_out instead of value_in , especially with flash tables

Enable entity packing: Enable the entity_member_packing option

Memory Use

Related topics

Topic contents

Introduction and Background

Bag of Tricks

Use mutable real type: Use real for floating point values

Prefer range and classification to int: They take fewer bytes of storage

Use bitset instead of bool array: Store large arrays of bool efficiently

Purge available entity list: Purge the available list after all entities of a given type are gone

BoT candidates:

compute rather than store

use smaller C types

hook to self-scheduling events, e.g. self_scheduling_int(age)

be economical with events

be economical with tables

avoid ordinal statistics

use a unitary Ticker actor to push common characteristics to the population, e.g. year

[back to topic contents]

Software developers often guess wrong about the causes of high resource use. It is best to gather data before embarking on efforts to improve
efficiency. The Model Resource Use report was designed for that purpose.

[back to BoT]
[back to topic contents]

Organize tables into functional groups using table_group statements. Then, use retain_tables to keep only the tables needed for the current purpose
when the model is built. When a table is suppressed when a model is built, memory savings accure both from the memory for the table cells and
for entity members associated with the table.

Organizing tables into groups and retaining only those required for immediate needs allows a model to have many tables without paying a high
memory cost. If a diagnostic table is required after exploring run results, a variant of the model can be built with that table retained and the
simulation re-run.

[back to BoT]
[back to topic contents]

The Time type of a model can be changed from the default double to float by inserting the following statement in model code:

time_type float;

The Time type is ubiquitous in models. It is used in attributes, events, and internal entity members. By default, Time wraps the C++ type double ,
which is a double-precision floating point number stored in 8 bytes. The time_type statement allows changing the wrapped type to float , which is
stored in 4 bytes. This can reduce memory use. For example, here is the summary report for the 1 million GMM run used to illustrate the Model
Resource Use topic where time_type is double (the default value):

Exploit the resource use report

Suppress table groups

Change time type to float

+---------------------------+
| Resource Use Summary |
+-------------------+-------+
| Category | MB |
+-------------------+-------+
| Entities | 1924 |
| Doppelganger | 552 |
| Person | 1372 |
| Ticker | 0 |
| Multilinks | 10 |
| Events | 80 |
| Sets | 196 |
| Tables | 0 |
+-------------------+-------+
| All | 2213 |
+-------------------+-------+

Here is the report for the same 1 million run with time_type set to float :

+---------------------------+
| Resource Use Summary |
+-------------------+-------+
| Category | MB |
+-------------------+-------+
| Entities | 1566 |
| Doppelganger | 515 |
| Person | 1050 |
| Ticker | 0 |
| Multilinks | 10 |
| Events | 80 |
| Sets | 196 |
| Tables | 0 |
+-------------------+-------+
| All | 1854 |
+-------------------+-------+

In this example, memory usage of the Person entity was 23% less with time_type set to float compared to double .

A float has a precision of about 7 decimal digits. Roughly, that means that the float time value 2025.123 is distinguishable from 2025.124, which
is a precision of ~8 hours. A model with a time origin of 0 and maximum time of 100 years would have higher float precision than that. The run-
time function GetMinimumTimeIncrement() gives the actual precision of Time values in a model. The actual precision is based on time_type and the
maximum Time value required by the model in a previous call to SetMaxTime() in model code.

Changing time_type to float may affect model results due to the reduced precision of Time values. If model logic is well represented by float

precision, such differences are likely to be statistical. That can be verified by comparing model results with time_type float vs. time_type double by
changing a single line of model code.

[back to BoT]
[back to topic contents]

Flash tables are entity tables which tabulate at instantaneous points in time. They do that using an attribute like trigger_changes(year) in the table
filter which becomes instantaneously true and then immediately false in a subsequent synthetic event. Because an increment to a flash table is
instantaneous it has identical 'in' and 'out' values. That means that a flash table using 'value_in' will produce the same values as 'value_out'.
However, value_in in a table causes the compiler to create an additional member in the entity to hold the 'in' value of an increment. For flash
tables, this memory cost can be avoided by using 'value_out' instead of 'value_in'.

[back to BoT]
[back to topic contents]

Members of entities can be packed more efficiently by turning on the entity_member_packing option, but there is a trade-off. For mode information
see Entity Member Packing.

[back to BoT]
[back to topic contents]

Floating point values can be declared in model code using the real type. By default, real is the same as the C++ type double , but it can be

Use value_out with flash tables

Enable entity packing

Use mutable real type

changed to the C++ type float by inserting the following statement in model code:

real_type float;

This single statement will change all uses of real from double to float , which will halve the storage requirements of `real' values.

A float has a precision of around 7 digits, so can represent a dollar amount of 12345.67 to an accuracy of 1 cent.

Because a single real_type statement changes the meaning of real throughout, it is easy to assess to what extent changing real from double to
float affects results. This provides more flexibility than changing (say) double to float in code.

[back to BoT]
[back to topic contents]

Values of type Range or Classification are automatically stored in the smallest C type which can represent all valid values. This can reduce
memory use. For example, if YEAR is declared as

range YEAR //EN Year
{
 0, 200
};

a member year

entity Person {
 YEAR year;
};

declared with type YEAR will be stored efficiently in a single byte. In contrast, of year was declared as int it would require 4 bytes.

[back to BoT]
[back to topic contents]

The bool type takes one byte of storage, even though a byte contains 8 bits. Some models use large arrays of bool in entity members, e.g.

entity Person {
 bool was_primary_caregiver[56][12];
}

which records whether a Person was a primary caregiver in each month of 56 possible working years during the lifetime. The Model Resource
Use report would show that the was_primary_caregiver array member of Person consumes 672 bytes of memory in each Person , a significant
amount for a time-based model with a large population.

The same information could be stored in a foreign member of Person using the a C++ std::bitset . A code sketch follows:

typedef std::bitset<56*12> ym_bools; // flattened bit array of 56 years and 12 months
...
entity Person {
 ym_bools was_primary_caregiver;
}

std::size_t ym_index(std::size_t year, std::size_t month) {
 return 12 * year + month;
}

Then model code like

ptCareGiver->was_primary_caregiver[nEarningIndex][nM] = true;

could be replaced by similar functionally equivalent code

ptCareGiver->was_primary_caregiver[ym_index(nEarningIndex,nM)] = true;

Prefer range and classification to int

Use bitset instead of bool array

In this example, replacing the array of bool by a std::bitset reduces storage requirements from 672 bytes to 84 bytes, a significant saving for each
Person entity.

If the bool array was 1-dimensional rather than 2-dimensional, the code would be simpler.

Possibly, a general wrapper class bitset2D could be added to OpenM++ runtime support to avoid changing model code at all, e.g.

#include "bitset2D.h"
...
typedef bitset2D<56,12> ym_bools; // 2-D bit array of 56 years and 12 months
...
entity Person {
 ym_bools was_primary_caregiver;
}

Then existing model code like

ptCareGiver->was_primary_caregiver[nEarningIndex][nM] = true;

would require no changes.

[back to BoT]
[back to topic contents]

Depending on the model design, an entity type might be used only at a particular phase of the simulation. For example, an Observation entity might
only be used during the creation of the starting population. OpenM++ maintains pools of entities which have exited the simulation which are
available for potential reuse. If there will be no reuse of an entity type, the corresponding pool can be emptied and the memory reclaimed by a
function call like

Observation::free_available();

[back to BoT]
[back to topic contents]

Purge available entity list

Home > Model Development Topics > Microdata Output

Microdata output allows a model to output records containing the values of selected entity attributes during a run for later use. This topic
describes microdata output from a model developer perspective.

Model Code

Event Trace

Introduction

Topic outline

Quick start How to build and run a model with microdata output

Worked example 1a Entity life cycle

Worked example 1b Entity life cycle with event context

Worked example 1c Entity life cycle with event filtering

Worked example 2a Output using a hook to a model event

Worked example 2b Output using a hook to a self-scheduling attribute

Worked example 2c Output by calling write_microdata in model code

Worked example 3 Database output in a time-based model

Worked example 4 Database output in a complex case-based model

Microdata output modes Text mode and database mode

Microdata output control Enabling microdata and microdata attributes

Run-time settings Run-time settings

Build-time settings Build-time settings

Writing microdata from model code Controlling microdata output from model code

The microdata key The purpose of the microdata key and how to set it

A model built with microdata output capability can output records containing the values of entity attributes. As well as attribute values, each
microdata output record contains a microdata key to match corresponding records between runs.

By default, a model does not have microdata output capability. See Enabling microdata output or Quick start on how to build a model with
microdata output capability.

Two microdata output modes are supported: text mode and database mode. Text mode is targeted more to model developers, while database
mode is targeted more to users of production models and to future OpenM++ run-time tabulation functionality. Both modes can be active in the
same run.

Text mode writes microdata to text files in csv format. Text mode can filter output at run using event context. Text mode output can include an
additional column showing the event context of the record.

Database mode writes microdata to the model database, from which it can be extracted using dbcopy or an API. Database mode will be used for
future OpenM++ run-time tabulation functionality, including microdata comparisons between runs.

Microdata output is controlled by run-time settings, build-time settings, and model code.

Microdata Output

Related topics

Topic contents

Introduction

Run-time settings specify which attributes are output during a run, provided the model was built with microdata output capability. All attributes are
available for selection at run-time without rebuilding the model. Some run-time settings apply only to text mode. Those text mode settings can
filter records by event context and can create an additional column showing the event context for each record.

Build-time settings are statements in model code which make the model capable of microdata output and control related warning messages.
Build-time settings can also (optionally) determine when microdata output is written in the entity life cycle: on entrance, on exit, or on the
occurrence of an event.

Model code can write microdata explicitly by calling the supplied entity member function write_microdata . The write_microdata function can be hooked
to an existing entity function such as the implementation function of an event.

[back to topic contents]

Quick Start shows how to build a model capable of microdata output and how to activate that capability in a model run.

The quick start is followed by several worked examples with illustrative inputs and outputs, mostly using the RiskPaths model.

The first group of examples
entity life cycle,
entity life cycle with event context, and entity life cycle with event filtering
illustrate how to probe the life cycle of entities using microdata text mode.

A second group of examples
output using a hook to a model event,
output using a hook to a self-scheduling attribute, and
output by calling write_microdata in model code
illustrate how to control when microdata output occurs using model code.

The next example illustrates database output in a time-based model. The example outputs microdata for all entities in the IDMM model at the end
of the run. A Base run and a Variant are performed, and the results compared at the microdata level using files exported by sbcopy .

The final example illustrates database output in a case-based model. The example outputs microdata for all entities in the complex case-based
model OncoSim . A Base run and a Variant are performed, and summary microdata indicators (years lived and health system cost) are output for
each Person at the end of each case. The results are exported by dbcopy and analyzed to identify all cases which differed due to the parameter
change in the Variant run, and by how much.

The worked examples are followed by subtopics which explore specifics in more detail:

Microdata output modes

Enabling microdata output

Run-time settings

Build-time settings

Writing microdata from model code

The microdata key

[back to topic contents]

This subtopic contains the following sections.

1. Build model with microdata output capability

2. Create model ini file with microdata output options

3. Run model using microdata output

[back to topic contents]

Topic outline

Quick start

1. Build model with microdata output capability

Add the following statements to the model source code file RiskPaths/code/ompp_framework.ompp :

options microdata_output = on;
options microdata_write_on_exit = on;

Build the Release version of RiskPaths.
In Windows, the model executable will be RiskPaths/ompp/bin/RiskPaths.exe .
In Linux, the model executable will be RiskPaths/ompp-linux/bin/RiskPaths .

[back to quick start]
[back to topic contents]

In the same folder as the RiskPaths executable there may already be a copy of the default model ini file RiskPaths.ini . If not create it using your
IDE or a text editor such as Notepad.

Edit RiskPaths.ini to have the following content:

[Parameter]
SimulationCases = 5

[Microdata]
ToCsv = yes
Person = age, union_status, parity_status

[back to quick start]
[back to topic contents]

Launch the model in its bin directory using the ini file created in the previous step.

RiskPaths -ini RiskPaths.ini

In Windows you can run the Release version of RiskPaths from inside Visual Studio as follows:

Solution Configurations to Release and Solution Platforms to x64

Project Properties > Configuration Properties > Debugging > Command Arguments to
-ini RiskPaths.ini

Project Properties > Configuration Properties > Debugging > Working Directory to $(TargetDir)

To launch the model, do Debug > Start without debugging or Press Ctrl-F5 .

When the model run completes, the file RiskPaths.Person.microdata.csv should be present in the model bin directory and look like this:

key,age,union_status,parity_status
1,100,2,1
2,100,2,1
3,100,2,1
4,100,0,1
5,100,0,1

or formatted as a table, like this:

key age union_status parity_status

1 100 2 1

2 100 2 1

3 100 2 1

4 100 0 1

2. Modify model ini file with microdata output options

3. Run model using microdata output

5 100 0 1

key age union_status parity_status

The run-time settings output the attributes age , union_status , and parity_status . The leading column key can be used to match microdata records
between runs. The build-time option microdata_write_on_exit causes a microdata record to be written whenever an entity leaves the simulation. In
RiskPaths there is no mortality and Person entities exit the simulation at age 100. The values of union_status and parity_status are those at that age,

for each Person entity in the run.

The model log contains the following warning, which is expected.

Warning : model can expose microdata at run-time with output_microdata = on

[back to quick start]
[back to topic contents]

This example is the first of three which probe entity life cycle using microdata output in text mode. It continues the quick start example to output
multiple microdata records for a single entity: when it enters the simulation, at each event, and when it leaves the simulation.

In ompp_framework.ompp , change the build-time microdata settings to

options microdata_output = on;

options microdata_write_on_enter = on;
options microdata_write_on_exit = on;
options microdata_write_on_event = on;

Change the run-time settings in RiskPaths.ini to consist of only one case

[Parameter]
SimulationCases = 1

[Microdata]
ToCsv = yes
Person = age, union_status, parity_status

and run the model.

Here's the resulting microdata output in RiskPaths.Person.microdata.csv , with some rows elided.

key age union_status parity_status

1 0 0 0

1 1 0 0

1 2 0 0

1 3 0 0

...

1 22.5 0 0

1 23 0 0

1 24 0 0

1 24.2609992115357 1 0

1 25 1 0

1 25.2609992115357 1 0

1 26 1 0

Worked example 1a

1 26.5378127283906 1 1

1 26.5378127283906 1 1

1 27 1 1

1 27.2609992115357 1 1

1 27.2609992115357 2 1

1 27.5 2 1

1 28 2 1

1 29 2 1

1 29.2609992115357 2 1

1 30 2 1

...

1 99 2 1

1 100 2 1

1 100 2 1

1 100 2 1

key age union_status parity_status

The microdata output shows the values of the attributes at every event in the life cycle. Multiple microdata records can occur at the same age due
to multiple tied events at that age.

This example is the second of three which probe entity life cycle using microdata output in text mode. It continues the previous example, adding
event context information to each microdata record.

Leave the build-time microdata settings in ompp_framework.ompp unchanged from the previous example:

options microdata_output = on;

options microdata_write_on_enter = on;
options microdata_write_on_exit = on;
options microdata_write_on_event = on;

Activate the CsvEventColumn option by modifying the run-time settings in RiskPaths.ini so that it looks like this:

[Parameter]
SimulationCases = 1

[Microdata]
ToCsv = yes
CsvEventColumn = true
Person = age, union_status, parity_status

Run the model.

Here's the resulting microdata output in RiskPaths.Person.microdata.csv , with some rows elided.

key event age union_status parity_status

1 (no event) 0 0 0

1 om_ss_event 1 0 0

1 om_ss_event 2 0 0

Worked example 1b

1 om_ss_event 3 0 0

...

1 om_ss_event 22.5 0 0

1 om_ss_event 23 0 0

1 om_ss_event 24 0 0

1 Union1FormationEvent 24.2609992115357 1 0

1 om_ss_event 25 1 0

1 om_ss_event 25.2609992115357 1 0

1 om_ss_event 26 1 0

1 FirstPregEvent 26.5378127283906 1 1

1 om_ss_event 26.5378127283906 1 1

1 om_ss_event 27 1 1

1 om_ss_event 27.2609992115357 1 1

1 UnionPeriod2Event 27.2609992115357 2 1

1 om_ss_event 27.5 2 1

1 om_ss_event 28 2 1

1 om_ss_event 29 2 1

1 om_ss_event 29.2609992115357 2 1

1 om_ss_event 30 2 1

...

1 om_ss_event 99 2 1

1 om_ss_event 100 2 1

1 DeathEvent 100 2 1

1 DeathEvent 100 2 1

key event age union_status parity_status

The microdata output now contains an event column showing the name of the event being implemented when each microdata record was output.
There is no event at the beginning of a case in a case-based model like RiskPaths , so when the first entity in the case enters the simulation (no

event) is shown in the event column. If the event associated with microdata output is a self-scheduling event, om_ss_event is shown in the event

column. The internal self-scheduling event for an entity implements all self-scheduling attributes in the entity. Note that Event Trace can be used
to obtain more information about events, including the names of self-scheduling events.

The final three microdata output records all occur at age 100. Here's a detailed explanation of each of these apparent duplicate records:

The first is from the self-scheduling event which maintains the derived attribute self_scheduling_int(age) . That derived attribute is in turn used in the
declaration of the identity attribute integer_age :

actor Person //EN Individual
{
 //EN Current integer age
 LIFE integer_age = COERCE(LIFE, self_scheduling_int(age));
...

The second is from the event DeathEvent which is triggered by model logic and the ProbMort parameter immediately when integer_age is 100:

TIME Person::timeDeathEvent()
{
 TIME event_time = TIME_INFINITE;
 if (CanDie)
 {
 if (ProbMort[integer_age] >= 1)
 {
 event_time = WAIT(0);
 }
...

The third occurs when the entity leaves the simulation, because the option microdata_write_on_exit is on in the example. The event DeathEvent was
the active event when the entity left the simulation, so that's what's shown in the event column.

Although it's not illustrated in this example, the name in the event column can be prefixed by a * . This indicates that the active event is in a
different entity than the one being output. This can occur in a time-based model or in a case-based model with multiple entities in a case. For
example a ChildBirth event in a Person entity could cause a new Person entity to enter the simulation and generate a microdata output record.
The microdata record for the newborn would contain *ChildBirth in the event column to indicate that the active event was in a different entity than
the microdata record.

[back to topic contents]

This example is the third of three which probe entity life cycle using microdata output in text mode. It extends the previous example by filtering on
specific events.

Leave the build-time microdata settings in ompp_framework.ompp unchanged from the previous example:

options microdata_output = on;

options microdata_write_on_enter = on;
options microdata_write_on_exit = on;
options microdata_write_on_event = on;

Modify the run-time settings in RiskPaths.ini to increase the number of cases to 5000, and restrict output to two named events using the Events

option:

[Parameter]
SimulationCases = 5000

[Microdata]
ToCsv = yes
CsvEventColumn = true
Person = age, union_status, parity_status
Events = Union1FormationEvent, FirstPregEvent

Run the model.

The resulting microdata output RiskPaths.Person.microdata.csv has 8,128 records and looks like this:

key event age union_status parity_status

1 Union1FormationEvent 24.2609992115357 1 0

1 FirstPregEvent 26.5378127283906 1 1

2 Union1FormationEvent 22.0523726276488 1 0

2 FirstPregEvent 24.6780778011483 1 1

3 Union1FormationEvent 17.050111243303 1 0

3 FirstPregEvent 20.024664717724 1 1

4 FirstPregEvent 17.4107170399441 0 1

5 FirstPregEvent 24.1577392012077 0 1

6 Union1FormationEvent 22.502915072767 1 0

Worked example 1c

6 FirstPregEvent 24.7534475294375 1 1

...

key event age union_status parity_status

This csv file can be used to perform multivariate statistical analysis. For example, the csv file can be opened in Excel, filtered to just
FirstPregEvent and a histogram generated to visualize the first birth distribution by age:

The data could be additionally filtered in Excel using the union_status column to visualize how union status affects the age distribution to produce
the overall pattern.

[back to topic contents]

This example is the first of three illustrating control of microdata output at build time using model code. It outputs microdata whenever a specific
event occurs using a hook in model code, specifically whenever FirstPregEvent occurs in RiskPaths .

In RiskPaths , prepare the event implement function for hooks by adding the required statement at the end of the event implement function
FirstPregEvent :

void Person::FirstPregEvent()
{
 parity_status = PS_PREGNANT;
 hook_FirstPregEvent();
}

Next, add code to hook the built-in function write_microdata to FirstPregEvent :

actor Person {
 hook write_microdata, FirstPregEvent;
};

In ompp_framework.ompp , turn off options which automatically write microdata, which were previously turned on in example 1.

Worked example 2a

//options microdata_write_on_enter = on;
//options microdata_write_on_exit = on;
//options microdata_write_on_event = on;

The statements inserted in example 1 were commented to revert to the default value off . This means that only explicit calls to write_microdata will
generate microdata output.

Set the number of cases to 20 in RiskPaths.ini :

[Parameter]
SimulationCases = 20

[Microdata]
ToCsv = yes
Person = age, union_status, parity_status

Run the model.

The microdata output file RiskPaths.Person.microdata.csv should look like this:

key age union_status parity_status

1 26.5378127283906 1 1

2 24.6780778011483 1 1

3 20.024664717724 1 1

4 17.4107170399441 0 1

5 24.1577392012077 0 1

6 24.7534475294375 1 1

7 18.2797585879836 1 1

8 22.110326319997 1 1

9 21.2430736420085 1 1

10 29.168835553187 1 1

12 37.7955780112222 2 1

14 26.9550960057145 1 1

15 21.6012847802494 0 1

16 20.3178392448776 1 1

18 22.8298415328563 1 1

19 26.7999269606788 1 1

20 19.0257883348614 1 1

The microdata file shows the values of attributes at all occurrences of the FirstPregEvent in the run. It could, for example, be used to chart the
distribution of age at first birth using a downstream application like Excel or R, similar to example 1c.

[back to topic contents]

This example is the second of three illustrating control of microdata output at build time using model code. It outputs microdata records giving a
snapshot of an entity at each integer age, using a hook to a self-scheduling attribute.

Change the hook in the previous example to

Worked example 2b

actor Person {
 hook write_microdata, self_scheduling_int(age);
};

and simulate a single case by modifying RiskPaths.ini:

[Parameter]
SimulationCases = 1

[Microdata]
ToCsv = yes
Person = age, union_status, parity_status

Run the model. Microdata output should look like this:

key age union_status parity_status

1 1 0 0

1 2 0 0

1 3 0 0

1 4 0 0

...

1 26 1 0

1 27 1 1

1 28 2 1

1 29 2 1

...

1 100 2 1

The microdata output contains a snapshot of the attributes at each integer age.

[back to topic contents]

This example is the third of three illustrating control of microdata output at build time using model code. It outputs microdata directly by calling the
entity function write_microdata explicitly in model code.

Remove any changes to RiskPaths model code made in previous examples.

In ompp_framework.ompp , insert the single statement

options microdata_output = on;

Insert a call to write_microdata in the implementation function of the FirstPreg event in the module Fertility.mpp :

void Person::FirstPregEvent()
{
 parity_status = PS_PREGNANT;
 write_microdata();
}

Set the run-time settings in RiskPaths.ini as follows:

Worked example 2c

[Parameter]
SimulationCases = 5

[Microdata]
ToCsv = yes
Person = age, union_status, parity_status

Run the model.

Output should look as follows:

key,age,union_status,parity_status
1,26.5378127283906,1,1
2,24.6780778011483,1,1
3,20.024664717724,1,1
4,17.4107170399441,0,1
5,24.1577392012077,0,1

This example could be accomplished without using a direct call to write_microdata . In a more complex model, a call to write_microdata could be
placed inside conditional model logic, for example to output microdata when a rare causative path is taken in model logic, to probe correctness.

[back to topic contents]

This example outputs microdata in database mode for the time-based model IDMM . Two runs Base and Variant are performed with an
incremental parameter change. Microdata with infection status is output for all Host entities at the end of the run. Each run consists of multiple
replicates. The dbcopy utility is used to extract the microdata for the two runs. Excel is used to import the microdata and construct a table showing
the concordance of disease state at the microdata level between the Base and Variant runs.

Modify the IDMM model to activate microdata output when entities leave the simulation by adding the following statements to ompp_framework.ompp :

options microdata_output = on;
options microdata_write_on_exit = on;

Rebuild the model.

Arrange that IDMM uses the file IDMM.ini to get run-time settings (see quick start), and set the contents of IDMM.ini to create a run named Base

as follows:

[OpenM]
SubValues = 5
Threads = 5
RunName = Base

[Parameter]
NumberOfHosts = 10000
ImmunePhaseDuration = 20.0

[Microdata]
ToDb = yes
Host = disease_phase

These settings create a Base run with 5 replicates, each with a population of 10,000 Host entities.

Run the model.

The log file should contain a line like

2023-01-13 17:01:04.874 Warning : model can expose microdata at run-time with output_microdata = on

which indicates that the version of IDMM is capable of writing microdata. It should also contain a line similar to

2023-01-13 17:01:08.295 Writing microdata into database, run: 103

which indicates that the model is merging microdata from replicates into the database when the run completes.

Change the file IDMM.ini , modifying RunName and ImmunePhaseDuration for a second run named Variant :

Worked example 3

[OpenM]
SubValues = 5
Threads = 5
RunName = Variant

[Parameter]
NumberOfHosts = 10000
ImmunePhaseDuration = 22.0

[Microdata]
ToDb = yes
Host = disease_phase

The Variant run is the same as the Base run, except for a 10% increase in the duration of protective immunity from a previous infection.

Run the model.

The model database now contains results for the two runs Base and Variant .

Open a command shell. Change the current directory to the ompp/bin directory of the IDMM model. Run dbcopy to extract the microdata results
from the model database to csv files using the command

dbcopy -dbcopy.To csv -dbcopy.ModelName IDMM

By default dbcopy looks for a model database in the current directory, so it's not necessary in this example to provide it the path of the model
database.

Console output should be similar to the following:

C:\Development\X\ompp\models\IDMM\ompp\bin>%OM_ROOT%\bin\dbcopy -dbcopy.To csv -dbcopy.ModelName IDMM
2023-01-13 17:01:45.580 Model IDMM
2023-01-13 17:01:45.599 Model run 102 Base
2023-01-13 17:01:45.600 Parameters: 13
2023-01-13 17:01:45.609 Tables: 3
2023-01-13 17:01:45.622 Microdata: 1
2023-01-13 17:01:45.688 Model run 103 Variant
2023-01-13 17:01:45.690 Parameters: 13
2023-01-13 17:01:45.700 Tables: 3
2023-01-13 17:01:45.712 Microdata: 1
2023-01-13 17:01:45.781 Workset 101 Default
2023-01-13 17:01:45.782 Parameters: 13
2023-01-13 17:01:45.798 Done.

The console output above was done on Windows. There would be minor cosmetic differences in Linux. Note the use of the global environment
variable OM_ROOT to ensure that the version of dbcopy matches the version of OpenM++ used to build the model.

The dbcopy log output shows the extraction of the microdata for the two runs Base and Variant .

dbcopy creates a folder IDMM The folder structure of dbcopy output looks like

C:\OMPP\MODELS\IDMM\OMPP\BIN\IDMM
├───run.Base
│ ├───microdata
│ ├───output-tables
│ └───parameters
├───run.Variant
│ ├───microdata
│ ├───output-tables
│ └───parameters
└───set.Default

Each microdata sub-folder contains a file named Host.csv containing the microdata of Host entities for the run. Had microdata for the Ticker actor
been requested in the run, a file Ticker.csv would also be present. The first few records of IDMM/run.Base/microdata/Host.csv look like this:

key disease_phase

10 DP_SUSCEPTIBLE

11 DP_LATENT

12 DP_IMMUNE

13 DP_LATENT

14 DP_IMMUNE

15 DP_LATENT

16 DP_SUSCEPTIBLE

17 DP_LATENT

18 DP_SUSCEPTIBLE

19 DP_IMMUNE

20 DP_IMMUNE

key disease_phase

For large output files, one can use the dbcopy option -dbcopy.IdCsv to output numeric id's instead of alphanumeric codes.

The default microdata key entity_id is used in this example. entity_id is unique for all entities in a run, and will correspond to the same entity in two
IDMM runs provided the runs have the same number of entities per replicate and the same number of replicates.

The two files run.Base/microdata/Host.csv and run.Variant/microdata/Host.csv were imported to Excel, and the 50,000 rows matched one-to-one. Below is
an Excel PivotTable (aka cross-tab) which counts the 50,000 Host entities at the end of the runs, classified by disease phase in the Base run
(rows) and disease phase in the Variant run (columns).

Base↓/Variant→ DP_IMMUNE DP_INFECTIOUS DP_LATENT DP_SUSCEPTIBLE All

DP_IMMUNE 24284 806 390 2649 28129

DP_INFECTIOUS 1849 137 92 334 2412

DP_LATENT 2268 94 67 354 2783

DP_SUSCEPTIBLE 13932 421 352 1971 16676

All 42333 1458 901 5308 50000

The lexicographic ordering of disease phase in the table does not follow the ordering in model code, which makes the table harder to interpret.
The intuitive order is Susceptible, Latent, Infectious, Immune. That could be addressed by revising the DISEASE_PHASE classification codes in
IDMM model code to align lexicographic order with model code order, e.g.

classification DISEASE_PHASE //EN Disease phase
{
 //EN Susceptible
 DP0_SUSCEPTIBLE,

 //EN Latent
 DP1_LATENT,

 //EN Infectious
 DP2_INFECTIOUS,

 //EN Immune
 DP3_IMMUNE
};

Alternatively, the microdata could have been exported using the option -dbCopy.IdCsv to output 0,1,2,3 instead of codes in the csv files. However,
numeric id's in table rows and columns are not informative.

From the table, the level of coherence between Base and Variant at the end of the simulations is not high. This could be because

a 10% increase in the duration of immunity is not as minor as one might think a priori;

the increase in duration of immunity is expected to increase the period of epidemic cycles, which would cause epidemic cycles to be out of
phase between Base and Variant at the end of the simulations;

IDMM simulates a highly interacting population which can diverge rapidly from a small initial perturbation;

simulation divergence is accelerated because IDMM does not use entity-specific random number generators for decoherence control.

[back to topic contents]

This example illustrates run comparison at the microdata level using a large scale complex case-based model (a working version of the Statistics
Canada OncoSimX model). This example is divided into the following sections:

Summary

Build steps

Run steps

Microdata extraction

Downstream analysis

[back to topic contents]

The default microdata key entity_id is not suitable for run comparison in OncoSimX , so a model-specific definition of get_microdata_key was added
to model code. A pair of attributes (years lived and health system cost) were output for each Person entity at the end of each case. A Base run
with 500,000 cases and 12 replicates was performed with microdata output enabled, in database mode. A Variant run was performed, changing a
single scalar parameter. Results for both runs were exported using dbcopy to csv files and analyzed in Excel to identify all cases which differed
between Base and Variant runs for either of the two attributes.

The mechanical steps in this example are similar to those in the previous example.

[back to example 4 sections]
[back to topic contents]

The model code was modified to enable microdata output when the Person in each case exits the simulation by adding the following statements
to model code.

options microdata_output = on;
options microdata_write_on_exit = on;

In OncoSimX a case contains exactly one Person entity, but might contain other entities depending on the simulation, such as one or more Tumour

entities. Because the built-in attribute entity_id is incremented whenever a new entity is created, entity_id is unsuitable as a microdata key to
match corresponding Person entities between two OncoSimX runs. However, the built-in attribute case_id is suitable as a microdata key for Person

because it has a one-to-one relationship with the single Person entity in each case, and this relationship is robust across runs provided the runs
have the same number of cases and replicates. A function definition of Person::get_microdata_key was added to model code so that case_id is used
as the microdata key for Person entities instead of entity_id :

uint64_t Person::get_microdata_key()
{
 return case_id;
}

[back to example 4 sections]
[back to topic contents]

The model was run using the settings file OncoSimX/ompp/bin/OncoSimX.ini , like previous examples.

The following run settings were used for the Base run:

Worked example 4

Example 4 sections

Summary

Build steps

Run steps

[OpenM]
SubValues = 12
Threads = 12
RunName = Base

[Parameter]
SimulationSeed = 1
SimulationCases = 500000
MaxConsecutiveHpvTreatmentAllowed = 2

[Microdata]
ToDb = yes
Person = age, cancer_cost_all

The parameter MaxConsecutiveHpvTreatmentAllowed was chosen arbitrarily for this example. A scalar parameter rather than an array parameter was
chosen to make this example simpler, because the value of a scalar parameter can be specified in a model run ini file, obviating the need to set
up and use a directory for Variant parameters which differ from Base .

Because the microdata for a Person entity is output when a Person leaves the simulation at death, the attribute cancer_cost_all will contain lifetime
cancer-related costs and the age attribute will contain the duration of life in years. These two attributes are measures of benefit and cost at the
Person level. The case_seed attribute can be useful to probe a case of interest in a subsequent run, but there is no need to include it in the Person

microdata attributes because the key column already contains the value of case_seed , as described above.

For Variant , the parameter MaxConsecutiveHpvTreatmentAllowed was changed from 2 to 1, and RunName was changed to name the run Variant :

[OpenM]
SubValues = 12
Threads = 12
RunName = Variant

[Parameter]
SimulationSeed = 1
SimulationCases = 500000
MaxConsecutiveHpvTreatmentAllowed = 1

[Microdata]
ToDb = yes
Person = age, cancer_cost_all

[back to example 4 sections]
[back to topic contents]

After the runs completed, microdata results were extracted from the database using dbcopy as in the previous example. Here's the Windows
command session:

C:\Development\X\models\OncoSimX\ompp\bin>%OM_ROOT%\bin\dbcopy -dbcopy.To csv -dbcopy.ModelName OncoSimX
2023-01-14 18:00:10.259 Model OncoSimX
2023-01-14 18:00:10.392 Model run 102 Base
2023-01-14 18:00:10.392 Parameters: 402
2023-01-14 18:00:16.227 250 of 402: IncidenceRatesHpvMultiplier
2023-01-14 18:00:18.842 Tables: 27
2023-01-14 18:00:25.153 0 of 27: CervicalCancer_TreatmentCost_Table all accumulators
2023-01-14 18:00:31.685 1 of 27: Cervical_Cancer_Cases_PAY_Table all accumulators
2023-01-14 18:00:36.055 7 of 27: Cervical_Cancer_ICER_Table_Discounted all accumulators
2023-01-14 18:00:42.357 26 of 27: Hpv_Screening_Costs_Prov_Table all accumulators
2023-01-14 18:00:43.923 Microdata: 1
2023-01-14 18:00:45.023 Model run 103 Variant
2023-01-14 18:00:45.023 Parameters: 402
2023-01-14 18:00:51.051 250 of 402: IncidenceRatesHpvMultiplier
2023-01-14 18:00:53.794 Tables: 27
2023-01-14 18:01:00.062 0 of 27: CervicalCancer_TreatmentCost_Table all accumulators
2023-01-14 18:01:06.623 1 of 27: Cervical_Cancer_Cases_PAY_Table all accumulators
2023-01-14 18:01:11.144 8 of 27: Cervical_Cancer_LifetimeCost_Table
2023-01-14 18:01:17.385 26 of 27: Hpv_Screening_Costs_Prov_Table all accumulators
2023-01-14 18:01:18.976 Microdata: 1
2023-01-14 18:01:20.115 Workset 101 Default
2023-01-14 18:01:20.116 Parameters: 402
2023-01-14 18:01:26.157 250 of 402: IncidenceRatesHpvMultiplier
2023-01-14 18:01:29.024 Done.

The first rows of microdata output for the Base run in the file OncoSimX/ompp/bin/OncoSimX/run.Base/microdata/Person.csv look like this:

Microdata extraction

key,age,cancer_cost_all
0,79.4991129115706,45100.08867191
1,67.281040126587,2229.937944223
2,87.4865314659319,1670.3732276699
3,0.379665603266858,0

The first rows of microdata for the Variant run are identical. However, some of the 500,000 microdata output records differ between Variant and
Base .

[back to example 4 sections]
[back to topic contents]

An Excel workbook was created and used to

load the csv microdata for Base and Variant as queries, renaming columns to distinguish Base and Variant ;

merge the two queries matching on key to create a new query with one row for each case and Base and Variant microdata in distinct
columns.

add a column to the merge query to compute the Variant-Base difference in years lived;

add a column to the merge query to compute the Variant-Base difference in lifetime cancer-related costs;

add a column named Differs to compute whether a microdata record differed in either years lived or cost between Base and Variant .

A dynamic filter was applied to the Differs column of the Excel table for the merge query to display all records which differed between Variant and
Base . 13 of the 500,000 microdata records differed, as follows:

key life(base) cost(base) life(variant) cost(variant) life(delta) cost(delta) Differs

26847 82.90 9,099 82.90 10,570 0.0000 1,471 TRUE

59368 89.07 60,812 89.07 61,528 0.0000 717 TRUE

208131 72.68 40,304 98.16 19,647 25.4839 -20,657 TRUE

214559 94.60 31,285 94.60 27,932 0.0000 -3,353 TRUE

229714 86.53 25,446 86.53 13,450 0.0000 -11,996 TRUE

231202 95.18 101,255 95.18 100,388 0.0000 -867 TRUE

247895 97.40 40,914 97.40 9,396 0.0000 -31,518 TRUE

290098 92.17 13,059 92.17 14,461 0.0000 1,402 TRUE

302510 78.51 63,695 78.51 54,770 0.0000 -8,926 TRUE

357201 78.91 8,080 78.91 9,482 0.0000 1,402 TRUE

436603 39.75 112,787 39.75 111,870 0.0000 -916 TRUE

438020 65.36 84,806 63.36 80,545 -2.0000 -4,261 TRUE

447567 94.15 34,830 94.15 32,333 0.0000 -2,498 TRUE

The key column contains the value of case_seed and could be used to re-simulate any (or all) of these differing cases using Event Trace to
explore the different causative pathways taken in the Base and Variant runs, and how those different pathways affected Person attributes.

These differences suggest that it might be interesting to understand how the change in MaxConsecutiveHpvTreatmentAllowed from 2 to 1 resulted in

an additional ~25 years of life for case_id 208131,

both positive and negative changes in health system costs for cases which experienced no change in years lived,

case_id 438020 living an exact integer number of years 2.0000 less in Variant compared to Base .

Quite possibly all these Base-Variant differences are explained by different but realistic causative pathways taken in the two runs. That could be

Downstream analysis

verified by comparing the Base and Variant causative pathways for individual differing cases using Event Trace, perhaps by tracing all events,
event times, and attribute changes in a differing case and examining differences in the Base and Variant event trace outputs.

This example illustrates how microdata differences between two runs can augment aggregate differences by drilling down to the detail underlying
the aggregate differences. It also illustrates how microdata differences from a marginal change to a single model parameter can probe model
logic and causative pathways and assist in model validation.

[back to example 4 sections]
[back to topic contents]

Two distinct modes are supported: Database mode
and Text mode.

Targeted primarily for use of a production model, to drill down to underlying microdata or to compare two runs at a microdata level.

uniqueness of key is required

all microdata output, including from multiple instances and multiple threads, is merged into the model database.

no run-time event filtering (but can be done in model code with build-time settings).

dbcopy can be used to extract microdata to csv files, supports numeric id's or codes.

oms can be used to extract microdata

will support future functionality for run-time tabulation, including microdata compare (winner-loser).

Targeted primarily to probe a model during development, validation, and debugging

uniqueness of key is not required

to trace file or to entity-specific csv files

runs using multiple instances have distinct csv files for each instance

multiple threads in an instance share csv files.

optional event context column

optional event filtering

It is one file per process, all threads do write into the same file. As it is today file name can be:

(a) typical developer / desktop use case: single process, single model run:

ModelName.Entity.microdata.csv

(b) MPI cluster / cloud use case: multiple processes, single model run:

ModelName.Entity.07.microdata.csv

07 is an example of process rank, zero padded It is not limited to 00 - 99, it can be as large as cluster allow us to have, in ComputeCanada can
be 5 digits

(c) modelling task run, for example from R or Python using single process:

ModelName.Entity.2022_12_31_22_33_44_981.microdata.csv

2022_12_31_22_33_44_981 is a model run timestamp, time when model run started. Because modelling task run include multiple model runs
then each run creates it own microdata cvs file(s)

Microdata output modes

Database mode

Text mode

Text mode csv file names

(d) = c + b: modeling task run in cloud with MPI cluster, it is possible from R on our CPAC cloud:

ModelName.Entity.2022_12_31_22_33_44_981.07.microdata.csv

[back to topic contents]

This subtopic is divided into the following sections:

Enabling microdata and controlling warnings

Weight-enabled models

Internal attributes

Attributes with many enumerators

[back to topic contents]

A model is capable of writing microdata if and only if model code contains the following statement:

options microdata_output = on;

A model with microdata capability will write the following warning to the log whenever it is run:

 Warning : model can expose microdata at run-time with microdata_output = on

If this is not a concern, for example if the model generates entities synthetically, this warning can be disabled by the following statement:

options microdata_output_warning = off;

[back to microdata output control sections]
[back to topic contents]

A weight-enabled model which is also microdata-enabled will write the following message to the log when run

Note : model is weight-enabled and microdata-enabled, include entity_weight in Microdata for downstream weighted operations

as a reminder that the attribute entity_weight needs to be included in microdata output for downstream weighted tabulation.

[back to microdata output control sections]
[back to topic contents]

Some internal entity attributes are created by the OpenM++ compiler. For example, the compiler creates an identity attribute to implement the
filter of an entity table. These internal entity attributes are normally hidden. They can be made visible, including as microdata, using the following
statement:

options all_attributes_visible = on;

[back to microdata output control sections]
[back to topic contents]

Attributes whose type is an enumeration with a large number of enumerators may not be eligible as microdata. For example, the following code
fragment declares the Person attribute id_tracker with type ID_LIST which has 5,000,001 possible values (enumerators):

Microdata output control

Microdata output control sections

Enabling microdata and controlling warnings

Weight-enabled models

Internal attributes

Attributes with many enumerators

range ID_LIST{0, 5000000};

actor Person
{
 ID_LIST id_tracker; //EN Unique identifier of each actor
};

If microdata output is enabled, the OpenM++ compiler will emit a warning like

PersonCore.mpp(254): warning - attribute 'id_tracker' has 5000001 enumerators making it ineligible as microdata - consider using int.

and the attribute id_tracker will not be available as microdata at runtime.

However, if id_tracker is instead declared to be of type int instead of type ID_LIST , no warning will be issued and id_tracker , with the same integer
values assigned in model code, will be available as microdata at runtime.

The maximum number of enumerators for an attribute (of type enumerator) to be eligible as microdata is 1,000 , but can be raised or lowered using
the option microdata_max_enumerators . For example,

options microdata_max_enumerators = 500;

will restrict microdata attributes of enumeration type to those with 500 or fewer enumerators. The threshold only applies to attributes declared with
enumeration types like range . It does not apply to attributes declared with non-enumeration types such as int , counter , big_counter , etc.

Attributes with large numbers of enumerators can cause performance degradation or instability in the microdata viewer and the microdata
tabulator due to the large number of cells being manipulated and displayed.

[back to microdata output control sections]
[back to topic contents]

Run time settings are specified as options, either on the model executable command line or in a model run ini file. In an ini file, microdata
options are in the [Microdata] section. On the command line, they are given like -Microdata.Person age .

The following table lists all microdata run-time settings with an example and a short description.

Option Example Description

entity Person = ageGroup,sex,time
Store the named attributes for the specified entity kind, e.g. the attributes ageGroup , sex ,
and time , for Person entities.

entity Person = All Store all non-internal attributes of Person entities.

ToDb true
Write microdata entity attributes into database. Important: each microdata entity must have
a unique key. Default is false .

ToCsv true
Write microdata entity attributes and events (if enabled) into csv file(s). each microdata
entity is written in its own file. Default is false .

UseInternal true
Store all non-internal attributes of all entities. NOT recommended for production, use for
debug only. Default is false .

CsvDir path/to/some/directory
Directory where microdata csv file(s) are written, must be an existing directory. Default is
the current directory.

ToTrace true
Write microdata entity(s) attributes and events (if enabled) to model Trace output. Trace
must be enabled to produce any output. Default is false .

Events Birth,Union,Death Write selected events into Trace or csv file.

CsvEventColumn true If true then write event name into csv file. Default is false .

For a complete example of a run ini file, including the [Microdata] section, see OpenM++ ini-file run options.

[back to topic contents]

Run-time settings

Build-time settings which enable a model to output microdata are described in Enabling microdata output. Other build-time options can output
microdata during the simulation of each entity. The available options are:

Option Default Description

microdata_write_on_enter off microdata is written when an entity enters the simulation, before any event occurs in the entity.

microdata_write_on_exit off microdata is written when an entity exits the simulation.

microdata_write_on_event off microdata is written after an event occurs in an entity.

These options can be combined. If none of these options are on no microdata will be written unless model code does so explicitly by calling or
hooking the built-in function write_microdata .

Note that attributes of an entity can change due to events in other linked entities in a model with interacting entities. So, even if
microdata_write_on_event is on , changes in attributes of an entity can be absent from microdata output for that entity. For example, in IDMM , if an

infectious Host A infects Host B through A's social contacts, the event associated with the infection occurs in A and not in B. If one wanted to
output Host microdata at the moment of infection, one could do so by calling output_microdata explicitly in model code.

[back to topic contents]

Under construction

Microdata can be written by calling the built-in entity function write_microdata() from model code, either directly or by using a hook statement.

If a model is not enabled for microdata, calls to write_microdata have no effect.

Modgen-specific: The Modgen build of a cross-compatible model inserts a do-nothing version of write_microdata() into the Modgen-generated C++
code. This allows use of write_microdata in model code without producing C++ build errors in the Modgen build of a x-compatible model.

[back to topic contents]

A key is a unique identifier used to match entities or microdata records across runs. It is a 64-bit value of C++ type uint64_t .

The key for an entity is returned by the entity member function get_entity_key() . If this function is not defined in model code, the OpenM++ compiler
will provide a definition which returns the value of the built-in attribute entity_id . The entity key is described further here.

The key for a microdata output record is produced by the entity member function get_microdata_key() . If this function is not defined in model code,
the OpenM++ compiler will provide a definition which computes and returns the following value:

10000 * get_entity_key() + om_microdata_counter

where om_microdata_counter is an internally-maintained counter of output microdata records for each individual entity. This formula produces unique
microdata keys because it combines the unique entity_id with an entity-specific counter of microdata records output for that entity. Uniqueness is
guaranteed provided that fewer than 10,000 microdata records are output for a single entity.

For example, if microdata is output at each event using the microdata_write_on_event option, the default microdata key would be

entity_id Event get_microdata_key()

42 first 420001

42 second 420002

101 first 1010001

101 second 1010001

The OpenM++ compiler generates C++ code to create and maintain om_microdata_counter only if the get_microdata_key() function has not been
defined for that kind of entity in model code.

Build-time settings

Writing microdata from model code

The microdata key

Note that the entity key from get_entity_key() can be used both to calculate the result of get_microdata_key() and to support local random streams in
model architectures which use both.

Uniqueness of the microdata key is enforced for Database mode, but is not enforced for Text mode.

A model run-time error will occur if uniqueness of the microdata key is violated in Database mode, with log output similar to the following:

2023-01-24 12:22:27.202 Writing microdata into database, run: 102
2023-01-24 12:22:28.525 : UNIQUE constraint failed: Host_g732a1637.run_id, Host_g732a1637.entity_key
2023-01-24 12:22:28.528 Error at microdata: 2100, 100, 3
2023-01-24 12:22:28.559 DB error: UNIQUE constraint failed: Host_g732a1637.run_id, Host_g732a1637.entity_key

The line Error at microdata: 2100, 100, 3 indicates that the record {2100, 100,3} violated key uniqueness. The first value is the non-unique key value,
which is 2100 in this example. The following values are the other attributes of the microdata record with the non-unique key

The case-based model in Example 4 supplies a custom implementation of get_microdata_key() to correctly match Person microdata results between
two runs, because in that model the number of secondary entities in a case can vary between two runs. The time-based model in Example 3 uses
the standard implementation of get_microdata_key() because there are no additions to the starting population of Host entities created at the
beginning of a run, and runs of equal size are being compared.

The following hypothetical definition of get_microdata_key() uses the helper function xz_crc64 to combine the value of get_entity_key() and report_time

to create the microdata key. xz_crc64 creates a 64-bit key using the crc-64 open source checksum (hash) algorithm, and can use one value or
combine multiple values together using successive calls.

uint64_t Host::get_microdata_key()
{
 uint64_t key64 = 0;
 auto entity_key = get_entity_key();
 key64 = xz_crc64((uint8_t*)&entity_key, sizeof(entity_key), key64);
 key64 = xz_crc64((uint8_t*)&report_time, sizeof(report_time), key64);
 return key64;
}

This definition might be used in a model which outputs a microdata record for each entity at each report_time , if the number of entities might vary
from one run to another due to parameter differences (e.g. fertility).

For a model based on a microdata input file where each input record has a unique personal identification number person_id , and in which only a
single microdata record is output for each Person , a suitable definition might look like:

uint64_t Person::get_microdata_key()
{
 uint64_t key64;
 key64 = person_id;
 return key64;
}

[back to topic contents]

Home > Model Development Topics > Model Code

This topic contains general information about the source code of an OpenM++ model. It describes model source code in broad terms, the
contents of the model source code folder, and the Default scenario. It also briefly outlines the build process which transforms model source code
and a Default scenario into an executable and accompanying database.

Coding a model

Code folder and source files

Doc folder and documentation files

Source file content

Default scenario

Model build

Hiding syntactic islands

Modgen-specific: References to Modgen in this documentation refer to the Statistics Canada Modgen↗ platform. In this wiki, a model with
common source code from which either a Modgen executable or an OpenM++ executable can be built is called a cross-compatible model. Wiki
content apecific to existing Modgen users, cross-compatible models, or models originally developed in Modgen is highlighted Modgen-specific in
the text.

OpenM++ models are written in two languages: the OpenM++ language and the C++ language. The OpenM++ language is used to specify the
declarative aspects of a model, for example the model's classifications, parameters, entities, attributes, events, tables, labels, and notes. The
C++ language is used to specify the procedural aspects of a model, for example the sequentially executed statements which change an entity's
attributes when an event occurs in the simulation.

The OpenM++ language consists of declarative statements. The location and ordering of those statements in model source code files is arbitrary
and has no effect on the model specification. This provides a high level of modularity in model source code which can be particularly useful in
large and complex models.

A statement in the OpenM++ language starts with an opening keyword which specifies the nature of the declaration and ends with a closing ; .
The syntax between the opening keyword and the closing ; depends on the nature of the declaration.

For example, the classification keyword is used to declare a named ordered list of symbolic values:

classification SEX //EN Sex
{
 //EN Male
 MALE,

 //EN Female
 FEMALE
};

This example declares an OpenM++ classification named SEX . It has two possible values MALE and FEMALE . The declaration of SEX means that
SEX can be used as the dimension of a parameter or table, or as the type (characteristic) of an attribute of an entity in the simulation.

The OpenM++ language also recognizes specially formatted // and /* ... */ comments. Recognized comments are optional and do not affect the
model specification. They contain textual information stored with the model which can be used to produce more human-readable input and output
and a generated user interface for the model. OpenM++ is multilingual, and the human language of the textual information is specified inside the
comment using a two-letter code.

The //EN comments in the example provide English-language labels for the SEX classification and its values. These labels will appear in the user
interface of the model, for example as row or column headings and labels of multi-dimensional parameters and tables.

Model Code

Topic contents

Coding a model

The OpenM++ language

https://www.statcan.gc.ca/eng/microsimulation/modgen/modgen

The C++ language portion of model code consists mostly or entirely of C++ function definitions. Here's an example:

// The implement function of MortalityEvent
void Person::MortalityEvent()
{
 alive = false;

 // Remove the entity from the simulation.
 Finish();
}

This C++ model code defines the function which implements mortality in the simulation. The Person entity, its attribute alive , its event
MortalityEvent , and the helper function Finish are all declared elsewhere in the OpenM++ language code of the model.

Typically only a small, limited portion of the C++ language is used in model code. Note that it is usually neither useful nor recommended for a
model developer to create C++ classes and class hierarchies in model code. The C++ classes and objects required for simulation are pre-
generated by OpenM++ from the model specification given in the OpenM++ language.

The C++ language elements most used in model code are expressions↗ to compute values, assignments↗ to store those values, if statements↗
to implement branching logic, and for statements↗ or range for↗ statements for iteration. C++ functions↗ are used to specify when events occur
and what happens when they do. Functions are also used to compute derived parameters and derived tables. Functions can also be used
facultatively to organize code in complex models.

The C++ standard library can be used in model code. It includes useful and powerful components such as array↗ and vector↗ in the containers↗
library, and supports string operations.

The limited dialect of C++ used for coding models can be explored by perusing the source code of existing models and referring to
comprehensive C++ documentation↗ when necessary, or to the many C++ tutorials available on the web.

Modgen-specific: Unlike Modgen, OpenM++ does not modify the C++ language portions of model code. This provides logical clarity and allows an
IDE and other tools to function correctly with the C++ code of a model.

Many of the named symbols declared in the OpenM++ code of a model are transformed by OpenM++ into identically named C++ symbols for use
in the C++ code of the model. The alive attribute of the Person entity in the previous example is such a symbol. These C++ symbols can usually
be used transparently in C++ model code even though they may be implemented as more complex C++ objects 'under the hood'. So, when alive

is assigned the value false in the example, the C++ symbol alive will silently implement side-effects to update any tables, derived attributes, or
events which depend on the change in its value. Incidentally, these wrapped objects have no memory overhead (the alive attribute consumes a
single byte of memory) and little computational overhead.

There are some situations where the objects which implement entity attributes can produce unexpected C++ compiler error messages in C++
model code. For more on this issue and how to address it, see Entity Attributes in C++.

OpenM++ ignores function definitions in the C++ language portions of model code, with several exceptions:

Event time function definitions in model code are parsed by OpenM++ to determine which attributes can affect the event time. An event time
function will be called to recompute the event time if any of those attributes change value.

PreSimulation function definitions are recognized by OpenM++ and will be called before the simulation starts. PreSimulation functions are used
to validate input parameters and assign values to derived parameters.

UserTables function definitions are recognized by OpenM++ and will be called after the simulation completes. UserTables functions are used to
compute the values of derived tables.

[back to topic contents]

The source code of an OpenM++ model is in one or more source files (also called modules) located in a single model code folder, eg Alpha2/code

for the Alpha2 model. Each model source file has a name and extension which determine its language and role when the model is built, as
follows:

The C++ language in model code

Model symbols in OpenM++ and C++

Model functions in OpenM++ and C++

Code folder and source files

https://en.cppreference.com/w/cpp/language/expressions
https://en.cppreference.com/w/cpp/language/operator_assignment
https://en.cppreference.com/w/cpp/language/if
https://en.cppreference.com/w/cpp/language/for
https://en.cppreference.com/w/cpp/language/range-for
https://en.cppreference.com/w/cpp/language/functions
https://en.cppreference.com/w/cpp/container/array
https://en.cppreference.com/w/cpp/container/vector
https://en.cppreference.com/w/cpp/container
https://en.cppreference.com/w/

*.h C++ header files included by other source files.

*.cpp C++ source files, can also contain OpenM++ code NOT YET IMPLEMENTED

*.mpp OpenM++ source files, can also contain C++ code

*.ompp OpenM++ source files, can also contain C++ code

Modgen-specific: modgen_*.mpp Modgen source files explicitly ignored by OpenM++

Modgen-specific: Only model source files with the .mpp extension are recognized by Modgen. The names and extensions *.ompp and
modgen_*.mpp allow selected model source code files to be processed exclusively by OpenM++ or exclusively by Modgen. This can be useful in

cross-compatible models. For example, tables which use the median statistic (which is not supported by Modgen) could be declared in a model
source file named OrdinalStatistics.ompp . Those tables would be present in the OpenM++ version of the model, but absent in the Modgen version.
Declaring those tables in a file with extension .ompp means that they will not cause Modgen to stop with a syntax error when building the Modgen
version of the model.

The following model-specific source files must be present:

custom.h C++ header file containing model-specific declarations.

custom_early.h C++ header file containing model-specific declarations early in header file inclusion order.

The following model source files are present, by convention:

ompp_framework.ompp Model-specific source file containing use statements which specify the names of framework source code modules to be
incorporated when the model is built. Framework source code modules are supplied with OpenM++ and are located in the OM_ROOT/use

folder. For more information, see OpenM++ Framework Library.

ompp_options.ompp Model-specific source file containing options statements which specify commonly modified model options, such as Model
Documentation options.

Some source files in the OpenM++ model code folder have fixed names and fixed content. Typically a model developer copies them to the model
code folder from an example model in the OpenM++ distribution, for example from OM_ROOT/models/NewCaseBased/code or
OM_ROOT/models/NewTimeBased/code . They are:

case_based.h Model-independent declaration of a structure present in case-based models, included in custom.h .

Modgen-specific: modgen_case_based.mpp Model-independent implementation of the simulation core of a case-based Modgen model.

Modgen-specific: modgen_time_based.mpp Model-independent implementation of the simulation core of a time-based Modgen model.

[back to topic contents]

The human language documentation of an OpenM++ model can be embedded in the model source code in Label and Note comments or in files
in a single model documentation folder, e.g. RiskPaths/doc for the RiskPaths model. Each model documentation file has a name and extension
which determine its language and role when model documentation is built, for example:

NOTE.SymbolName.EN.md Markdown file documenting the model symbol SymbolName in English.

NOTE.SymbolName.FR.md Markdown file documenting the model symbol SymbolName in French.

LABEL.SymbolName.EN.txt Text file containing the label of the model symbol SymbolName in English.

LABEL.SymbolName.FR.txt Text file containing the label of the model symbol SymbolName in French.

Home.EN.md Markdown file containing the Home topic of the Authored Model Documentation in English.

Home.FR.md Markdown file containing the Home topic of the Authored Model Documentation in French.

TopicName.EN.md Markdown file containing the autonomous authored topic TopicName in English.

TopicName.FR.md Markdown file containing the autonomous authored topic TopicName in English.

*.pdf Auxiliary downloadable PDF documentation file

Doc folder and documentation files

See Model Documentation for more about model documentation.

[back to topic contents]

A model source file can contain only C++ content, only OpenM++ language content, or a mixture of both. OpenM++ uses keywords at the
outermost level of code to recognize OpenM++ syntactic islands which contain declarative information about the model. Here's an example of an
OpenM++ syntactic island in a model source file:

parameters
{
 //EN Annual hazard of death
 double MortalityHazard;
 /* NOTE(MortalityHazard, EN)
 A constant hazard of death results in an exponential
 survival function.
 */
};

This syntactic island starts with the OpenM++ keyword parameters and ends with the terminating ; .

All code outside of a syntactic island is C++ code. When processing .mpp and .ompp model code files, OpenM++ extracts all C++ code found
outside of syntactic islands and assembles it into the single C++ file src/om_developer.cpp for subsequent processing by the C++ compiler. By
default, OpenM++ inserts #line directives↗ into this file so that any errors or warnings from the C++ compiler will refer back to the original model
source file and line rather than to the assembled file src/om_developer.cpp .

When processing a .cpp model code file, OpenM++ processes any syntactic islands, but does not extract C++ code outside of syntactic islands.
This lets one organize all model code into .cpp files in the model code folder, and pass those files directly to the C++ compiler in Step 2 of the
model build process (see below). Alternatively one could organize all OpenM++ language content in .ompp files, and all C++ language content in
.cpp files. NOT YET IMPLEMENTED

C++ directives can be inserted into model code to improve the usability of an IDE. For more information, see the subtopic Hiding syntactic islands.

Modgen-specific: Modgen processes only .mpp files, not .cpp files.

[back to topic contents]

The model build process requires a starting scenario containing values for all model input parameters, which is normally named Default . The
parameter values for the Default scenario are in the model subfolder parameters/Default . It is also possible to publish multiple scenarios, not just the
Default scenario, when a model is built, see Model Run: How model finds input parameters.

Selected Default parameters can be made invariant and incorporated directly into the model executable. This is done either by placing parameter
files into the model subfolder parameters/Fixed , or using parameters_retain or parameters_suppress statements in model code.

The following file types for input parameters are recognized:

.dat Contains values for one or more parameters in Modgen format

.odat Contains values for one or more parameters in Modgen format

.csv Contains values for one parameter in csv format

.tsv Contains values for one parameter in tsv format

Modgen-specific: Only parameter files with the .dat extension are recognized by Modgen. The .odat extension lets a selected parameter file be
processed only by OpenM++. This can be useful in cross-compatible models. It is used in OpenM++ sample cross-compatible models to provide
values for parameters which are implemented by scenario properties in Modgen. For example, for the NewCaseBased model, the parameter
input file OM_ROOT/models/NewCaseBased/parameters/Default/Framework.odat provides values for the SimulationSeed and SimulationCases parameters. The
file OM_ROOT/models/NewCaseBased/parameters/Default/scenario_info.odat contains no parameters but provides a label and note for the scenario. Those
structured comments would generate an error in Modgen if they were in a .dat file.

[back to topic contents]

Source file content

Default scenario

Model build

https://en.cppreference.com/w/cpp/preprocessor/line

The model build process uses the model source code and the Default scenario to construct an executable and accompanying database which
implement the model. The model build process can be launched by issuing a command inside an Integrated Development Environment (IDE)
such as Visual Studio on Windows, or Visual Studio Code on Linux or MacOS. The build process can also be launched by a command line utility
such as msbuild on Windows or make in Linux. For more information please see Model development in OpenM++. The model build process
consists of two steps. Bpth steps can produce warning and error messages. These messages explain the nature of the warning or error and
contain the file and line in the model source code. In an IDE, these messages can usually be clicked to navigate directly to the error or wanring
location in the IDE code editor.

Many aspects of the OpenM++ framework can be adapted or replaced to work differently or to support other environments. It is also possible to
publish models to an existing database and to move or copy published models and scenarios from one database to another. For more
information, see subtopics at Home.

OpenM++ reads and parses all files in the model source subfolder code and the files for the Default scenario in parameters\Default (and possibly in
parameters\Fixed), checks for errors, and performs the following steps:

Extracts the C++ portions of model code from all .mpp and .ompp files and assembles them into a single C++ source file.

Generates several C++ header files and a C++ source file which implements the model specification.

Generates a C++ source file which contains the values of invariant parameters.

Creates a new empty database for the model.

Publishes the model's metadata to the database, including classifications, parameter properties, table properties, parameter and table
hierarchies, labels and notes, etc.

Publishes the Default scenario to the database, ie values of all modifiable parameters in the Default scenario.

After Step 1 completes, the C++ compiler is invoked. The input to the C++ compiler consists of all C++ files in the model source code folder
(*.cpp , *.h), together with the C++ files generated by OpenM++ in Step 1. Additional general purpose code is included from the OpenM++
distribution and from the C++ standard library.

The results of the C++ compilation are linked with standard C++ libraries and an OpenM++ support library to create the model executable.
Because OpenM++ integrates with C++, it is possible to link in other components such as a math library, or even a complete additional model,
possibly written in a different language like Fortran.

[back to topic contents]

Modern IDEs have powerful abilities to parse and navigate C++ code, e.g. context sensitive popup menus which identify all uses of a symbol in a
project. However, these abilities require that the project consist of valid C++. OpenM++ syntactic islands are not valid C++, and will cause errors
when processed by an IDE (or an extenral tool like doxygen). Syntactic islands can be hidden from a C++ compiler or IDE by using C++
preprocessor conditional inclusion↗ directives. Here's an example showing how the syntactic island in the earlier example can be hidden from the
C++ compiler or IDE.

#if 0 // Hide from C++ compiler or IDE
parameters
{
 //EN Annual hazard of death
 double MortalityHazard;
 /* NOTE(MortalityHazard, EN)
 A constant hazard of death results in an exponential
 survival function.
 */
};
#endif // Hide from C++ compiler or IDE

OpenM++ will still process the syntactic island because it ignores C++ preprocessor directives.

An IDE may display a hidden syntactic island differently as a visual cue that it's an inactive code block, for example by reducing the opacity of
characters in the block to make them fade into the background compared to normal characters. That can make it more difficult to read and edit
code in syntactic islands.

Step 1: OpenM++ build

Step 2: C++ build

Hiding syntactic islands

https://en.cppreference.com/w/cpp/preprocessor/conditional

To change the display of inactive code blocks in Visual Studio 2022, do
Tools > Options > Text Editor > C/C++ > View
and modify the settings in 'Inactive Code' as desired.

C++ code in model code files will not be considered valid by a C++ compiler or IDE if a required master header file is missing. That's because
C++ requires that a symbol be declared before being used in code. That requirement can be met by including the optional include file
omc/optional_IDE_helper.h at the top of the model code file, as follows:

#include "omc/optional_IDE_helper.h" // help an IDE editor recognize model symbols

Modgen-specific: The optional helper include file omc/optional_IDE_helper.h is x-compatible and will not interfere with a Modgen build.

[back to topic contents]

Home > Model Development Topics > Model Documentation

This is the main topic on model documentation.

Authored Model Documentation: The autonomous authored component of model documentation

Generated Model Documentation: The Symbol Reference component of model documentation

Model Languages: The human languages supported by a model

Model Symbols: Symbols in model code and in the user interface

Symbol Labels and Notes: Human-language labels and notes for model symbols

Introduction and outline

Use cases Use cases for model documentation: end users, model developers, content developers

The two components of model documentation Autonomous authored and the generated Symbol Reference

Building model documentation How to build (or not) model documentation and control its content

Using model documentation UI access, stand-alone file, searching, printing

Exploring internals using doxygen Going down the rabbit hole of OpenM++ internals

For an immediate hands-on tour of model documentation, build the RiskPaths model, open the model UI, and click on the 'book' icon. For a model
or content developer perspective, open the RiskPaths project and explore the contents of the doc sub-directory containing markdown content. The
example RiskPaths model documentation is configured for model and content developers.

Model documentation has multiple audiences and multiple use-cases, and a one-size-fits-all approach is unlikely to match all of these needs well.
The architecture of Model Documentation in OpenM++ is designed for flexibility and easy reconfiguration to meet one need or another, for the
same model.

This topic starts with a general exposition on the principal use cases for model documentation. It then describes the two main components of
model documentation and how they are structured into topics. The next two subtopics describe how to build and use model documentation. A
final stand-alone subtopic describes how doxygen can be used to explore model internals, including components normally hidden from model
developers.

[back to topic contents]

Model documentation has several different audiences:

model users

model developers

content developers

Model users need to understand the model in general, including its

substance

methods

intended uses

Model Documentation

Related topics

Topic contents

Introduction and outline

Use cases

Model users

limitations

Users who run the model also need to understand the meaning and proper use of the model symbols exposed through the user interface, run
downloads, or through external tools like R or Python. Those symbols consist of exposed

input parameters

output tables

entity attributes in microdata

enumerations associated with exposed parameters, tables, and attributes.

Typically, only a subset of model symbols are exposed to model users. Model users access model documentation through the model UI, or
perhaps through a stand-alone PDF or HTML 'User Edition' file built and provided by a model developer.

[back to use cases]
[back to topic contents]

Model developers need to understand all aspects of the model:

probe the model to understand or debug issues

understand internal relationships and dependencies among symbols and model code

develop new functionality coherent with existing code

Model developers access model documentation through the model UI, or perhaps by directly opening a previously built HTML 'Developer Edition'
file. They may also access model documentation through an IDE when working with the model source code. Typically, model developers access
all of the models symbols, including symbols not directly relevant to model users such as entity sets, functions, and model code modules, as well
as parameters, tables, entity attributes, and enumerations not visible to users in the UI.

[back to use cases]
[back to topic contents]

Content developers use model documentation to review and author model documentation, focusing on

introducing the model to new users

presenting the subject matter of the model

reviewing the coherence and coverage of model documentation

[back to use cases]
[back to topic contents]

Model documentation consists of two components which can work independently or synergistically:

1. A configurable Symbol Reference of generated cross-referenced content on parameters, tables, enumerations, etc., available in either a
User Edition (default) or a Developer Edition.

2. Optional autonomous authored model documentation, organized as a collection of distinct topics, which can link to each other, to topics in
the Symbol Reference, or to optional downloadable supporting files.

Model documentation can consist of one of these two components, or both.

Each component consists of a collection of topics, where each topic can be the target of a link from elsewhere in the model documentation.

A topic in the Symbol Reference is either a model symbol (the topic name / link target is the symbol name), or one of several fixed topics used to
navigate the Symbol Reference. The main topic of the Symbol Reference contains some tombstone information about the model and a table of
links to several navigation aid topics. By default, the Symbol Reference is targeted to a model user, so it documents only those symbols which
are exposed in the model UI.

Model developers

Content developers

The two components of model documentation

A topic in autonomous authored documentation is a .md markdown file in the model's doc sub-directory (the topic name / link target is the stem
of the filename of the corresponding .md markdown file). If present, the Home authored document becomes the main (first) topic of model
documentation. Other autonomous authored topics follow in lexicographic order by topic name (same order as filename).

[back to topic contents]

By default, model documentation is built and assembled as an intrinsic step in the model build. Building model documentation for a large model
can take a noticeable amount of time, so a model developer might want to turn it off to speed development cycles, and turn it back on from time
to time to refresh the Developer Edition of the Symbol Reference for their own use, or to build a final User Edition version of model
documentation for a model release.

In Visual Studio, the Model project OpenM++ property page contains an option to turn building model documentation on or off:

In development environments using make , setting the MODEL_DOC_DISABLE variable will disable the model documentation build step.

The most recently built version of model documentation will continue to be available from the model UI, even after the model is rebuilt. If model
documentation is disabled in the build, its content may not reflect the model code, and it may differ from context-sensitive help displayed in the UI.

Symbol labels and notes for symbols exposed to the user through the UI are always published, independent of build settings for model
documentation. The model UI uses those labels and notes to display up-to-date context-specific information on exposed parameters, tables,
attributes, and for any enumerations used by those exposed symbols.

Which of the two documentation components are built and assembled into the final model documentation can be controlled using the following
options in model code, e.g. in the model code module code/ompp_options.ompp :

options authored_documentation = on;
options generated_documentation = on;

By default, both options are on , and if the model has no autonomous authored content, model documentation will consist of only the generated
Symbol Reference component.

The content of the generated Symbol Reference, including the choice of User Edition or Developer Edition, can be controlled through options in
model code, as described in customizing the Symbol Reference.

[back to topic contents]

Building model documentation

For each model language, the two components of model documentation are built and assembled into one .html file for each model language. The
UI links to this file when a user requests model documentation by clicking the 'book' icon. The 'book' icon is available in several places in the UI:

the landing page which lists available models

the title bar displayed at the top of all pages

the information pop-up for a symbol

Model documentation can take a noticeable time to load in a browser if the model is large and complex, and if the Developer Edition of the
Symbol Reference is selected.

From a browser, the entire model documentation can be searched using the browser's Find on page command or Ctrl-F key combination to identify
all occurrences of a word or phrase in the model documentation.

From a browser, the model documentation can be converted from .html to .pdf format by invoking the browser's Print command or Ctrl-P key
combination and selecting pdf as the target printer. Model documentation is designed so that each topic starts on a new page in the resulting
.pdf file (only tested on the Microsoft Edge browser).

The .html files containing the model documentation can be accessed directly in the file system used to build the model. They are located in a doc

sub-directory of the bin directory of the model (not to be confused with the doc sub-directory of the model root, which contains authored
content). For RiskPaths , the files are

RiskPaths/.../bin/doc/RiskPaths.doc.EN.html (English)
and
RiskPaths/.../bin/doc/RiskPaths.doc.FR.html (French)

Label and note information for symbols exposed in the UI are always written to the model database for access by the UI, external utilities like
dbcopy , the oms business layer, and (possibly) external packages written R or python using oms .

[back to topic contents]

The wiki subtopic Background on doxygen mentions that the doxygen application can generate hyperlinked HTML documentation for a C++
project. After the OpenM++ compiler has run and produced the C++ code to implement a model, a complete C++ project for that model exists.
Doxygen can be run with this project as input to create hyperlinked HTML documentation of the C++ code of the model. An example doxygen
input file for RiskPaths is located at OM_ROOT/models/RiskPaths.doxyfile . Below is a screenshot of a browser displaying the C++ documentation
produced by doxygen for RiskPaths :

Using model documentation

Exploring internals using doxygen

The screenshot shows information for the Person member function timeUnion1DissolutionEvent() which is an event time function supplied in model
code. Note that hovering over the symbol union_duration in the model source code gives summary information about the symbol, a bit like the
display in the Visual Studio IDE. Note also the References section below the function body, which lists all non-local variables used in the function
with each hyperlinked to its section elsewhere in the doxygen-generated HTML documentation.

The documentation generated by doxygen for RiskPaths is based not just on model code. It is also based on C++ code generated by the
OpenM++ compiler and fixed framework OpenM++ code. That code is rarely pertinent to a model developer. Future enhancements may remove
those superfluous portions from doxygen output and add customized doxygen sections targetted to model developers.

[back to topic contents]

Home > Model Development Topics > Model Languages

The human languages supported by a model.

This topic is under construction and/or revision.

Authored Model Documentation: The autonomous authored component of model documentation

Generated Model Documentation: The symbol reference component of model documentation

Model Symbols: Symbols in model code and in the user interface

Symbol Labels and Notes: Human-language labels and notes for model symbols

Introduction and outline

The languages statement

Content to follow.

[back to topic contents]

Each human language supported by a model has an associated language code given in the languages statement of the model.

A model is required to have a languages statement which declares at least one language.

For example,

languages
{
 EN, // English
 FR // Français
};

declares two languages EN and FR . These codes can be used in model code to provide language-specific documentation of model symbols.
OpenM++ imposes no limitations on language codes, but it is strongly recommended to use the two-letter prefix of standard locale codes, as in
the example above. Using upper case language codes helps them stand out in model code. So, the suggested code for Spanish is ES , and for
German DE . The OpenM++ UI renders model-independent text, e.g. the word Run , using a human-language specific library. Libraries for EN

and FR are currently available. If there is no library for a language specified in a model, the UI will display model-specific content in that
language, but will fall back to one of the available libraries for model-independent text.

The first language listed in the languages statement is the default language of the model, which in this example is EN . The default language of the
model is usually the language in which the source code is written, i.e. the choice of symbol names and the language of explanatory code
comments. The language presented initially in the UI might not be the default language, but instead the language of the locale on the end user's
device. An end user can switch languages dynamically in the UI.

The trailing comment after each language code provides a language-specific label for the language code declared previously in the line. The UI
uses these labels to display human-language versions of the model's available languages when a user selects or changes the UI language.

[back to topic contents]

Model Languages

Related topics

Topic contents

Introduction and outline

The languages statement

Home > Model Development Topics > Model Localization

This topic describes how to provide translations for model-specific run-time messages.

Multilingual Support forthcoming content

Quick start

How model finds translated message

Model developer: How to mark strings for translation in model code

You can provide translated messages for your model by editing modelName.message.ini file located in the same directory where modelName.exe is.

For example:

dir /B openmpp_win_20180205\models\bin
....
modelOne.exe
modelOne.ini
modelOne.message.ini
modelOne.sqlite

modelOne.message.ini is translated messages for modelOne.exe

Message.ini file must be UTF-8 encoded and it contain model translated messages:

;
; modelOne localized messages
;

[FR]
Run %d = Exécution: %d

[fr-CA]
Run %d = Exécution: %d
;
; Example of multi-line translated message:
;
"Scenario processing" = "\
 Traitment \
 du scénario\
 "

[en]
; Model = Model

If translation the same as original message you can exclude it, e.g.: Model = Model is not required.

[back to topic contents]

At start model determine list user preferred languages. For example if current environment is French Canadian and model default language is EN
then language list will be: (fr-ca, fr, en) .

User language preference can be changed in Windows Control Panel or by Linux LANG environment variable. You can override environment
language by using model command-line or ini-file argument:

modelOne.exe -OpenM.MessageLanguage es-EC

To find translated message model does lookup in:

Model Localization

Related topics

Topic contents

Quick Start

How model finds translated message

modelName.message.ini

database table model_word

database table lang_word Search done in order of user preferred languages.

For example, if modelOne.message.ini is same as above and database table model_word contains entry:

fr-CA Done. Fini.

Then model messages in French Canadian environment can be similar to:

2014-03-17 17:14:24.0023 Model: modelOne
2014-03-17 17:14:24.0070 Exécution 101
....
2014-03-17 17:14:24.0179 Fini.

As you can see for current user language fr-CA model found two messages translated in "generic fr " French: "Exécution" and "Fini", however
"Model" still untranslated. To fix this you can update modelOne.message.ini by adding:

[fr-CA]
Model = Modèle

Then result would look like:

2014-03-17 17:14:24.0023 Modèle: modelOne
2014-03-17 17:14:24.0070 Exécution 101
....
2014-03-17 17:14:24.0179 Fini.

[back to topic contents]

Omc model compiler automatically include first "const char *" argument of

theLog->logMsg("some message");

theLog->logFormatted("some format %d %g %s",....);

macro LT("some message")

WriteLogEntry("some message");

WriteDebugLogEntry("some message");

WarningMsg("some message");

ModelExit("some message"); into output model.message.ini file, which can be used as translation starting point.

If your source code directory already contains translated code/model.message.ini then such file is merged with newly added model messages into
output bin/model.message.ini , which you can forward to translation team.

It is possible to use macro LT("something") in order to build concatenated message, however LT is "strictly inline" because it returns temporary
const char * pointer. As result following will crash your model:

const char * myBadDay = LT("nice day");
if (myBadDay // memory access violation, model crash

How to avoid string concatenation. String concatenation considered as bad practice by any translation guide. For example, if you have
something like:

string msg = LT("Table has ") + std::to_string(rowCount) + LT(" rows");
theLog->logMsg(msg.c_str());

then try to replace it with:

Model developer: How to mark strings for translation in model code

theLog->logFormatted("Table has %d rows", rowCount);

Non-translatable strings. Not every output in your model you want to translate For example, you may don't want to translate your model trace
output:

WriteDebugLogEntry(NO_LT("------------"));
WriteDebugLogEntry(NO_LT("{1, 2, 3, 4}"));
WriteDebugLogEntry(NO_LT("------------"));

Please use NO_LT macro to disable unnecessary translation.

[back to topic contents]

Home > Model Development Topics > Model Metrics Report

This topic describes and illustrates the Model Metrics Report produced by the OpenM++ compiler. The report summarizes code inputs and code
outputs, model inputs and model outputs, model symbols, and maintained dependencies.

Model Code: How model code is organized into modules, syntactic islands, and C++

Model Resource Use: Activating and interpreting information about model resource use

Introduction

Code input

Code output

Model input

Model output

Model Symbols

Published Symbols

Maintained dependencies

The OpenM++ compiler (omc) produces the Model Metrics Report in the file MODEL/.../src/ModelMetrics.txt . The report consists of 7 summary tables
about the model's

source code base

user interface

symbols

implicit causal web

The Model Metrics Report is about the model, not about a run of the model. To produce metrics for a run of the model, see Model Resource Use.

The report begins with a title line like

Model Metrics for RiskPaths 2023-10-13

which gives the model name and the date of compilation.

The remainder of this topic describes each of the 7 tables in turn using the RiskPaths model as an example.

[back to topic contents]

The CODE INPUT table is a summary of the model code processed by omc .
Here it is for RiskPaths :

Model Metrics Report

Related topics

Topic contents

Introduction

Code input

+-----------------------------------+
| CODE INPUT (model source code) |
+-----------------+-------+---------+
| Source | Files | Lines |
+-----------------+-------+---------+
| Model-specific | 14 | 1504 |
| Islands | | 286 |
| C++ | | 1218 |
| Common | 9 | 1707 |
| Islands | | 11 |
| C++ | | 1696 |
| Both | 23 | 3211 |
| Islands | | 297 |
| C++ | | 2914 |
+-----------------+-------+---------+
| Total | 23 | 3211 |
+-----------------+-------+---------+
Note: Does not include parameter data.

The table groups the model source code files into two categories:

model-specific files in the MODEL/code folder

common files supplied by OpenM++ and incorporated into the model by use statements

The model-specific RiskPaths source code consists of 1,504 lines in 14 .mpp and .ompp files. An example of one of those 14 files is
RiskPaths/code/PersonCore.mpp , which implements core functionality for the Person entity.

The common source code in RiskPaths consists of 1,707 lines in 9 .ompp files specified by use statements. An example of one of those 9 files is
OM_ROOT/use/random/random_lcg41.ompp , which implements a family of simple and fast random number generators.

Common source code files are specified in use statements, which in RiskPaths are in the model-specific source code file
RiskPaths/code/ompp_framework.ompp . Common source code files can also contain use statements.

The MODEL CODE table assigns each line of a source code file to one of 2 categories:

Syntactic island

C++ code

A syntactic island is a section of declarative code written in the ompp language. Here's an example from RiskPaths - the declaration of the table
T02_TotalPopulationByYear :

table Person T02_TotalPopulationByYear //EN Life table
{
 //EN Age
 integer_age *
 {
 unit, //EN Population start of year
 duration() //EN Average population in year
 }
};

A syntactic island starts with a keyword, e.g. table , and ends with a matching ; .

Source code which is not part of a syntactic island is C++ code. Model C++ code implements C++ functions associated with events, derived
parameters, and derived tables. It can also implement other functions to support the model.

Here's an example of model C++ code from RiskPaths - the C++ function which implements the DeathEvent :

void Person::DeathEvent()
{
 life_status = LS_NOT_ALIVE;
 Finish();
}

For more on model source code, see Model Code.

The CODE INPUT table does not report on parameter value files read by omc to publish the starting Default scenario/set for the model. For
RiskPaths those are the 2 files RiskPaths.dat and Framework.odat in the folder RiskPaths/parameters/Default .

[back to topic contents]

The CODE OUTPUT table contains summary information about C++ code generated by omc .
Here it is for RiskPaths :

+---+
| CODE OUTPUT (generated C++) |
+-----------------------+-------+---------+
| Description | Files | Lines |
+-----------------------+-------+---------+
| Header (.h) | 3 | 1395 |
| Implementation (.cpp) | 1 | 3766 |
+-----------------------+-------+---------+
| Total | 4 | 5161 |
+-----------------------+-------+---------+
Note: Table does not include C++ initializers for burned-in parameter data.

omc uses the declarative model specification in syntactic islands to generate procedural C++ code which implements the model specification. For
RiskPaths , the 297 lines in syntactic islands which specify the model are used by omc to generate the 5,161 of C++ code which implement the

model. The large difference between the # of lines of input declarative code and the # of lines of output procedural code reflects the conciseness
and power of the ompp declarative language.

Generally, model developers don't need to examine generated C++ code because it just works, but here's a peek at it anyway. The following 2
extracts show the code generated by omc for the internal function om_side_effects_age_status , one of the C++ functions used to implement
RiskPaths .

The function is declared in the generated header file RiskPaths/.../src/om_declarations.h and looks like this:

// model entity classes
class Person : public Entity<Person>
{
public:
 ...
 /// Implement side effects of changing age_status in entity Person.
 void om_side_effects_age_status(int om_old, int om_new);
 ...
};

The function is defined in the generated implementation file RiskPaths/.../src/om_definitions.cpp and looks like this:

void Person::om_side_effects_age_status(int om_old, int om_new)
{

 // Code Injection: group=8, injector=formation_hazard
 // Maintain identity for 'formation_hazard'
 formation_hazard_update_identity();

 // Code Injection: group=8, injector=preg_hazard
 // Maintain identity for 'preg_hazard'
 preg_hazard_update_identity();

 // Code Injection: group=10, injector=FirstPregEvent
 // Recalculate time to event FirstPregEvent
 if (om_active) om_FirstPregEvent_om_event.make_dirty();

 // Code Injection: group=10, injector=Union1FormationEvent
 // Recalculate time to event Union1FormationEvent
 if (om_active) om_Union1FormationEvent_om_event.make_dirty();
}

The generated function om_side_effects_age_status handles the side-effects of a change in the age_status attribute of the Person entity. It is
automatically called if the value of age_status changes during an event in a run, and when called it

updates the identity attributes formation_hazard and preg_hazard because their declarations in syntactic islands use age_status .

marks for recalculation the future times of the events FirstPregEvent and UnionFormationEvent because the time functions of those events use
age_status , which could affect those future times.

These 4 actions in om_side_effects_age_status are examples of Maintained dependencies, which have a dedicated table of their own in the Model
Metrics report.

This example shows that the C++ code generated by omc contains comments as well as code and is formatted for readability. This can help to
understand the generated code if there's ever a need to examine or trace into it in a debug session of a model.

Code output

omc also generates, in the output C++ header file MODEL/.../src/om_declarations.h , doxygen brief descriptions for model symbols such as
classifications, ranges, partitions, parameters, and attributes. For example, the generated doxygen brief description for the age_status attribute
looks like this:

 /// attribute(identity) int: Current age interval
 age_status_om_type age_status;

The generated doxygen brief description which starts with /// says that age_status is an attribute, more specifically an identity attribute, that its
type is int , and its label in the model's default human language is Current age interval . Doxygen brief descriptions are automatically recognized by
the Visual Studio and VSCode IDEs, and those IDEs display a popup with the doxygen brief description for a symbol when the cursor is hovered
over that symbol name in model C++ source code. For more, see Doxygen brief descriptions for model symbols.

omc transforms burned-in parameter values to C++ initializers in the output file MODEL/.../src/om_fixed_parms.cpp . The CODE OUTPUT table does not
report on this file or its contents.

[back to topic contents]

The MODEL INPUT table provides summary information about the model's input parameters. It reports counts of parameters and counts of
parameter cells.

MODEL_INPUT classifies parameters into 4 mutually exclusive categories:

Visible parameters, which are immediately available in the UI.

Hidden parameters, which are made visible in the UI when the user clicks a reveal button.

Burned-in parameters, which have fixed values and are absent from the model database and UI. A parameter is burned into the model
executable if its Default value file is located in the Fixed folder, or if it was removed from the model database and UI by a suppress_parameters

or retain_parameters statement.

Derived parameters, which are computed by model-specific code during run initialization.

Here's the MODEL INPUT table for RiskPaths :

+----------------------------------+
| MODEL INPUT (parameters) |
+---------------+-------+----------+
| Kind | Count | Cells |
+---------------+-------+----------+
| Visible | 2 | 18 |
| Hidden | 7 | 133 |
| Burned-in | 0 | 0 |
| Derived | 0 | 0 |
+---------------+-------+----------+
| Total | 9 | 151 |
+---------------+-------+----------+
Note: Burned-in includes fixed and suppressed parameters.

The table shows that RiskPaths presents a highly simplified UI to users by hiding all but 2 parameters. The 2 visible parameters contain 18 values
(they're arrays). The remaining parameters are hidden but can be examined and modified by a user by clicking the reveal button in the UI. This
design reflects that RiskPaths was used as a hands-on simple example in a demography course.

[back to topic contents]

The MODEL OUTPUT table provides summary information about the model's output tables. It reports counts of tables and counts of table cells.

MODEL_OUTPUT classifies tables in two ways:

Entity/Derived:

Entity tables are declared in model-specific syntactic islands. They are computed dynamically during a run.

Derived tables are computed by model-specific C++ code after the simulation phase completes.

Visible/Hidden:

Model input

Model output

Visible tables are immediately available in the UI after a run completes.

Hidden tables are made visible in the UI when the user clicks a reveal button.

Here's the MODEL OUTPUT table for RiskPaths :

+----------------------------------+
| MODEL OUTPUT (tables) |
+---------------+-------+----------+
| Kind | Count | Cells |
+---------------+-------+----------+
| Entity | | |
| Visible | 2 | 205 |
| Hidden | 5 | 148 |
| Derived | | |
| Visible | 0 | 0 |
| Hidden | 0 | 0 |
| Both | | |
| Visible | 2 | 205 |
| Hidden | 5 | 148 |
+---------------+-------+----------+
| Total | 7 | 353 |
+---------------+-------+----------+
Note: Cells includes margins and expression dimension.

For didactic purposes, RiskPaths shows only 2 key tables in the UI when a run completes. However, all tables in RiskPaths can be made visible
and explored in the UI. No derived tables were required in RiskPaths , so those rows are zero in the report.

[back to topic contents]

The MODEL SYMBOLS table reports counts of all symbols in syntactic islands by category, together with counts of associated labels and notes in
the model's default human language.

Some model symbols are given names in the model code, such as the table T02_TotalPopulationByYear in the example in Code input. Some model
symbols are declared positionally in the model code with no name, such as the expression dimension of that table. Other model symbols are
declared when used, such as the derived attribute duration(parity_status,PS_CHILDLESS) which automatically maintains a running sum of the time a
Person has spent in the PS_CHILDLESS state.

Here's the MODEL SYMBOLS table for RiskPaths :

Model Symbols

+---+
| MODEL SYMBOLS |
+-------------------------+-------+-------+-------+
| Description | Count | Label | Note |
+-------------------------+-------+-------+-------+
| Language (human) | 2 | 0 | 0 |
| Enumeration | | | |
| Classification | 4 | 4 | 0 |
| Level | 12 | 12 | 0 |
| Range | 1 | 1 | 0 |
| Partition | 4 | 4 | 0 |
| Aggregation | 0 | 0 | 0 |
| Input/Output | | | |
| Parameter | 9 | 9 | 0 |
| Dimension | 7 | 7 | 0 |
| Group | 3 | 3 | 0 |
| Table | 7 | 7 | 0 |
| Dimension | 13 | 6 | 0 |
| Expression | 13 | 13 | 0 |
| Group | 3 | 3 | 0 |
| Import | 0 | 0 | 0 |
| Entity | | | |
| Kind | 1 | 0 | 0 |
| Event | 7 | 0 | 0 |
| Attribute | 38 | 13 | 0 |
| Built-in | 6 | 0 | 0 |
| Simple | 5 | 5 | 0 |
| Identity | 13 | 8 | 0 |
| Derived | 14 | | |
| Link | 0 | 0 | 0 |
| Multilink aggregate | 0 | | |
| Function | 2 | 2 | 2 |
| Multilink | 0 | 0 | 0 |
| Array | 0 | 0 | 0 |
| Foreign | 0 | 0 | 0 |
| Entity set | 0 | 0 | 0 |
| Dimension | 0 | 0 | 0 |
+-------------------------+-------+-------+-------+
| Total | 126 | 84 | 2 |
+-------------------------+-------+-------+-------+
| Supplementary Info | | | |
| Random streams | 6 | | |
| Eligible microdata | 0 | | |
+-------------------------+-------+-------+-------+
Notes: Parameter includes derived parameters.
 Table > Dimension includes the expression dimension.
 Entity > Attribute > Identity includes those generated from filters.
 Entity > Function does not include event time and implement functions.

The RiskPaths model is relatively simple, and contains only 126 symbols in syntactic islands.

The Eligible microdata row has a count of 0 because RiskPaths does not enable microdata output. For more, see Microdata Output.

[back to topic contents]

The PUBLISHED SYMBOLS table is similar to MODEL SYMBOLS but reports only on symbols which are published to the model database and visible to
model users in the UI, exported model metadata, or run data. Model code can suppress or retain parameters and tables to create a trimmed down
model for publishing, while full preserving model logic. For more on that, see the subtopic Model trim down.

Here's the PUBLISHED SYMBOLS table for RiskPaths :

Published Symbols

+---+
| PUBLISHED SYMBOLS |
+-------------------+-------+-------+-------+
| Description | Count | Label | Note |
+-------------------+-------+-------+-------+
| Language (human) | 2 | 0 | 0 |
| Enumeration | | | |
| Classification | 2 | 2 | 0 |
| Level | 8 | 8 | 0 |
| Range | 1 | 1 | 0 |
| Partition | 4 | 4 | 0 |
| Input/Output | | | |
| Parameter | 9 | 9 | 0 |
| Dimension | 7 | 7 | 0 |
| Group | 3 | 3 | 0 |
| Table | 7 | 7 | 0 |
| Dimension | 13 | 6 | 0 |
| Expression | 13 | 13 | 0 |
| Group | 3 | 3 | 0 |
| Import | 0 | 0 | 0 |
+-------------------+-------+-------+-------+
| Total | 72 | 63 | 0 |
+-------------------+-------+-------+-------+
Note: Table > Dimension includes the expression dimension.

The table shows that RiskPaths supplies labels for almost all published model symbols, which can help model users navigate and understand
model inputs and outputs. RiskPaths eschews the use of notes, which would have been viewable with a click in the UI, providing additional
information about the model's parameters and tables.

This table reveals a couple of minor issues in RiskPaths . First, human-language labels for the 2 languages declared in RiskPaths (EN and FR)
are absent for the model's default human language. This causes OpenM++ to present language codes rather than language names in the UI for
switching languages. Second, 7 table dimensions lack labels in the model's default language, which causes omc to generate fall-back labels
mechanically.

[back to topic contents]

As described in Code input, the ompp language is declarative. Here again is the declaration of the table T02_TotalPopulationByYear :

table Person T02_TotalPopulationByYear //EN Life table
{
 //EN Age
 integer_age *
 {
 unit, //EN Population start of year
 duration() //EN Average population in year
 }
};

The resulting table has 101 rows for integer age and 2 columns for the computed expressions. Whenever a Person has a birthday and integer_age

changes, the cell in T02_TotalPopulationByYear to which they are contributing changes and the table must be updated. In other words, there is a
dependency between integer_age and T02_TotalPopulationByYear .

The example in Code output illustrates other kinds of dependency, where changes in the age_status attribute requires updating the identity
attributes formation_hazard and preg_hazard and and recalculating the events FirstPregEvent and Union1FormationEvent .

To implement the model specification, omc generates C++ code which maintains all such dependencies, both direct and indirect. The MAINTAINED

DEPENDENCIES table groups and counts these dependencies by category.
Here's it is for RiskPaths :

Maintained dependencies

+----------------------------+-------+
| MAINTAINED DEPENDENCIES |
| (in generated C++ runtime code) |
+----------------------------+-------+
| Dependency | Count |
+----------------------------+-------+
| Reciprocal link | 0 |
| Attribute maintenance | |
| Identity | 18 |
| Derived | 23 |
| Multilink aggregate | 0 |
| Table dimension/filter | 8 |
| Set dimension/filter/order | 0 |
| Event maintenance | 17 |
+----------------------------+-------+
| Total | 66 |
+----------------------------+-------+

The table shows that the implicit causative web in RiskPaths contains 17 dependencies between attributes and events.

RiskPaths is a simple model with only 286 lines of model code in syntactic islands. Nevertheless, it has 66 dependencies which are automatically
maintained by the C++ code generated by omc .

[back to topic contents]

Home > Model Development Topics > Model Resource Use

This topic describes how to activate and interpret reports on run-time computation and memory use.

Model Code

Introduction and Background

Syntax and Use How to activate and use

Illustrated Reference Illustrated reference of each report use table

Appendix The complete report used in the illustrations (over 500 lines)

OpenM++ models can be demanding applications for processing and memory use. The resource_use option collects and reports information which
can help model developers identify areas where efficiency can be improved. The reports can also sometimes identify model anomalies revelaed
by unusually high (or low) resource use. For example, the reports can identify an event never occurs, or an an event with an anomalously high
event frequency per entity.

The following subsections provide background on entities, multilinks, entity tables, sets, and events which may be helpful in understanding
resource use reports.

An entity of a given type such as a Person in the RiskPaths model consists of a block of memory which holds the values of attributes and other
data members. Each type of entity has a fixed size. For efficiency, entities which leave the simulation are placed in a pool for potential reuse. As a
result, the number of activated entities (entities which enter the simulation) can be larger than the number of allocated entities (entity objects
consuming memory).

A multilink is an attribute of an entity, but the linked entities in that multilink are stored outside the entity. The number of entities in a multilink is
variable. The value of an operation on a multilink (such as sum_over) is held in an attribute of the entity.

The cells of an entity table are in memory outside of entities. Each cell contains accumulators to which entity increments are pushed during the
simulation. Each entity contains an Increment member for each table which manages the entity's current contribution to the table. Additional
members in the entity may be required by a table, for example an identity attribute for the table filter, the lagged value of an attribute, the value of
an attribute at the start of the current table increment. An entity table can also contain, for each cell, one or more collections of microdata used to
calculate ordinal statistics such as median, Gini coefficient, and percentiles.

The cells of an entity set are in memory outside of entities. Each cell of a set contains a collection of entities which satisfy the conditions to be in
the cell. The entity contains a data member for the index of the entity in each set. If the entity set has a filter, the entity will contain an attribute for
it.

Each event has an Event data member in the associated entity. Pointers to these events are held in an event queue. The event queue of a time-
based (interacting population) model can be large because each event of each entity is in the queue. The next occurrence time for an event is
recalculated when, as a result of an event, the attributes used in the calculation of the event occurrence time change. Not all events are in the
event queue. An event with next occurrence time of infinity is not in the queue, as are events whose future time is explicitly right-censored by
model logic using the censor_event_time option. Maintaining the event queue can be computationally intensive and account for a significant fraction
of model run time. The computational cost of event queue maintenance depends on the number of queue operations and the size of the queue.

[back to topic contents]

Model Resource Use

Related topics

Topic contents

Introduction and Background

Entities

Multilink

Entity table

Set

Event

By default, gathering and reporting of runtime information is disabled. To activate it, include the statement

options resource_use = on;

in the source code of a model. A natural place to insert this statement is the module ompp_framework.ompp .

The resource use report is produced only for sub/replicate/member 0. It is written to the run log when the sub completes.

It is recommended to run with a single sub when using resource_use . If the run has multiple subs and they run concurrently the run log file may
contain interleaved lines from multiple subs, which could fragment the resource report in the run log.

The resource_use option is intended for model development, not model use. With the option on, there might be a slight reduction in run
performance and a voluminous report is written to the run log.

If resource_use is enabled, the model will write a warning like the following to the log on every model run:

Warning : Model built with resource_use = on

[back to topic contents]

This subtopic describes each table of the resource use report, using for illustration a run of the GMM model (Genetic Mixing Model). Some model-
specific commentary is included to illustrate interpretation of the reports. For context, GMM simulates an interacting population over multiple
generations, with genetic inheritance related to cancer. The GMM run for these examples used a starting population of 1 million.

This subtopic contains the following sections. Each section describes one of the tables in the resource use report, and is illustrated with
commentary using the GMM run.

General: General information about the report

Resource use summary: MB of memory broken out by major categories

Entity instances: Entity counts and MB

Entity members: Categorized counts of the data members of the entity

Entity multilinks: Size of multilinks and MB of the entity

Entity events: Event frequencies and presence in the event queue for the entity

Entity sets: Sets of the entity

Entity tables: Tables of the entity

Entity member detail: Information on all members of the entity

Derived tables: Size and MB of derived tables

[back to topic contents]

The resource use report consists of a series of sections with one or more tables in each section. Headers in the report demarcate the sections,
e.g.

* Resource Use Detail for Person *

The report starts with a summary table of memory use. This is followed by a section on resource use for each kind of entity in the model. These
entity sections can contain up to 7 tables on resource use for each kind of entity.

GMM has three kinds of entities: Person , Doppleganger , and Ticker , so the GMM report contains three sections with up to 7 tables each.
Inapplicable tables are suppressed.

Syntax and Use

Illustrated Reference

General

The report concludes with a table on memory use of derived tables.

Memory use in MB are lower bound estimates. Actual memory use depends on implementation details of the C++ standard library and the host
operating system.

Each line of the resource report has a timestamp prefix, as do all lines in run logs. These prefixes have been stripped in the example.

For brevity, "run" below means "sub/replicate/member 0 of the run". If the run consists of a single sub as recommended above, the two are the
same.

[back to illustrated reference]
[back to topic contents]

The resource use report begins with a Resource Use Summary section containing two tables. The first table looks like this:

+---------------------------+
| Resource Use by Category |
+-------------------+-------+
| Category | MB |
+-------------------+-------+
| Entities | 1876 |
| Doppelganger | 552 |
| Person | 1324 |
| Ticker | 0 |
| Multilinks | 10 |
| Events | 80 |
| Sets | 196 |
| Tables | 0 |
| Entity | 0 |
| Derived | 0 |
| Parameters | 4 |
| Fixed | 0 |
| Scenario | 0 |
| Derived | 3 |
+-------------------+-------+
| Total | 2169 |
+-------------------+-------+

This table summarizes information found in detailed tables elsewhere in the report (except for parameters, which currently have no detailed
section). The first lines give memory use for entities by the kind of entity. Subsequent lines report memory use outside of entities.

In the example, total memory use was a bit over 2 GB, and the bulk of memory use was concentrated in the Person entity. Memory use for the
Doppleganger entity was nevertheless significant at around 0.5 GB. The event queue consumed only 80 MB, and the entity sets used to implement

union formation took around 200 MB.

The second table in the Memory Use Summary section looks like this:

+--------------------------------+
| Resource Use by Persistence |
+------------------------+-------+
| Persistence | MB |
+------------------------+-------+
| Constant per instance | 0 |
| Constant per sub | 4 |
| Variable by pop. size | 2164 |
+------------------------+-------+
| Total | 2169 |
+------------------------+-------+

This table regroups memory use to help project the memory required by a run as a function of population size and parallel execution.

Memory use which is independent of population size and shared among simulation threads executing in parallel is reported in row 1.

Memory use which is independent of population size and required by each sub is reported in row 2.

Memory use which varies with population size is reported in row 3. This row is zero for case-based models, by design.

[back to illustrated reference]
[back to topic contents]

Resource use summary

This is table 1 of 7 in the Resource Use Detail section for the entity type.

It is a one-row table about instances of the entity.

Here it is for the Person entity:

+-------------------------------------+
| Person Instances |
+--------------+--------------+-------+
| Activations | Allocations | MB |
+--------------+--------------+-------+
| 2302315 | 1003104 | 1324 |
+--------------+--------------+-------+

Activations is the number of times a Person entity entered the simulation. Allocations is the number of times memory for a Person entity was
allocated. MB is the product of allocations and the size in bytes of a Person entity.

Allocations differ from activations because OpenM++ recycles an entity for reuse when it leaves the simulation. So when a Person dies and
leaves the simulation in GMM the Person is placed into a pool and recycled when a new Person is born during the simulation.

In the illustration, a bit over half of the Person entities were recycled during the run.

Here is the same table for the Doppleganger entity:

+-------------------------------------+
| Doppelganger Instances |
+--------------+--------------+-------+
| Activations | Allocations | MB |
+--------------+--------------+-------+
| 2302315 | 2302315 | 552 |
+--------------+--------------+-------+

Unlike for Person entities, the number of Allocations of Doppleganger entities is identical to the number of Activations.

In GMM, each Person entity has an associated Doppleganger entity which duplicates several attributes of the linked Person during the simulation.
The Doppleganger entity has no events or tables of its own and is considerably smaller than the Person entity. Unlike the Person entity, the
Doppleganger entity persists after death. That allows the construction of a multi-generational pedigree for the desendants of each Person , even if

the ancestors of the Person are no longer present in the simulation.

[back to illustrated reference]
[back to topic contents]

This is table 2 of 7 in the Resource Use Detail section for the entity type.

Here it is for the Person entity in the example:

+---------------------------+
| Person Members |
+-------------------+-------+
| Member | Count |
+-------------------+-------+
| Attributes | 201 |
| Built-in | 6 |
| Simple | 57 |
| Maintained | 136 |
| Link | 2 |
| Events | 11 |
| Increments | 3 |
| Multilink | 0 |
| Internal | 60 |
| Array | 0 |
| Foreign | 1 |
+-------------------+-------+
| All | 276 |
+-------------------+-------+

This table provides counts of all data members fo the entity, by category. The meaning of each category is given in the following table. Detail on
each data member of the entity is reported in the Entity member detail table.

Entity instances

Entity members

Row Description

Attributes All attributes in the entity, including attributes generated by the OpenM++ compiler.

Built-in Attributes such as time , age , and entity_id .

Simple Attributes declared in model code with values set explicitly by model code.

Maintained Automatically maintained attributes such as duration() , identity attributes, and operators on multilinks such as sum_over .

Link Links to another entity declared in the model.

Events Events declared in the model, and possibly the generated event om_ss_event for self-scheduling attributes.

Increments Increments for entity tables, one for each accumulator in each entity table.

Multilink Multilinks declared in model code.

Internal Data members (not attributes) created by the OpenM++ compiler to implement the model.

Array Arrays declared in the model code.

Foreign Members with a developer-supplied type declared in model code.

In GMM the Person entity has 276 data members.

Here's the same table for the Doppleganger entity:

+---------------------------+
| Doppelganger Members |
+-------------------+-------+
| Member | Count |
+-------------------+-------+
| Attributes | 44 |
| Built-in | 6 |
| Simple | 28 |
| Maintained | 7 |
| Link | 3 |
| Events | 0 |
| Increments | 0 |
| Multilink | 2 |
| Internal | 10 |
| Array | 0 |
| Foreign | 0 |
+-------------------+-------+
| All | 56 |
+-------------------+-------+

The Doppleganger entity has fewer members than the Person entity. This was a design goal of the GMM architecture. A Doppleganger entity
contains minimal information echoed from its corresponding Person entity. Doppleganger entities are deliberately small because they persist after
death, which increases memory use as simulation time advances.

From the table, the Doppleganger entity has 2 multilinks whereas the Person entity has none. That's because the multilinks between parent and
children need to persist beyond the lifetime of the parent to generate multi-generational family pedigrees which assess the genetic component of
cancer risk of descendants.

[back to illustrated reference]
[back to topic contents]

This is table 3 of 7 in the Resource Use Detail section for the entity type.

Here it is for the Doppelganger entity in the example:

Entity multilinks

+--+
| Doppelganger Multilink elements |
+-------------------+--------------+--------------+--------------+-------+
| multilink | max size | entity_id | avg size | MB |
+-------------------+--------------+--------------+--------------+-------+
| mlFather_children | 11 | 3241001 | 0.2954 | 5 |
| mlMother_children | 7 | 2794375 | 0.2954 | 5 |
+-------------------+--------------+--------------+--------------+-------+
| All | | | | 10 |
+-------------------+--------------+--------------+--------------+-------+

The meaning of each column is given in the following table.

Column Description

multilink The name of the multilink as declared in model code.

max size The maximum of the multilink size over all entities in the run.

entity_id An entity_id for which that maximum was attained.

avg size The average over all entities of the maximum per-entity multilink size.

When resource_use is turned on, the maximum multilink size is tracked and the associated entity_id recorded and reported in this table to help
model developers probe extreme cases or anomalies.

In the example, the maximum number of children of fathers was 11, which occurred for entity_id 3241001. The maximum number of children of
mothers was 7. This assymetry is an expected consequence of the model design, which acounts for pregnancy, reduced fertility after childbirth,
age- and sex-specific union formation and dissolution patterns, and patterns of completed fertility for females.

At first glance the average size of the parent-children multilinks seems small at 0.2954, which is well below replacement fertility. This is an
expected consequence of the GMM design for several reasons. First, the starting population of Person entities is cross-sectional and those
entities have no children. Second, fertility is exogenous during the model's burn-in period when coherent patterns of union formation, union
duration, and family structure are being established. Third, all entities exit the run when it ends at year 200, and for many that will occur before
lifetime fertility is complete.

[back to illustrated reference]
[back to topic contents]

This is table 4 of 7 in the Resource Use Detail section for the entity type.

Here it is for the Person entity in the illustrative GMM run:

+--+
| Person Events |
+-----------------------+--------------+--------------+--------------+--------------+--------------+-------+
| event | time calcs | censored | occurrences | per entity | max in queue | MB |
+-----------------------+--------------+--------------+--------------+--------------+--------------+-------+
| CancerBreastEvent | 142141567 | 132678956 | 109264 | 0.0475 | 98068 | 3 |
| CancerOvaryEvent | 142046175 | 140468459 | 13872 | 0.0060 | 16588 | 0 |
| CancerPancreasEvent | 142059175 | 138987528 | 26872 | 0.0117 | 31477 | 1 |
| CancerProstateEvent | 142183730 | 129790585 | 151427 | 0.0658 | 120050 | 3 |
| ConceptionEvent | 66577109 | 48877013 | 1081390 | 0.4697 | 110508 | 3 |
| MortalityEvent | 142032303 | 91704028 | 2074535 | 0.9011 | 396686 | 12 |
| PregnancyClockEvent | 6624484 | 3383265 | 3240779 | 1.4076 | 8603 | 0 |
| SexualDebutEvent | 143503691 | 132811541 | 1471388 | 0.6391 | 87064 | 2 |
| UnionDissolutionEvent | 187014898 | 144258340 | 10000504 | 4.3437 | 257025 | 8 |
| UnionFormationEvent | 76657431 | 63401111 | 11722623 | 5.0917 | 389374 | 12 |
| om_ss_event | 431081130 | 457311 | 288052240 | 125.1142 | 1003104 | 32 |
+-----------------------+--------------+--------------+--------------+--------------+--------------+-------+
| All | | | | | | 80 |
+-----------------------+--------------+--------------+--------------+--------------+--------------+-------+

The meaning of each column is given in the following table.

Column Description

event
The name of the event as given in model code. The event om_ss_event , if present, is a generated event which implements all
self-scheduling attributes in the entity.

Entity events

time calcs The number of calculations of the time of next occurrence of the event.

censored
The number of such calculations which were censored and not inserted into the event queue. Events can be censored either
because their next occurrence time is infinity, or by explicit model code in conjunction with the censor_event_time option.

occurrences The number of occurrences of the event during the run.

per entity
The average number of occurrences per entity, calculated as the number of event occurrences divided by the number of
activations of the entity type during the run.

max in
queue

The maximum number of entities awaiting this event in the event queue during the run.

MB
The number of MB required to store that maximum in the event queue, calculated as the product of the maximum and the
size in bytes of an element of the queue datastructure.

Column Description

In the illustrative GMM run, the average number of union formations is somewhat larger than the number of union dissolutions, which is expected.
The frequency of cancer events is as expected, taking into account that the denominator in the table is all Person entities, both male and female.
The average number of self-scheduling events is high at 288 million. This is probably due to the attribute self_scheduling_int(age) , which is listed
along with all self-scheduling attributes in the Entity member detail report for Person .

[back to illustrated reference]
[back to topic contents]

This is table 5 of 7 in the Resource Use Detail section for the entity type.

Here it is for the Person entity in the example:

+---+
| Person Sets |
+-----------------+-------+----------+----------+--------------+----------+-------+
| set | rank | cells | inserts | per entity | max pop | MB |
+-----------------+-------+----------+----------+--------------+----------+-------+
| asAllPerson | 0 | 1 | 2302315 | 1.0000 | 1003104 | 48 |
| asAvailableMen | 2 | 48 | 14336309 | 6.2269 | 396653 | 19 |
| asAvailableMenV | 3 | 96 | 15484605 | 6.7257 | 396653 | 19 |
+-----------------+-------+----------+----------+--------------+----------+-------+
| All | | | | | | 86 |
+-----------------+-------+----------+----------+--------------+----------+-------+

The meaning of each column is given in the following table.

Column Description

set The name of the entity set as given in model code.

rank The number of dimensions in the entity set.

cells The number of cells in the entity set, calculated as the product of the dimension sizes.

inserts
The number of insert operations on the set during the run, which counts entrances into the set and movements from cell to cell
within the set. The number of remove operations is not reported because it is equal to the number of insert operations over the
course of a run.

per
entity

The number of inserts per entity, calculated as the number of inserts divided by the number of activations of the entity type
during the run.

max
pop

The maximum count of entities in the set during the run.

MB
The number of MB required to store that maximum count in the entity set, calculated as the product of the maximum count and
the size in bytes of an element of the set datastructure.

In the example, the set asAllPerson has a single cell and contains all Person entities. This set is used to communicate the passage of integer time
(year) from the single Ticker entity to all Person entities during the run. The maximum population in this set is slightly higher than the starting

Entity sets

population of 1 million, perhaps due to Monte Carlo variation during the burn-in phase of the run.

The other two entity sets help implement a female choice model of union formation. The churning in these sets is a consequence of changes in
union status ('single' is a filter condition of these sets) and age group (a dimension of these sets).

[back to illustrated reference]
[back to topic contents]

This is table 6 of 7 in the Resource Use Detail section for the entity type.

Here it is for the Person entity in the GMM run:

+--+
| Person Tables |
+---------------------------------------+-------+----------+-------+-------+-------+----------+--------------+-------+
| table | rank | cells | accum | measr | colls | incrmnts | per entity | MB |
+---------------------------------------+-------+----------+-------+-------+-------+----------+--------------+-------+
| Boadicea_RR_cross | 2 | 256 | 3 | 3 | 0 | 154304 | 0.0670 | 0 |
| IM_RiskEvaluationDistributionDetailed | 2 | 150 | 1 | 1 | 0 | 154304 | 0.0670 | 0 |
| PersonEvents | 2 | 2222 | 1 | 1 | 0 | 168607252 | 73.2338 | 0 |
+---------------------------------------+-------+----------+-------+-------+-------+----------+--------------+-------+
| All | | | | | | | | 0 |
+---------------------------------------+-------+----------+-------+-------+-------+----------+--------------+-------+

Entity tables suppressed at run-time are not included in this report. If any are suppressed at run-time, a message with the number of run-time
suppressed tables follows immediately after the table.

The meaning of each column is given in the following table.

Column Description

table The name of the entity table as given in model code.

rank The number of dimensions in the table.

cells The number of cells in the table, calculated as the product of the dimension sizes, including margins if present.

accum The number of accumulators in the table.

measr The number of measures in the table.

colls The number of collections in the table.

incrmnts The number of increments pushed to the table during the run.

per
entity

The number of increments per entity, calculated as the number of increments divided by the number of activations of the entity
type during the run.

MB
The number of MB required by the cells of the table, calculated as the product of the number of cells, the number of
accumulators, and the size in bytes of a double .

GMM contains many tables, but most are suppressed in the production variant of the model using tables_retain statements. The PersonEvents table
was retained, but given the high volume of increments shown in the table above (168m) and its diagnostic nature it is a candidate for suppression
in the production variant of GMM.

[back to illustrated reference]
[back to topic contents]

This is table 7 of 7 in the Resource Use Detail section for the entity type.

This table contains one row for each entity member, and so can have many rows. Here is an extract for the Person entity for the GMM example.

Entity tables

Entity member detail

+--+-------+
| Person Members (detail) |
+--+-------+
| member | bytes |
+--+-------+
| Attributes: | |
| Built-in: | |
| age | 8 |
| entity_id | 4 |
| time | 8 |
| Simple: | |
| alive | 1 |
| union_status | 1 |
| year | 1 |
| Maintained: | |
| age_group | 1 |
| can_conceive | 1 |
...
| Array: | |
| Foreign: | |
| breast_cancer_hazard | 24 |
+--+-------+
| Sum of member bytes | 1170 |
| Bytes per entity | 1320 |
| Storage efficiency (%) | 88.6 |
+--+-------+

The rows of this table are grouped like the Entity members summary table. Each member has a row with the member name followed by its size in
bytes. Some members generated by the compiler have non-intuitive names which are replaced by more easily interpreted text in the report.

There are three summary rows at the end of the table: the sum of member bytes, the actual size of the entity in bytes, and the implied storage
efficiency. For more on member packing and storage efficiency see Entity Member Packing.

For GMM, the Entity Member Detail table has around 300 rows. For the full version see the Appendix of this topic.

The following table extracts selected rows from the full table and adds some remarks to aid interpretation.

member bytes remarks

Attributes:

 Built-in:

   age 8 Automatically maintained age of the entity, of type Time .

   case_seed 8 Not sure why this member is present in a time-based model like GMM.

   censor_time 8 Created and maintained if the censor_event_time option is activated.

   entity_id 4 Automatically assigned unique numeric identifier of the entity.

   events 2 An automatically maintained counter of events undergone by the entity.

   time 8 Automatically maintained time for the entity, of type Time .

 Simple:

   alive 1
Declared in model as type bool . Note that a bool takes one byte of storage, not
one bit.

   union_status 1
An attribute of type UNION_STATUS declared in the model. UNION_STATUS is a
classification with 3 levels, and is stored efficiently in a single byte.

   year 1

Declared in model as type YEAR , which is a range declared as {0,200} . It is
stored efficienty in a single byte. The value of year is maintained by the Ticker

entity which updates it for all Person entities by iterating the asAllPersons entity
set when the TickEvent occurs.

 Maintained:

   can_conceive 1
An identity attribute declared in model code by logical can_conceive = fertile &&

stable_union && eligible_union

   om_aia_0 1 An identity attribute created by the compiler to implement other attributes.

   om_asAvailableMen_filter 1
An identity attribute created by the compiler to implement the filter of the entity
set asAvailableMen .

   entrances(union_status,US_SINGLE) 2 A maintained attribute declared implicitly in model code.

   self_scheduling_int(age) 2
A maintained attribute declared implicitly in model code. This is a self-scheduling
attribute, so the compiler will also create the special self-scheduling event
om_ss_event to implement it and any other self-scheduling attributes in the entity.

   trigger_changes(year) 1
A self-scheduling attribute declared implicitly in model code. Used in table filters
to create snapshot-style tables.

 Link:

   lDoppelganger 8 A link attribute declared in model code.

   lPartner 8 Another link attribute.

 Events:

   ConceptionEvent 24 The member used to manage the ConceptionEvent event declared in model code.

   MortalityEvent 24 The member for another event declared in the model.

   om_ss_event 24
The generated event which schedules and implements all self-scheduling
attributes in the entity. This event is not present if the entity has no self-
scheduling attributes.

 Increments:

   Boadicea_RR_cross increment 16
The member managing the current increment of the Person for the table
Boadicea_RR_cross .

   PersonEvents increment 16 Another increment, this one for the PersonEvents table.

 Multilink:
The Person entity has no multilinks. Multilinks for children are held in the parallel
Doppleganger entity.

 Internal:

   PersonEvents (inevent) event_count 4
Supports tabulation of event_count using the event keyword in the PersonEvents

table.

   asAvailableMen (current cell) 4
The cell in the entity set asAvailableMen currently occupied by the Person ,
provided it meets the filter condition of asAvailableMen .

   event_count (lagged) 4
Holds the lagged value of the attribute event_count . Lagged values are required
by some table operators.

   event_count (counter at lagged) 8 Used to detect changes in the lagged value of event_count .

   om_self_scheduling_int_FOR_age

(next time)
8

Contains the next scheduled time of the self-scheduling attribute
self_scheduling_int(age) .

8

 Array: There are no array members of Person in the GMM model.

 Foreign:

   breast_cancer_hazard 24
Declared in model code as type std::vector<double> for reasons explained by the
model developer in model source code comments.

member bytes remarks

[back to illustrated reference]
[back to topic contents]

This is the final table of the resource use report.

Derived tables

Here it is for the GMM run:

 +--+
 | Derived Tables |
 +-------------------------------+-------+----------+-------+-------+
 | derived table | rank | cells | measr | MB |
 +-------------------------------+-------+----------+-------+-------+
 | IM_GMM_KeyInputs | 1 | 7 | 1 | 0 |
 | IM_IncidenceRR | 3 | 24480 | 1 | 0 |
 | IM_MajorGeneBirthDistribution | 1 | 6 | 1 | 0 |
 | IM_OncogenesisRR | 3 | 24480 | 1 | 0 |
 | IM_PolygeneBirthDistribution | 1 | 51 | 1 | 0 |
 | IM_RiskEvaluationAge | 0 | 1 | 1 | 0 |
 +-------------------------------+-------+----------+-------+-------+
 | All | | | | 0 |
 +-------------------------------+-------+----------+-------+-------+

Derived tables suppressed at run-time are not included in this report. If there are any such, a message giving the number of derived tables
suppressed at run-time follows immediately after the table.

The meaning of each column is given in the following table.

Column Description

derived
table

The name of the derived table as given in model code.

rank The number of dimensions in the table.

cells The number of cells in the table, calculated as the product of the dimension sizes, including margins if present.

measr The number of measures in the table.

MB
The number of MB required by the cells of the table, calculated as the product of the number of cells, the number of measures,
and the size in bytes of a double .

GMM contains other derived tables which are suppressed in the production variant of the model using tables_retain statements. Retained tables in
GMM include those required to feed the downstream OncoSim model which simulates the health system consequences of genetic risk-based
screening simulated in a GMM run. The GMM model code prefixes those tables with IM_ to distinguish them.

[back to illustrated reference]
[back to topic contents]

For reference, here is the complete report of the GMM run used in the illustrations.

Resource Use Report - Begin (for sub/member/replicate 0)

 * Resource Use Summary *

 +---------------------------+
 | Resource Use by Category |
 +-------------------+-------+
 | Category | MB |
 +-------------------+-------+
 | Entities | 1876 |
 | Doppelganger | 552 |
 | Person | 1324 |
 | Ticker | 0 |
 | Multilinks | 10 |
 | Events | 80 |
 | Sets | 196 |
 | Tables | 0 |
 | Entity | 0 |
 | Derived | 0 |
 | Parameters | 4 |
 | Fixed | 0 |
 | Scenario | 0 |
 | Derived | 3 |
 +-------------------+-------+
 | Total | 2169 |
 +-------------------+-------+

Appendix

 +--------------------------------+
 | Resource Use by Persistence |
 +------------------------+-------+
 | Persistence | MB |
 +------------------------+-------+
 | Constant per instance | 0 |
 | Constant per sub | 4 |
 | Variable by pop. size | 2164 |
 +------------------------+-------+
 | Total | 2169 |
 +------------------------+-------+

 **
 * Resource Use Detail for Doppelganger *
 **

 +-------------------------------------+
 | Doppelganger Instances |
 +--------------+--------------+-------+
 | Activations | Allocations | MB |
 +--------------+--------------+-------+
 | 2302315 | 2302315 | 552 |
 +--------------+--------------+-------+
 Note: MB does not include storage of elements of multilinks

 +-----------------------------+
 | Doppelganger Members |
 +---------------------+-------+
 | Member | Count |
 +---------------------+-------+
 | Attributes | 44 |
 | Built-in | 6 |
 | Simple | 28 |
 | Maintained | 7 |
 | Link | 3 |
 | Events | 0 |
 | Increments | 0 |
 | Multilink | 2 |
 | Internal | 10 |
 | Array | 0 |
 | Foreign | 0 |
 +---------------------+-------+
 | All | 56 |
 +---------------------+-------+

 +--+
 | Doppelganger Multilink elements |
 +-------------------+--------------+--------------+--------------+-------+
 | multilink | max size | entity_id | avg size | MB |
 +-------------------+--------------+--------------+--------------+-------+
 | mlFather_children | 11 | 3241001 | 0.2954 | 5 |
 | mlMother_children | 7 | 2794375 | 0.2954 | 5 |
 +-------------------+--------------+--------------+--------------+-------+
 | All | | | | 10 |
 +-------------------+--------------+--------------+--------------+-------+
 Note: MB does not include entity members

 +---+
 | Doppelganger Sets |
 +-------------------+-------+----------+----------+--------------+----------+-------+
 | set | rank | cells | inserts | per entity | max pop | MB |
 +-------------------+-------+----------+----------+--------------+----------+-------+
 | asAllDoppelganger | 0 | 1 | 2302315 | 1.0000 | 2302315 | 110 |
 +-------------------+-------+----------+----------+--------------+----------+-------+
 | All | | | | | | 110 |
 +-------------------+-------+----------+----------+--------------+----------+-------+
 Note: MB does not include entity members

 +--+
 | Doppelganger Members (detail) |
 +--+-------+
 | member | bytes |
 +--+-------+
 | Attributes: | |
 | Built-in: | |
 | age | 8 |
 | case_seed | 8 |
 | censor_time | 8 |
 | entity_id | 4 |
 | events | 2 |
 | time | 8 |
 | Simple: | |
 | boadicea_risk_factor_code | 4 |
 | children | 4 |
 | endogenous_grandparent_count | 1 |
 | enhanced_screening_reason | 1 |
 | g1_atm_mutation | 1 |
 | g1_brca1_mutation | 1 |

 | g1_brca1_mutation | 1 |
 | g1_brca2_mutation | 1 |
 | g1_chek2_mutation | 1 |
 | g1_palb2_mutation | 1 |
 | g2_atm_mutation | 1 |
 | g2_brca1_mutation | 1 |
 | g2_brca2_mutation | 1 |
 | g2_chek2_mutation | 1 |
 | g2_palb2_mutation | 1 |
 | grandparent_count | 1 |
 | major_genotype | 1 |
 | one_column | 1 |
 | polygene_bin | 1 |
 | polygenic_known | 4 |
 | polygenic_unknown | 4 |
 | sex | 1 |
 | year_born | 2 |
 | year_cancer_breast | 2 |
 | year_cancer_ovary | 2 |
 | year_cancer_pancreas | 2 |
 | year_cancer_prostate | 2 |
 | year_died | 2 |
 | year_start_enhanced_screening | 2 |
 | Maintained: | |
 | any_mutation | 1 |
 | atm_mutation | 1 |
 | brca1_mutation | 1 |
 | brca2_mutation | 1 |
 | chek2_mutation | 1 |
 | palb2_mutation | 1 |
 | polygenic_total | 4 |
 | Link: | |
 | lFather | 8 |
 | lMother | 8 |
 | lPerson | 8 |
 | Events: | |
 | Increments: | |
 | Multilink: | |
 | mlFather_children | 24 |
 | mlMother_children | 24 |
 | Internal: | |
 | MajorGenotype1 (in) any_mutation | 1 |
 | MajorGenotype1 (in) atm_mutation | 1 |
 | MajorGenotype1 (in) brca1_mutation | 1 |
 | MajorGenotype1 (in) brca2_mutation | 1 |
 | MajorGenotype1 (in) chek2_mutation | 1 |
 | MajorGenotype1 (in) palb2_mutation | 1 |
 | Polygene1 (in) polygenic_known | 4 |
 | Polygene1 (in) polygenic_total | 4 |
 | Polygene1 (in) polygenic_unknown | 4 |
 | asAllDoppelganger (current cell) | 4 |
 | Array: | |
 | Foreign: | |
 +--+-------+
 | Sum of member bytes | 189 |
 | Bytes per entity | 240 |
 | Storage efficiency (%) | 78.8 |
 +--+-------+

 * Resource Use Detail for Person *

 +-------------------------------------+
 | Person Instances |
 +--------------+--------------+-------+
 | Activations | Allocations | MB |
 +--------------+--------------+-------+
 | 2302315 | 1003104 | 1324 |
 +--------------+--------------+-------+
 Note: MB does not include storage of elements of foreign objects

 +-----------------------------+
 | Person Members |
 +---------------------+-------+
 | Member | Count |
 +---------------------+-------+
 | Attributes | 201 |
 | Built-in | 6 |
 | Simple | 57 |
 | Maintained | 136 |
 | Link | 2 |
 | Events | 11 |
 | Increments | 3 |
 | Multilink | 0 |
 | Internal | 60 |
 | Array | 0 |
 | Foreign | 1 |
 +---------------------+-------+

 +---------------------+-------+
 | All | 276 |
 +---------------------+-------+

 +--+
 | Person Events |
 +-----------------------+--------------+--------------+--------------+--------------+--------------+-------+
 | event | time calcs | censored | occurrences | per entity | max in queue | MB |
 +-----------------------+--------------+--------------+--------------+--------------+--------------+-------+
 | CancerBreastEvent | 142141567 | 132678956 | 109264 | 0.0475 | 98068 | 3 |
 | CancerOvaryEvent | 142046175 | 140468459 | 13872 | 0.0060 | 16588 | 0 |
 | CancerPancreasEvent | 142059175 | 138987528 | 26872 | 0.0117 | 31477 | 1 |
 | CancerProstateEvent | 142183730 | 129790585 | 151427 | 0.0658 | 120050 | 3 |
 | ConceptionEvent | 66577109 | 48877013 | 1081390 | 0.4697 | 110508 | 3 |
 | MortalityEvent | 142032303 | 91704028 | 2074535 | 0.9011 | 396686 | 12 |
 | PregnancyClockEvent | 6624484 | 3383265 | 3240779 | 1.4076 | 8603 | 0 |
 | SexualDebutEvent | 143503691 | 132811541 | 1471388 | 0.6391 | 87064 | 2 |
 | UnionDissolutionEvent | 187014898 | 144258340 | 10000504 | 4.3437 | 257025 | 8 |
 | UnionFormationEvent | 76657431 | 63401111 | 11722623 | 5.0917 | 389374 | 12 |
 | om_ss_event | 431081130 | 457311 | 288052240 | 125.1142 | 1003104 | 32 |
 +-----------------------+--------------+--------------+--------------+--------------+--------------+-------+
 | All | | | | | | 80 |
 +-----------------------+--------------+--------------+--------------+--------------+--------------+-------+
 Note: MB does not include entity members

 +---+
 | Person Sets |
 +-----------------+-------+----------+----------+--------------+----------+-------+
 | set | rank | cells | inserts | per entity | max pop | MB |
 +-----------------+-------+----------+----------+--------------+----------+-------+
 | asAllPerson | 0 | 1 | 2302315 | 1.0000 | 1003104 | 48 |
 | asAvailableMen | 2 | 48 | 14336309 | 6.2269 | 396653 | 19 |
 | asAvailableMenV | 3 | 96 | 15484605 | 6.7257 | 396653 | 19 |
 +-----------------+-------+----------+----------+--------------+----------+-------+
 | All | | | | | | 86 |
 +-----------------+-------+----------+----------+--------------+----------+-------+
 Note: MB does not include entity members

 +--+
 | Person Tables |
 +---------------------------------------+-------+----------+-------+-------+-------+----------+--------------+-------+
 | table | rank | cells | accum | measr | colls | incrmnts | per entity | MB |
 +---------------------------------------+-------+----------+-------+-------+-------+----------+--------------+-------+
 | Boadicea_RR_cross | 2 | 256 | 3 | 3 | 0 | 154304 | 0.0670 | 0 |
 | IM_RiskEvaluationDistributionDetailed | 2 | 150 | 1 | 1 | 0 | 154304 | 0.0670 | 0 |
 | PersonEvents | 2 | 2222 | 1 | 1 | 0 | 168607252 | 73.2338 | 0 |
 +---------------------------------------+-------+----------+-------+-------+-------+----------+--------------+-------+
 | All | | | | | | | | 0 |
 +---------------------------------------+-------+----------+-------+-------+-------+----------+--------------+-------+
 Note: MB does not include entity members

 +--+
 | Person Members (detail) |
 +--+-------+
 | member | bytes |
 +--+-------+
 | Attributes: | |
 | Built-in: | |
 | age | 8 |
 | case_seed | 8 |
 | censor_time | 8 |
 | entity_id | 4 |
 | events | 2 |
 | time | 8 |
 | Simple: | |
 | PRS_top_5 | 1 |
 | activity_level | 1 |
 | actual_RR | 8 |
 | actual_risk | 8 |
 | alive | 1 |
 | base_risk | 8 |
 | boadicea_CPU | 8 |
 | boadicea_RR | 8 |
 | boadicea_evaluations | 4 |
 | boadicea_risk | 8 |
 | cancer_breast | 1 |
 | cancer_ovary | 1 |
 | cancer_pancreas | 1 |
 | cancer_prostate | 1 |
 | children_born | 4 |
 | eligible_union | 1 |
 | endogenous_grandparent_count | 1 |
 | endogenous_parent_count | 1 |
 | enhanced_screening | 1 |
 | enhanced_screening_reason | 1 |
 | entry_year | 1 |
 | event_count | 4 |
 | event_type | 1 |

 | event_type | 1 |
 | generation | 1 |
 | grandparent_count | 1 |
 | has_any_mutation | 1 |
 | in_union_ey | 1 |
 | in_union_ybey | 1 |
 | is_in_starting_population | 1 |
 | major_genotype | 1 |
 | match_failures_forbidden | 4 |
 | match_failures_none | 4 |
 | match_successes | 4 |
 | mother_cancer | 1 |
 | one_column | 1 |
 | parent_count | 1 |
 | polygene_bin | 1 |
 | post_partum | 1 |
 | pregnant | 1 |
 | ps | 1 |
 | risk_assessments | 4 |
 | risk_factor_alcohol | 1 |
 | risk_factor_bmi | 1 |
 | risk_factor_first_b | 1 |
 | risk_factor_mammo_density | 1 |
 | risk_factor_menarche | 1 |
 | risk_factor_menopause | 1 |
 | risk_factor_mht | 1 |
 | risk_factor_oc | 1 |
 | risk_factor_parity | 1 |
 | sex | 1 |
 | simulate_risk_factors | 1 |
 | time_pregnancy_clock | 8 |
 | twin_pregnancy | 1 |
 | undergone_debut | 1 |
 | union_status | 1 |
 | year | 1 |
 | Maintained: | |
 | age_group | 1 |
 | age_group1 | 1 |
 | age_group_15 | 1 |
 | age_group_for_debut | 4 |
 | ar_er | 8 |
 | boadicea_horizon | 4 |
 | can_conceive | 1 |
 | children0 | 1 |
 | children1 | 1 |
 | children2 | 1 |
 | children3 | 1 |
 | children4 | 1 |
 | children4plus | 1 |
 | children5 | 1 |
 | children6 | 1 |
 | children7 | 1 |
 | children8plus | 1 |
 | delta_partners_ybey | 4 |
 | diff_RR | 8 |
 | diff_RR_abs | 8 |
 | dissolutions | 4 |
 | ever_had_sex | 1 |
 | fertile | 1 |
 | fertile_age | 1 |
 | genotype_group | 1 |
 | in_casual_union | 1 |
 | in_scope_fertility | 1 |
 | in_stable_union | 1 |
 | in_union | 1 |
 | in_utero | 1 |
 | incidenceRR50 | 8 |
 | incidence_rr | 8 |
 | integer_age | 4 |
 | is_ey | 1 |
 | multiple_fathers | 1 |
 | my_year | 1 |
 | active_spell_delta(year_spell,true,partners) | 2 |
 | om_aia_0 | 1 |
 | om_aia_1 | 1 |
 | om_aia_10 | 1 |
 | om_aia_11 | 1 |
 | om_aia_12 | 1 |
 | om_aia_13 | 1 |
 | om_aia_14 | 1 |
 | om_aia_15 | 1 |
 | om_aia_16 | 1 |
 | om_aia_17 | 1 |
 | om_aia_18 | 1 |
 | om_aia_19 | 1 |
 | om_aia_2 | 1 |
 | om_aia_20 | 1 |
 | om_aia_21 | 1 |
 | om_aia_22 | 1 |

 | om_aia_22 | 1 |
 | om_aia_23 | 1 |
 | om_aia_24 | 1 |
 | om_aia_25 | 1 |
 | om_aia_26 | 1 |
 | om_aia_27 | 1 |
 | om_aia_28 | 1 |
 | om_aia_29 | 4 |
 | om_aia_3 | 1 |
 | om_aia_30 | 1 |
 | om_aia_31 | 1 |
 | om_aia_32 | 1 |
 | om_aia_4 | 1 |
 | om_aia_5 | 1 |
 | om_aia_6 | 1 |
 | om_aia_7 | 1 |
 | om_aia_8 | 1 |
 | om_aia_9 | 1 |
 | om_asAvailableMenV_filter | 1 |
 | om_asAvailableMen_filter | 1 |
 | completed_spell_delta(year_spell,true,partners) | 2 |
 | duration() | 8 |
 | duration(activity_level,AL_0) | 8 |
 | duration(activity_level,AL_1) | 8 |
 | duration(activity_level,AL_2) | 8 |
 | duration(activity_level,AL_3) | 8 |
 | duration(boadicea_evaluations,1) | 8 |
 | duration(can_conceive,true) | 8 |
 | duration(cancer_breast,true) | 8 |
 | duration(enhanced_screening,true) | 8 |
 | duration(undergone_debut,true) | 8 |
 | entrances(cancer_breast,true) | 2 |
 | entrances(cancer_ovary,true) | 2 |
 | entrances(cancer_pancreas,true) | 2 |
 | entrances(cancer_prostate,true) | 2 |
 | entrances(in_stable_union,true) | 2 |
 | entrances(union_status,US_CASUAL) | 2 |
 | entrances(union_status,US_SINGLE) | 2 |
 | entrances(union_status,US_STABLE) | 2 |
 | self_scheduling_int(age) | 2 |
 | self_scheduling_int(duration(boadicea_evaluations,1)) | 2 |
 | split(activity_level,ACTIVITY_3) | 1 |
 | split(actual_RR,PARTITION_RR) | 1 |
 | split(boadicea_RR,IM_PARTITION_RR) | 1 |
 | split(boadicea_RR,PARTITION_RR) | 1 |
 | split(diff_RR,DIFF_RR) | 1 |
 | split(integer_age,AGE_GROUP15_1549) | 1 |
 | split(integer_age,AGE_GROUP5_1549) | 1 |
 | split(integer_age,AGE_GROUP5_1559) | 1 |
 | split(integer_age,GROUPE_AGE2_1070) | 1 |
 | split(integer_age,P_AGE_FOR_SEXUAL_DEBUT) | 1 |
 | split(partners_ybey,PARTNERS_5) | 1 |
 | trigger_changes(boadicea_evaluations) | 1 |
 | trigger_changes(cancer_breast) | 1 |
 | trigger_changes(year) | 1 |
 | trigger_entrances(boadicea_evaluations,1) | 1 |
 | trigger_entrances(integer_age,0) | 1 |
 | trigger_exits(children_born,0) | 1 |
 | trigger_exits(children_born,1) | 1 |
 | trigger_exits(integer_age,39) | 1 |
 | undergone_change(partners) | 1 |
 | undergone_change(union_status) | 1 |
 | undergone_entrance(pregnant,true) | 1 |
 | undergone_entrance(risk_assessments,1) | 1 |
 | value_at_first_entrance(pregnant,true,union_number) | 4 |
 | value_at_first_entrance(risk_assessments,1,cancer_breast) | 1 |
 | value_at_latest_entrance(om_aia_17,true,partners) | 4 |
 | value_at_latest_entrance(pregnant,true,union_number) | 4 |
 | parity | 1 |
 | partners | 4 |
 | partners_casual | 4 |
 | partners_stable | 4 |
 | partners_ybey | 4 |
 | polygenic_total | 4 |
 | possible_proband | 1 |
 | range_age | 1 |
 | range_age_80 | 1 |
 | stable_union | 1 |
 | union_number | 4 |
 | union_number_at_first_conception | 4 |
 | union_number_at_latest_conception | 4 |
 | virgin | 1 |
 | year_flash | 1 |
 | year_spell | 1 |
 | Link: | |
 | lDoppelganger | 8 |
 | lPartner | 8 |
 | Events: | |

 | CancerBreastEvent | 24 |
 | CancerOvaryEvent | 24 |
 | CancerPancreasEvent | 24 |
 | CancerProstateEvent | 24 |
 | ConceptionEvent | 24 |
 | MortalityEvent | 24 |
 | PregnancyClockEvent | 24 |
 | SexualDebutEvent | 24 |
 | UnionDissolutionEvent | 24 |
 | UnionFormationEvent | 24 |
 | om_ss_event | 24 |
 | Increments: | |
 | Boadicea_RR_cross increment | 16 |
 | IM_RiskEvaluationDistributionDetailed increment | 16 |
 | PersonEvents increment | 16 |
 | Multilink: | |
 | Internal: | |
 | ALT_ActivityLevel (in) om_duration | 8 |
 | ALT_ActivityLevel (in) om_duration_FOR_activity_level_X_AL_0 | 8 |
 | ALT_ActivityLevel (in) om_duration_FOR_activity_level_X_AL_1 | 8 |
 | ALT_ActivityLevel (in) om_duration_FOR_activity_level_X_AL_2 | 8 |
 | ALT_ActivityLevel (in) om_duration_FOR_activity_level_X_AL_3 | 8 |
 | BirthRate (in) children_born | 4 |
 | BirthRate (in) om_duration | 8 |
 | BreastCancerRates (in) om_duration | 8 |
 | BreastCancerRates (in) om_duration_FOR_cancer_breast_X_true | 8 |
 | BreastCancerRates (in) om_entrances_FOR_cancer_breast_X_true | 2 |
 | CanConceive (in) om_duration | 8 |
 | CanConceive (in) om_duration_FOR_can_conceive_X_true | 8 |
 | CancerRates (in) om_duration | 8 |
 | CancerRates (in) om_duration_FOR_cancer_breast_X_true | 8 |
 | CancerRates (in) om_entrances_FOR_cancer_breast_X_true | 2 |
 | CancerRates (in) om_entrances_FOR_cancer_ovary_X_true | 2 |
 | CancerRates (in) om_entrances_FOR_cancer_pancreas_X_true | 2 |
 | CancerRates (in) om_entrances_FOR_cancer_prostate_X_true | 2 |
 | FertilityByAge (in) children_born | 4 |
 | FertilityByAge (in) om_duration | 8 |
 | InUtero (in) om_duration | 8 |
 | MatchReport (in) match_failures_forbidden | 4 |
 | MatchReport (in) match_failures_none | 4 |
 | MatchReport (in) match_successes | 4 |
 | PYAgeZero (in) om_duration | 8 |
 | PersonEvents (inevent) event_count | 4 |
 | Polygene1a (in) polygenic_total | 4 |
 | PopulationByYear (in) om_duration | 8 |
 | SDT_SexualDebut (in) om_duration | 8 |
 | SDT_SexualDebut (in) om_duration_FOR_undergone_debut_X_true | 8 |
 | Screening1 (in) om_duration | 8 |
 | Screening1 (in) om_duration_FOR_enhanced_screening_X_true | 8 |
 | Screening1 (in) risk_assessments | 4 |
 | Screening2 (in) cancer_breast | 1 |
 | Screening2 (in) om_duration | 8 |
 | Screening3 (in) cancer_breast | 1 |
 | Screening3 (in) om_duration | 8 |
 | Screening4 (in) cancer_breast | 1 |
 | Screening5 (in) cancer_breast | 1 |
 | SimulatedEverHadSex (in) ever_had_sex | 1 |
 | SimulatedProportionStable (in) in_stable_union | 1 |
 | X4_Observed_RR (in) cancer_breast | 1 |
 | X4_Observed_RR (in) om_duration | 8 |
 | X5_Difference_RR (in) diff_RR_abs | 8 |
 | X5_Difference_RR (in) entity_id | 4 |
 | asAllPerson (current cell) | 4 |
 | asAvailableMenV (current cell) | 4 |
 | asAvailableMen (current cell) | 4 |
 | event_count (lagged) | 4 |
 | event_count (counter at lagged) | 8 |
 | om_self_scheduling_int_FOR_age (next time) | 8 |
 | om_self_scheduling_int_FOR_om_duration_FOR_boadicea_evaluations_X_1 (next time) | 8 |
 | om_trigger_changes_FOR_boadicea_evaluations (next time) | 8 |
 | om_trigger_changes_FOR_cancer_breast (next time) | 8 |
 | om_trigger_changes_FOR_year (next time) | 8 |
 | om_trigger_entrances_FOR_boadicea_evaluations_X_1 (next time) | 8 |
 | om_trigger_entrances_FOR_integer_age_X_0 (next time) | 8 |
 | om_trigger_exits_FOR_children_born_X_0 (next time) | 8 |
 | om_trigger_exits_FOR_children_born_X_1 (next time) | 8 |
 | om_trigger_exits_FOR_integer_age_X_39 (next time) | 8 |
 | Array: | |
 | Foreign: | |
 | breast_cancer_hazard | 24 |
 +--+-------+
 | Sum of member bytes | 1170 |
 | Bytes per entity | 1320 |
 | Storage efficiency (%) | 88.6 |
 +--+-------+

 * Resource Use Detail for Ticker *

 * Resource Use Detail for Ticker *

 +-------------------------------------+
 | Ticker Instances |
 +--------------+--------------+-------+
 | Activations | Allocations | MB |
 +--------------+--------------+-------+
 | 1 | 1 | 0 |
 +--------------+--------------+-------+

 +-----------------------------+
 | Ticker Members |
 +---------------------+-------+
 | Member | Count |
 +---------------------+-------+
 | Attributes | 15 |
 | Built-in | 6 |
 | Simple | 8 |
 | Maintained | 1 |
 | Link | 0 |
 | Events | 2 |
 | Increments | 1 |
 | Multilink | 0 |
 | Internal | 3 |
 | Array | 0 |
 | Foreign | 0 |
 +---------------------+-------+
 | All | 21 |
 +---------------------+-------+

 +--+
 | Ticker Events |
 +-----------+--------------+--------------+--------------+--------------+--------------+-------+
 | event | time calcs | censored | occurrences | per entity | max in queue | MB |
 +-----------+--------------+--------------+--------------+--------------+--------------+-------+
 | NewPerson | 622150 | 1 | 622149 | 622149.0000 | 1 | 0 |
 | TickEvent | 202 | 0 | 201 | 201.0000 | 1 | 0 |
 +-----------+--------------+--------------+--------------+--------------+--------------+-------+
 | All | | | | | | 0 |
 +-----------+--------------+--------------+--------------+--------------+--------------+-------+
 Note: MB does not include entity members

 +---+
 | Ticker Tables |
 +--------------+-------+----------+-------+-------+-------+----------+--------------+-------+
 | table | rank | cells | accum | measr | colls | incrmnts | per entity | MB |
 +--------------+-------+----------+-------+-------+-------+----------+--------------+-------+
 | TickerEvents | 2 | 603 | 1 | 1 | 0 | 253 | 253.0000 | 0 |
 +--------------+-------+----------+-------+-------+-------+----------+--------------+-------+
 | All | | | | | | | | 0 |
 +--------------+-------+----------+-------+-------+-------+----------+--------------+-------+
 Note: MB does not include entity members

 +--+
 | Ticker Members (detail) |
 +--+-------+
 | member | bytes |
 +--+-------+
 | Attributes: | |
 | Built-in: | |
 | age | 8 |
 | case_seed | 8 |
 | censor_time | 8 |
 | entity_id | 4 |
 | events | 2 |
 | time | 8 |
 | Simple: | |
 | event_count | 4 |
 | event_type | 1 |
 | exogenous_births | 1 |
 | integer_year | 4 |
 | premier_tic | 1 |
 | prochain_tic | 8 |
 | ps | 1 |
 | year | 1 |
 | Maintained: | |
 | endogenous_conceptions | 1 |
 | Link: | |
 | Events: | |
 | NewPerson | 24 |
 | TickEvent | 24 |
 | Increments: | |
 | TickerEvents increment | 16 |
 | Multilink: | |
 | Internal: | |
 | TickerEvents (inevent) event_count | 4 |
 | event_count (lagged) | 4 |
 | event_count (counter at lagged) | 8 |

 | event_count (counter at lagged) | 8 |
 | Array: | |
 | Foreign: | |
 +--+-------+
 | Sum of member bytes | 140 |
 | Bytes per entity | 192 |
 | Storage efficiency (%) | 72.9 |
 +--+-------+

 **
 * Resource Use Detail for Derived Tables *
 **

 +--+
 | Derived Tables |
 +-------------------------------+-------+----------+-------+-------+
 | derived table | rank | cells | measr | MB |
 +-------------------------------+-------+----------+-------+-------+
 | IM_GMM_KeyInputs | 1 | 7 | 1 | 0 |
 | IM_IncidenceRR | 3 | 24480 | 1 | 0 |
 | IM_MajorGeneBirthDistribution | 1 | 6 | 1 | 0 |
 | IM_OncogenesisRR | 3 | 24480 | 1 | 0 |
 | IM_PolygeneBirthDistribution | 1 | 51 | 1 | 0 |
 | IM_RiskEvaluationAge | 0 | 1 | 1 | 0 |
 +-------------------------------+-------+----------+-------+-------+
 | All | | | | 0 |
 +-------------------------------+-------+----------+-------+-------+

Resource Use Report - End

[back to topic contents]

Home > Model Development Topics > Model Symbols

Symbols in model code and in the user interface.

This topic is under construction and/or revision.

Model Documentation: Home topic on model documentation

Symbol Labels and Notes: Human-language labels and notes for model symbols

Introduction and outline

Doxygen brief descriptions for model symbols

Content to follow.

[back to topic contents]

This subtopic describes doxygen brief descriptions created by the OpenM++ compiler for model symbols. An IDE such as Visual Studio can use
these doxygen labels to provide information on model symbols used in C++ model code directly from the code editor. Syntactic islands in model
code should be hidden so that doxygen and the IDE can correctly parse the C++ portions of the model project, as described in Model Code -
Hiding syntactic islands.

This subtopic contains the following sections:

Background on doxygen

RiskPaths example

Examples of doxygen brief descriptions

[back to topic contents]

Doxygen is a widely used tool which generates human-readable hyperlinked HTML documentation for a C++ project. Doxygen fully parses the
project's C++ source code for symbols and symbol references, and will incorporate descriptive information provided in specially-structured
comments in the C++ source code. Here's an example of a structured doxygen comment in the C++ source code of the OpenM++ compiler:

class CodeBlock : public list<string>
{
public:
...
 /**
 * Push block of code at the top of the list.
 * No indentation applied (assuming zero indent at the top)
 *
 * @param push_block The block of code to be inserted.
 */
 void push_header(const CodeBlock & push_block);
...
};

In this example the comment block starting with /** tells doxygen to parse the comment block for structured descriptive text about the C++
symbol whose declaration or definition follows in the code. Doxygen takes the first line of the comment block as a brief description of the symbol
push_header .

Doxygen recognizes several ways to supply information in structured comments. For example, the following supplies only the doxygen 'brief
description' for push_header :

Model Symbols

Related topics

Topic contents

Introduction and outline

Doxygen brief descriptions for model symbols

Background on doxygen

class CodeBlock : public list<string>
{
public:
...
 /// Push block of code at the top of the list.
 void push_header(const CodeBlock & push_block);
...
};

Doxygen is so widely used that some IDEs (e.g. Visual Studio) scan a project's C++ source code for doxygen comments to improve functionality.
For example, in the Visual Studio C++ project for the OpenM++ compiler, hovering the cursor over the symbol push_header in line 347 of the
module CodeGen.cpp causes the IDE to display a pop-up which includes information extracted from the doxygen comment for push_header which
the IDE found elsewhere in the project:

[back to doxygen brief descriptions for model symbols]
[back to topic contents]

The OpenM++ compiler generates C++ code which declare C++ symbols to implement model symbols declared in syntactic islands in model
code.

For example, the model code which declares the unions attribute of the Person entity in the Unions.mpp module in RiskPaths is

actor Person
{
 //EN Union counter
 int unions = {0};
...

The OpenM++ compiler parses this code and creates the following C++ code in om_declarations.h to implement the unions attribute:

class Person : public Entity<Person>
{
public:
...
 /// attribute(simple) int: Union counter
 unions_om_type unions;
...

RiskPaths example

The OpenM++ compiler generated a line of C++ code to declare unions as well as a preceding doxygen comment containing the doxygen brief
description. The doxygen brief description = generated by the OpenM++ compiler has two parts. The first part gives the kind of symbol (a simple
attribute) and the the underlying type (int). The second part after the : is the symbol label provided in model code, in the default language of the
model (EN for RiskPaths).

If the RiskPaths project is opened in Visual Studio and the model built, hovering the cursor over the symbol unions in line 148 of the module
Unions.mpp causes the IDE to display a pop-up for that symbol:

The first line of the popup displays C++ information for unions , which can contain useful information like array shape, C++ type, and the
containing class. In this example, the first line gives the kind of entity of the unions attribute, namely Person . The second line of the popup
displays the doxygen brief description for unions generated by the OpenM++ compiler. In this example, it shows that unions is a simple
assignable attribute of type int, with label Union counter .

[back to doxygen brief descriptions for model symbols]
[back to topic contents]

The following table shows, for each kind of model symbol, an example from RiskPaths and the doxygen brief description generated by the
OpenM++ compiler. The brief description will appear in a pop-up if the cursor is hovered over the symbol in the Visual Studio IDE, as illustrated
above.

Kind of
symbol

RiskPaths symbol Generated brief description Remarks

attribute age attribute(built-in) Time: age The type of the built-in attribute age is Time

attribute parity_status
attribute(simple) PARITY_STATE: Parity

status derived from the state parity

parity_status is a simple assignable attribute of type
PARITY_STATE (a classification)

attribute integer_age
attribute(identity) LIFE: Current integer

age

integer_age is an identity attribute whose RHS is the
expression COERCE(LIFE, self_scheduling_int(age))

classification PARITY_STATE Classification {0...1}: Parity status The range of possible values is shown.

Examples of doxygen brief descriptions

classification
level

PS_PREGNANT

Classification

PARITY_STATE(PS_PREGNANT):

Pregnant

The Visual Studio IDE also gives the integer value of the
classification level.

range LIFE Range {0...100}: Simulated age range The range of possible values is shown.

partition AGEINT_STATE Partition {0...11}: 2.5 year age intervals The range of possible values is shown.

entity
function

Union1DissolutionEvent

Implement the event

Union1DissolutionEvent when it occurs in

the Person entity (model code)

The label of the function from model code is shown, followed
by (model code) to indicate the provenance of the function
definition.

parameter ProbMort Parameter double: Death probabilities
The Visual Studio IDE also gives the shape of array
parameters which for ProbMort is 101.

Kind of
symbol

RiskPaths symbol Generated brief description Remarks

[back to doxygen brief descriptions for model symbols]
[back to topic contents]

Home > Model Development Topics > Parameter and Table Display and Content

This topic describes how to control the display and presence of parameters and tables using statements in model code.

OpenM++ User Interface

Model Code

Parameter groups Organizing parameters into a hierarchy

Table groups Organizing tables into a hierarchy

Dual UI Specifying a user interface with switchable simplified and detailed views

Model trim down Creating a trimmed-down model by removing parameters and tables

Derived parameters as tables Output derived parameters as tables

A parameter group is a named, ordered list of parameters and other parameter groups. Parameter groups can be used to organize the
parameters of a model into a hierarchical structure for display and navigation in the model UI. A parameter or parameter group can be a
component of zero, one, or more than one parameter groups.

In the hierarchical display of input parameters in the model UI, parameters and parameter groups which are not part of any other parameter
group are displayed at the root level in lexicographical order by name.

Parameter groups can also be used to identify groups of parameters in other model code statements such as hide , parameters_retain , or (for
derived parameters) parameters_to_tables .

The following example declares a parameter group named PG12_SchoolOneFate which consists of the model input parameter Educ1Model followed
by three other parameter groups.

parameter_group PG12_SchoolOneFate //EN Primary School
{
 Educ1Model,
 PG10_SchoolOneFateBase,
 PG11_SchoolOneFateRefined,
 PG10_ShoolOneTracking
};

Derived parameters in a parameter_group are absent from the hierarchical display of parameters in the model UI. Derived parameters can be
displayed in the UI as described below.

Modgen-specific: The Modgen-specific statement model_generated_parameter_group is treated as a synonym of parameter_group by OpenM++.

[back to topic contents]

Table groups are very similar to Parameter groups. They are used to display a model's tables in a hierarchy in the model UI. A table or table
group can be a component of zero, one, or more than one table groups.

In the hierarchical display of tables in the model UI, tables and table groups which are not part of any other table group are displayed at the root
level in lexicographical order by name.

Table groups are also used to identify groups of tables in other model code statements such as hide or tables_retain .

Table groups can be used for run-time table selection using model options Tables.Retain or Tables.Suppress .

The following example declares a table group named TG04_Education which consists of three other table groups.

Parameter and Table Display and Content

Related topics

Topic contents

Parameter groups

Table groups

table_group TG04_Education //EN Education
{
 TG04_Preschool,
 TG04_Primary,
 TG04_Secondary
};

[back to topic contents]

The OpenM++ UI can present either a simplified or a detailed model interface to the user, and the user can switch between the two dynamically
in the UI by tapping a button. The simplified interface can contain fewer parameters and tables than the detailed interface. Which parameters and
tables are displayed in each interface is specified in model source code using one or more hide or show statements. A model can contain either
hide statements or show statements, but not both. If a model contains no hide or show statements, it has a single interface and the button to

choose the simplified or detailed interface is absent from the UI. If a model has both interfaces, the simplified interface is displayed by default.

The hide statement syntax is like:

hide P02_Fertility, TG01_Life_Tables;

The arguments to hide can be the names of tables, parameters, or groups.

The show statement has the same syntax. The show statement hides all parameters, tables, and groups except those listed as arguments to
show statements.

hide and show do not change which parameters or tables are present in the model. They should not be confused with suppress or retain
statements in model code which burn in parameters or remove tables from the model itself when it is built: parameters_retain , parameters_suppress ,
tables_retain , tables_suppress .

hide and show should also not be confused with the run-time model options Tables.Suppress and Tables.Retain which specify which tables are
output in a model run.

Modgen-specific: The Modgen hide syntax which surrounds arguments in parentheses is also recognized, and treated as described in the
description of hide above. Modgen hide functionality is similar but not equivalent to ompp hide functionality. Modgen hide of a table suppresses
it from the model, and is similar to the ompp tables_suppress statement. Modgen hide of a parameter does not remove it, but instructs the UI to not
display it.

[back to topic contents]

A family of four model code statements can be used to trim down a model at build time by selectively suppressing parameters using
parameters_suppress or tables using tables_suppress . Suppression of parameters or tables does not affect the simulation. The complementary

statements parameters_retain and tables_retain specify that the model is only to contain specified parameters or tables, suppressing all others.
Suppress and retain are mutually exclusive: The OpenM++ compiler will raise an error if model code contains both parameters_suppress and
parameters_retain statements, or both tables_suppress and tables_retain statements.

Suppressed parameters are burned into the executable using values published when the model is built. Suppressed parameters are absent from
the user interface and the model database, and from metadata in the database. Large models can benefit both in build time and start-up time by
suppressing parameters, because there is no need to read suppressed parameters from the database when launching the model. Suppressing
parameters can also simplify the UI of a deployed model.

Suppressed tables are completely removed from the model. Large models can benefit both in build time and run time by suppressing tables.

Table dependencies specified using the dependency statement are nevertheless respected if a suppressed table is required by a non-suppressed
table. Suppressed tables which are required by other tables are computed internally but are otherwise invisible.

Branches of the parameter or table hierarchy which become empty because of parameter or table suppression are suppressed from the model
metadata and the user interface.

The following example is an extract from a model code module SuppressRetain.ompp which was added to the large OncoSim model to create a
trimmed-down test version of the model which contained only parameters and tables related to breast cancer.

Dual UI

Model trim down

parameters_retain
 SimulationSeed,
 SimulationCases,
 Breast_Cancer_Parameters
;

tables_retain
 TG01_Breast_Cancer_Tables
;

OpenM++ also includes the ability to selectively suppress tables at run-time using the model run options Tables.Suppress and Tables.Retain . These
options allow a model user to economize processing time and storage by restricting output to specific tables of interest from the available tables
in the model.

Unlike the model run options Tables.Suppress and Tables.Retain , the model code statements tables_suppress and tables_retain remove tables
completely from a model. That can improve model build time, run time, and run storage, but tables suppressed at build time are not available to
users at run time.

A model with suppressed parameters builds faster because its metadata and Default values are not published to the model database. The model
also launches faster because there is no need for it to read the suppressed parameters from the database when the model starts. A suppressed
parameter can be made visible and editable in the model UI by changing the suppress/retain statement and rebuilding the model. This can be
simpler than using the Fixed parameter mechanism which requires moving the file containing the parameter values between two folders.

Models can contain diagnostic tables used for testing and development, but which are only needed occasionally subsequently. Instead of
commenting out or removing such tables, they can be kept, but added to a table group and then suppressed using tables_suppress . Doing so
ensures that the diagnostic tables continue to be parsed and verified when the model is built, without imposing additional complexity or costs to
the published model.

During model development, a model is often modified, built, and run repeatedly when working on a specific component. That iterative
development process can be accelerated by using parameters_retain and tables_retain temporarily to focus only on the parameters and tables
associated with the current development activity. That optimizes the model to the current development activity without changing the simulation
logic. After the development activity is complete, the temporary parameters_retain and tables_retain statements can be removed.

[back to topic contents]

A derived parameter is normally invisible in model inputs and outputs but can be made visible by exporting it as a derived table using the
parameters_to_tables statement.

The argument of parameters_to_tables is a comma separated list of derived parameters or groups of derived parameters. Model code can contain
multiple occurrences of parameters_to_tables .

The corresponding derived table

has the same name as the derived parameter

has the same metadata as the derived parameter including parameter label, note, dimension labels, and dimension names

converts parameter values to double , with classifications, ranges, and partitions converted to {0,1,2,...} and bool converted to {0,1} , where 0

is false and 1 is true .

has an implicit dimension for sub/member/replicate for runs with multiple subs

computes, for overall run results, the average across subs (like other derived tables)

A derived table created by parameters_to_tables acts like other derived tables and can be

displayed in the UI as a multi-dimensional table

organized in the hierarchical display of tables in the model UI using table_group

suppressed or retained in model outputs using tables_suppress or tables_retain

exported in csv format for downstream analysis either from the UI or by using dbcopy

Derived parameters as tables

Summary

used in model output comparisons with test_models

A derived parameter (aka model-generated parameter) is declared using the derived keyword. It is computed by model code before the simulation
starts using values of other parameters.

Modgen-specific: In Modgen, derived parameters are declared using the keyword model_generated . OpenM++ treats model_generated as a synonym
of derived . In Modgen, derived tables are declared using the keyword user_table . OpenM++ treats user_table as a synonym of derived_table .

For example, here's the declaration of the derived parameter ImmigrantDonors in the OzProj model:

parameters
{
 ...
 //EN Number of immigrant donors in initial population
 model_generated int ImmigrantDonors;
 ...
};

OzProj computes the value of ImmigrantDonors in the function PersonCore_PreSimulation by counting microdata input records which satisfy particular
conditions. The computation depends on the input parameter MicroDataInputFile which gives the name of the file containing input microdata.

Derived parameters are not editable and are not present in the hierarchical display of parameters in the model UI. However, parameters_to_tables

makes selected derived parameters visible in the UI by converting them to derived tables.

The following statement in OzProj makes the 7 derived parameters in OzProj visible as identically-named derived tables in the model UI.

parameters_to_tables
 EmigrationHazard,
 FertilityHazard,
 MortalityHazard,
 ImmigrantDonors,
 EmigrationHazard,
 FertilityHazard,
 MortalityHazard
;

Every parameter specifies the type of its value(s), e.g. double , int , bool , REGION , AGE_GROUP . Because the value of a table cell is always
double , parameters_to_tables may need to convert the parameter value type to double in the derived table. The conversion follows normal C++ type

conversion rules. This includes converting parameter values of type Range , Classification or Partition to {0,1,2,...} , and parameter values of type
bool to {0,1} , where 0 is false and 1 is true .

Derived parameters transformed to derived tables can be members of a table group, e.g.

table_group DerivedParameters //EN Derived Parameters
{
 EmigrationHazard,
 FertilityHazard,
 MortalityHazard,
 ImmigrantDonors,
 EmigrationHazard,
 FertilityHazard,
 MortalityHazard
};

This allows them to be organized hierarchically in the UI, or suppressed/retained as a group using tables_suppress or tables_retain .

[back to topic contents]

Exposition and example

Home > Model Development Topics > Population Size and Scaling

This topic describes ways a model can specify the size of the simulation population, the size of the real-world population represented by the
simulation population, and the scaling of table results to the size of the real-world population.

Use Modules: The use statement and supplied library of use framework modules

Introduction

Population size and scaling - case-based model

Population size and scaling - time-based model

The following concepts are used in this topic.

Term Explanation

run An execution of a model. A run can consist of one or more independent subs/members/replicates.

member/replicate/sub/subsample Synonyms denoting each of the independent simulations which together constitute a run.

case An independent, isolated entity or small collection of related entities such as a family or clan.

case-based model A model which simulates, in each sub/replicate, a population of independent, non-interacting cases.

time-based model A model which simulates, in each sub/replicate, a population of interacting entities.

simulation population The population of entities in a model simulation.

real population The real-world population represented by a simulation population.

use module A code module supplied with OpenM++ which implements underlying functionality for a model.

An OpenM++ model specifies population size and scaling in different ways depending on what kind of model it is. For example, a model which
creates a synthetic population from multivariate distributions has no intrinsic size whereas a model based on a micro-data file may have its size
fixed to the number of observations in that file.

To support different model frameworks OpenM++ includes a library of source code modules. Selected modules from this library are incorporated
into a model through use statements to implement the desired model framework. These use statements are usually found in a model code
module named ompp_framework.ompp . For more information, please see the Use Modules topic.

[back to topic contents]

Population size and scaling is specified for a case-based model by selecting a pair of modules from the use library, one which determines
population size and one which determines population scaling. For example, the following code fragment from the ompp_framework.ompp module for
a model specifies that population size is given for the entire run (rather than for each replicate of the run), and that the results are not scaled to a
real population.

use "case_based/case_based_cases_per_run_exogenous.ompp";
use "case_based/case_based_scaling_none.ompp";

The following table lists the available choices to specify population size for a case-based model:

use module Description

Population Size and Scaling

Related topics

Topic contents

Introduction

Population size and scaling - case-based

case_based/case_based_cases_per_member_exogenous.ompp

The number of cases in a member is given by the input parameter CasesPerMember

which is declared in this module. The number of cases in the run is the product of
CasesPerMember and the number of replicates specified for the run.

case_based/case_based_cases_per_run_exogenous.ompp

The number of cases for the entire run is given by the input parameter
SimulationCases which is declared in this module. The cases are evenly divided

among the members specified for the run. Any 'extra' cases are assigned to lower-
numbered members.

case_based/case_based_cases_per_member_endogenous.ompp

The number of cases in a member is given endogenously by the derived parameter
CasesPerMember , which is declared in this module. CasesPerMember is set by a
PreSimulation function in model code. CasesPerMember might, for example, be set to

the number of observations in a micro-data input file. The number of cases in the
run is the product of CasesPerMember and the number of replicates specified for the
run. NOT YET IMPLEMENTED

case_based/case_based_cases_per_run_endogenous.ompp

The number of cases for the entire run is given endogenously by the derived
parameter SimulationCases , which is declared in this module. SimulationCases is set
by a PreSimulation function in model code. SimulationCases might, for example, be set
to the number of observations in a micro-data input file. Model code would allocate
observations in the micro-data file evenly to each of the members of the run, and
allocate any 'extra' cases to lower-numbered members. NOT YET IMPLEMENTED

use module Description

The following table shows the available choices to specify population scaling for a case-based model:

use module Description

case_based/case_based_scaling_exogenous.ompp

The simulated population in each sub/member/replicate is scaled to represent the
real-world population given by the input parameter SimulatedPopulation , which is
declared in this module. Incorporates weights if model uses weighted tabulation.

case_based/case_based_scaling_endogenous.ompp

The simulated population in each sub/member/replicate is scaled to represent a real-
world population provided by model code by a call to the global function
SetPopulation(). Incorporates weights if model uses weighted tabulation.

case_based/case_based_scaling_none.ompp

The simulated population in each sub/member/replicate is scaled to the number of
cases in the run. For a run with a single member, this is equivalent to no population
scaling. For a run with more than one member, each member is scaled up by the
number of members in the run.

case_based/case_based_scaling_endogenous_or_none.ompp
Acts like case_based_scaling_endogenous if the parameter DisablePopulationScaling is false ,
or like case_based_scaling_none if true .

case_based/case_based_scaling_disable.ompp

Disables population scaling. Each sub is scaled up by the number of subs, which
causes overall (average) run results to become the sums of the original (unscaled)
subs.

[back to topic contents]

Population size and scaling is specified for a time-based model by selecting a module from the use library which determines both population size
and scaling. All such modules declare a parameter StartingPopulationSize which gices the size of the starting population. The size of the starting
population is the same for all members of a time-based model run.

The following code fragment from the ompp_framework.ompp module for a model specifies that results are not scaled.

use "time_based/time_based_scaling_none.ompp";

The following table shows the available choices to specify population size scaling for a time-based model:

Population size and scaling - time-based

use module Description

time_based/time_based_scaling_exogenous.ompp
The simulated population in each member/replicate is scaled to represent the real-world
population given by the input parameter SimulatedPopulation , which is declared in this module.

time_based/time_based_scaling_endogenous.ompp

The simulated population in each member/replicate is scaled to represent the real-world
population given by the input parameter SimulatedPopulation , which is declared in this module.
Or maybe by a call to the function SetPopulation(). NOT FULLY TESTED

time_based/time_based_scaling_none.ompp The simulated population in each member/replicate is not scaled.

[back to topic contents]

Home > Model Development Topics > Symbol Labels and Notes

This topic describes human-language labels and notes associated with model symbols. These labels and notes are used in a model's UI,
documentation, and the IDE.

Model Documentation: Home topic on model documentation

Authored Model Documentation: The autonomous authored component of model documentation

Generated Model Documentation: The symbol reference component of model documentation

Model Languages: The human languages supported by a model

Model Symbols: Symbols in model code and in the user interface

Introduction and outline

Symbol labels A label provides a one-line short description of a model symbol

Symbol notes A note provides in-depth information about a model symbol

Identifying missing symbol documentation Describes options to identify missing symbol documentation

This topic describes how to provide human-readable documentation for model symbols using labels and notes. Symbol labels and notes are used
in the model's UI and in the model's generated Symbol Reference.

Labels and notes are described in separate subtopics. A final subtopic describes a family of options understood by the OpenM++ compiler which
can help identify missing labels, notes, or translations.

[back to topic contents]

This subtopic is organized into the following sections:

Symbol labels: introduction

Symbol labels: inline with declaration, e.g. //EN

Symbol labels: //LABEL

Symbol labels: //LABEL with two-part name

Symbol labels: //LABEL with two-part name (explicit short name)

Symbol labels: //LABEL with two-part name (Modgen scheme)

Symbol labels: LABEL text file

[back to topic contents]

Labels for model symbols play an important role in the UI for a model, providing comprehensible human-language text for

parameters,

parameter dimensions,

enumerations (classifications, ranges, partitions),

Symbol Labels and Notes

Related topics

Topic contents

Introduction and outline

Symbol labels

Symbol labels: introduction

enumerators of classifications,

tables,

table dimensions,

table expressions,

parameter groups (parameter hierarchy)

table groups (table hierarchy),

attributes.

Labels for model symbols are also used to aid a model developer using C++ symbols in an IDE. The OpenM++ compiler uses a model's labels to
construct doxygen comments in generated C++ code, which can be used by an IDE to display contextual pop-ups for symbols in the model's C++
code, as described below.

See the subtopic identifying missing symbol documentation in this topic for functionality to help identify missing labels or translations. This can be
helpful when publishing a model for external users.

A symbol label can also be used in the authored component of model documentation if that content uses GetLabel , as described here.

[back to symbol labels]
[back to topic contents]

Model symbols are declared in syntactic islands in model code. A model symbol can have a label for each human language declared in the
languages statement. A symbol label can be provided where the symbol is declared using an in-line comment, for example

actor Person
{
 //EN Union counter
 int unions = {0};
...

To be recognized as a language label, there must be no white space between // and the language code, and some white space is required
between the language code and the label text. OpenM++ silently ignores unrecognized language codes.

In this example, a label is provided for the symbol unions by a comment on the line immediately preceding the symbol declaration. It can also be
provided on the same line as the declaration by placing the trailing // comment there.

Model code sometimes declares a symbol positionally rather than using a name. A label can be provided for a positionally-delcared symbol on the
same line or on the immediately preceding line, just like for symbols with names.
For example the table declaration

table Person T01_LifeExpectancy //EN Life Expectancy
{
 {
 unit, //EN Total simulated cases
 duration(), //EN Total duration
 duration()/unit //EN Life expectancy decimals=3
 } //EN Quantities
};

provides a label for the table itself, for each of the the three expressions in the table, and for the expression dimension of the table, all in the EN

language of the model.

Notice that the positional location of the table expression dimension is the trailing closing } of the expression dimension, after all expressions.

[back to symbol labels]
[back to topic contents]

A symbol label can also be provided by a //LABEL comment in model code. This is particularly useful for models which support more than one
language.

Symbol labels: inline with declaration, e.g. //EN

Symbol labels: //LABEL

In the following example, the EN label for the SimulationCases parameter is provided where it is declared

parameters {
 //EN Number of cases in run (over all members)
 long long SimulationCases;
};

and the French language version of the label is provided elsewhere using //LABEL

//LABEL(SimulationCases,FR) Nombre de cas (dans tous les membres de l'execution)

To be recognized as a human-language label, there must be no white space between // and LABEL . Subsequent white space is optional. The
arguments to //LABEL are the symbol name and the language code, which to be recognized must be one of those declared in the languages

statement.

A label supplied inline with the symbol declaration in model code takes precedence over a label supplied through a //LABEL comment in model
code.

OpenM++ silently ignores unrecognized symbol names and language codes in //LABEL comments.
Modgen-specific: Modgen treats a LABEL comment with an unrecognized symbol or language as an error. Note that OpenM++ has other
mechanisms to help model devs identify missing or mistyped labels described here.

[back to symbol labels]
[back to topic contents]

The //LABEL syntax uses a two-part name to provide a label for the dimension of a parameter or table, for an expression of a table, for the
expression dimension of a table, and for classification levels (enumerators).

The first part of a two-part name is the name of the parameter, table, or classification.
The second part of a two-part name denotes the dimension, expression, or enumerator.

The separator for a two-part name in a LABEL comment can be either :: or . .
Modgen-specific: Modgen recognizes only . as a separator in two-part names.

There are two ways to specify the second part of a two-part name:

the explicit short name, or

the Modgen naming scheme.

[back to symbol labels]
[back to topic contents]

In the following example, the dimensions and expressions of the table TotalPopulationByYear have been given explicit short names:

table Person TotalPopulationByYear //EN Life table
{
 //EN Curtate age
 age => integer_age +
 *
 {
 pop => unit, //EN Population start of year
 py => duration() //EN Average population in year
 } //EN Quantity
};

The following //LABEL statements provide a French language label for the table dimensions and expressions using their explicit short names age ,
pop , and py :

//LABEL(TotalPopulationByYear.age,FR) Âge intègre
//LABEL(TotalPopulationByYear.pop,FR) Population au début de l'année
//LABEL(TotalPopulationByYear.py,FR) Population moyenne pendant l'année

Symbol labels: //LABEL with two-part name

Symbol labels: //LABEL with two-part name (explicit short name)

The expression dimension of a table is a special case. It uses the fixed name expression_dimension as the second part of the two-part name.

Continuing the above example, a French version of the expression dimension of the table is supplied by

//LABEL(T01_LifeExpectancy.expression_dimension,FR) Quantité

This string is displayed in the UI in the header of the table's expressions.

Here's another example showing //LABEL comments with explicit short names to provide French versions for the dimensions of the parameter
UnionDurationBaseline in RiskPaths :

 double UnionDurationBaseline
 union_order => [UNION_ORDER] //EN Union order
 union_dur => [UNION_DURATION]; //EN Union duration
 //LABEL(UnionDurationBaseline.union_order,FR) Ordre d'union
 //LABEL(UnionDurationBaseline.union_dur,FR) Durée d'union

Here's an example showing //LABEL comments with explicit short names to provide the translation for the levels (enumerators) of the
classification UnionDurationBaseline in RiskPaths :

classification UNION_ORDER //EN Union order
{
 first => UO_FIRST, //EN First union
 second => UO_SECOND //EN Second union
};
//LABEL(UNION_ORDER.first,FR) Première
//LABEL(UNION_ORDER.second,FR) Deuxième

[back to symbol labels]
[back to topic contents]

The other method to specify the second part of a two-part name in a //LABEL comment uses the naming scheme used in Modgen for //LABEL .

In the Modgen naming scheme, a LABEL comment for a parameter dimension has the form
//LABEL(ParameterName.DimN,LANG) text

where N is {0,1,...,rank-1} , rank is the number of parameter dimensions, LANG is the language code, and text is the label.

and a LABEL comment for a table dimension has the form
//LABEL(TableName.DimN,LANG) text

where N is {0,1,...,rank} , rank is the number of classificatory dimensions in the table, LANG is the language code, and text is the label.
NB: The naming scheme for table dimensions differs from that used for default short names. Unlike a default short name, it includes the
expression dimension of the table in the numbering.

In the Modgen naming scheme, a LABEL comment for a table expression has the form
//LABEL(TableName.ExprN,LANG) text

where N is {0,1,...,expressions} , expressions is the number of expressions in the table, LANG is the language code, and text is the label.

Here's the version of the French translation for the labels of the previous example using the Modgen naming scheme:

//LABEL(TotalPopulationByYear.Dim0,FR) Âge intègre
//LABEL(TotalPopulationByYear.Expr0,FR) Nombre total de cas simulés
//LABEL(TotalPopulationByYear.Expr1,FR) Durée totale
//LABEL(TotalPopulationByYear.Expr2,FR) Espérance de vie

[back to symbol labels]
[back to topic contents]

A symbol label can be supplied as a .txt file in the doc sub-directory of the model. For example, the file RiskPaths/doc/LABEL.ProbMort.FR.txt provides
a French language version of the label of the ProbMort parameter. The file contents is a single line, which in this example is

Probabilités de décès

Symbol labels: //LABEL with two-part name (Modgen scheme)

Symbol labels: LABEL text file

To be recognized as a LABEL text file, the filename must be named as in the example: LABEL , followed by the symbol name, followed by the
code of a model language, followed by txt , with these parts separated by the . character.

If both //LABEL and a LABEL text file are present, the LABEL text file takes precedence.

A label supplied inline with the symbol declaration in model code takes precedence over a label supplied through a LABEL text file.

[back to symbol labels]
[back to topic contents]

A model symbol can have an associated descriptive note. The note for a published symbol such as a parameter, table, or classification can be
viewed in the UI in context by clicking the information icon. A symbol note may also be incorporated into Generated Model Documentation in the
model's Symbol Reference.

The content of a note can be provided in one of two ways: through a /*NOTE comment in model code, or through a .md markdown file in the doc

sub-directory of the model.

Model notes are authored using markdown, with some augmentations and limitations, as described in writing content.

This subtopic is organized into the following sections:

Symbol notes: /*NOTE in model code

Symbol notes: NOTE markdown file

Symbol notes: The special model symbol

Symbol notes: Modgen formatting indicators

[back to topic contents]

The text for a note can be given in model code using a NOTE comment, For example, in RiskPaths ,

/*NOTE(Person.FirstPregEvent, EN)
 The first pregnancy event. This is the main event of analysis and
 censors all future union events.
*/

in the Fertility.mpp model code module provides a note in the human language EN for the event FirstPregEvent in the Person entity.

The rules for two-part symbol names in NOTE comments are the same as those for //LABEL given in symbol labels.

To be recognized as a human-language note, there must be no white space between /* and NOTE . Subsequent white space is optional.

[back to symbol notes]
[back to topic contents]

A symbol note can be supplied as a .md markdown file in the doc sub-directory of the model. For example, the file
RiskPaths/doc/NOTE.ProbMort.EN.md provides the English language version of the descriptive note for the ProbMort parameter.

The file content uses the markdown syntax, which for NOTE.ProbMort.EN.md is:

* The values in `ProbMort ̀have no effect if [`CanDie`](#CanDie) is `false`.
* The [GetLabel(Person::DeathEvent)](#DeathEvent) function in `RiskPaths`
 treats the values in `ProbMort ̀as though they are hazards.
 Arguably, the annual probabilities of death in `ProbMort ̀should be converted to hazards
 using the formula
 \(h_{x}=-\ln(1-q_{x})\).
 where
 \(h_{x}\) is the hazard of death and \(q_{x}\) is the annual mortality rate.

and, depending on browser capabilities and environment, might render like this in the RiskPaths Symbol Reference, towards the top of the topic,
after the hierarchy and before the dimensions table:

Symbol notes

Symbol notes: /*NOTE in model code

Symbol notes: NOTE markdown file

See writing content for more information about note content and rendering.

[back to symbol notes]
[back to topic contents]

A note provided for the special symbol model will be displayed as introductory text in the model UI and in the model's generated Symbol
Reference.

For example, the Info.mpp module in the OzProj model provides the following note for the model symbol:

/*NOTE(model, EN)
 A series of OzProj model versions accompany the on-line course "Practical Microsimulation".
 That course presents how to use Modgen to construct a microsimulation model
 to produce detailed demographic projections from a large heterogenous microdata population.

 The course content also teaches how to use Modgen through concrete self-contained examples.

 The model is based on data from the web site of the Australian Bureau of Statistics.
*/

Clicking the information icon for the OzProj model in the UI displays a pop-up like

Symbol notes: The special model symbol

If provided, the note for the model symbol is incorporated into the model's Symbol Reference, but this can be disabled using the
symref_model_symbol option, as described in customizing the symbol reference. If the model has autonomous authored documentation with a home

page, a note for the model symbol might be redundant in model documentation.

[back to symbol notes]
[back to topic contents]

Modgen formatting indicators in notes are described in the Modgen Developer’s Guide in section “Formatting of symbol notes” on page 217. By
default, the OpenM++ compiler identifies and converts Modgen formatting indicators to equivalent markdown when it encounters a note in model
code in /*NOTE .

If a model uses markdown exclusively in notes in model code, this conversion can be disabled using the following statement:

options convert_modgen_note_syntax = off;

In practice, markdown and Modgen formatting indicators can co-exist in a /*NOTE comment without interfering.

Modgen formatting indicators are ignored and not converted in NOTE markdown files.

[back to symbol notes]
[back to topic contents]

A common issue for model developers is to identify undocumented symbols, and, once identified, insert the missing documentation in the model
source code.

The OpenM++ compiler supports a family of options to aid that process. Each member of the family targets a specific kind of missing

Symbol notes: Modgen formatting indicators

Identifying missing symbol documentation

documentation. When an option is set to on , the compiler will generate a warning for each occurrence of missing documentation of that kind. The
warning includes the model code file and line where the symbol was declared, except for missing translation warnings which instead give the
location of the untranslated text. In an IDE like Visual Studio, double-clicking on the warning in the log window navigates immediately to that
model source code location in the IDE editor.

By default these options are off . Multiple options can be turned on at the same time.

Here's an example to identify all published parameters in RiskPaths which have no descriptive note in the model's default language. Inserting the
following line in ompp_framework.ompp

options missing_note_warning_published_parameter = on;

causes the compiler to emit warnings like:

1>../code/Unions.mpp(39): warning : missing note for published parameter 'AgeBaselineForm1'
1>../code/Fertility.mpp(21): warning : missing note for published parameter 'AgeBaselinePreg1'
1>../code/Mortality.mpp(25): warning : missing note for published parameter 'CanDie'
1>../code/Mortality.mpp(26): warning : missing note for published parameter 'ProbMort'
1>../code/Unions.mpp(45): warning : missing note for published parameter 'SeparationDurationBaseline'
1>../code/Unions.mpp(42): warning : missing note for published parameter 'UnionDurationBaseline'
1>../code/Fertility.mpp(24): warning : missing note for published parameter 'UnionStatusPreg1'

Here's an example which identifies all published symbols in IDMM which have a descriptive label or note in the default language, but whose
translation is missing in one of the model's other languages. The source of IDMM was changed for this example to deliberately create missing
translations.

Inserting the following lines in ompp_framework.ompp

options missing_translated_label_warning_published_any = on;
options missing_translated_note_warning_published_any = on;

causes the compiler to emit warnings like:

1>../code/HostCore.mpp(89): warning : missing 'FR' translated label for published symbol 'event_count'
1>../code/HostCore.mpp(82): warning : missing 'FR' translated note for published symbol 'NumberOfHosts'

For missing translation warnings, the warning code location is the location of the label or note in the default language, not the location of the
symbol declaration. That's so the warning can be used to navigate to the text to be translated.

The missing translated note warning above gave the code location HostCore.mpp(82) .
Here's an extract of the code starting at that location (line 82):

/*NOTE(NumberOfHosts,EN)
This number does not change during the simulation
because there are no births, immigration, or deaths.
*/

Double-clicking the warning in an IDE navigates directly to that NOTE in the IDE editor. The associated parameter NumberOfHosts is declared
elsewhere.

The following table lists the available options to emit warnings for missing symbol documentation, grouped by category. The Scope column shows
what produces a warning for the given option. For example, the missing_label_parameter option produces a warning for a missing label for a
parameter or for a parameter group. It does not produce a missing label warning for a parameter dimension. That's because the default label for
a parameter dimension is copied from the label of the enumeration for the dimension, and is usually sufficient. The scope of each option is
deliberately restricted to produce useful actionable warnings.

Option Scope

Labels

 missing_label_warning_enumeration classification, classification level, range, partition

 missing_label_warning_parameter parameter, parameter group

 missing_label_warning_table table, table expression, table group

 missing_label_warning_attribute attribute

Labels - Published

 missing_label_warning_published_enumeration as above, but only if published

 missing_label_warning_published_parameter as above, but only if published

 missing_label_warning_published_table as above, but only if published

 missing_label_warning_published_attribute as above, but only if published

Notes - Published

 missing_note_warning_published_parameter published parameter

 missing_note_warning_published_table published table

 missing_note_warning_published_attribute published attribute

Translated Labels and Notes

 missing_translated_label_warning_any any symbol with an explicit label provided in the model's default language

 missing_translated_note_warning_any any symbol with a note provided in the model's default language

Translated Labels and Notes - Published

 missing_translated_label_warning_published_any as above, but only for published symbols

 missing_translated_note_warning_published_any as above, but only for published symbols

Option Scope

[back to topic contents]

Home > Model Development Topics > Tables

This topic is under construction and/or revision.

Topic summary, two sentences max.

Entity Tables: Entity tables

Derived Tables: Derived tables

Model Output Expressions: Model Output Expressions

Introduction and outline

Run-level results

Overriding run-level results

Under construction: more content to follow...

[back to topic contents]

OpenM++ computes the run-level value of a table cell by aggregating the values of the table cell over the subs/replicates/members of the run.
The aggregation method depends on the kind of model (case-based or time-based), the measures_method option, the kind of table (entity or
derived), and for entity tables the measure statistic (count, sum, etc.).

Under construction: more content to follow...

Model code computes the values of a derived table, so for derived tables, OpenM++ sets the run-level aggregated result to the average of the
sub values.

[back to topic contents]

The formula to compute run-level results can be specified explicitly for a table measure by providing an expression in model code, as illustrated
by the following example:

//EXPR T00_Test.E0 OM_SUM(acc1) / OM_DIV_BY(acc2)

The syntax has three parts:

1. The introductory //EXPR single-line comment

2. The two-part name of a table measure

3. The expression used to compute the run-level value for that measure, in model output expression syntax using the table's accumulators.

Here's a worked example, using a derived table named T00_Test :

derived_table T00_Test
{
 {
 E0, //EN quotient
 E1, //EN numerator
 E2 //EN denominator
 }
};

Tables

Related topics

Topic contents

Introduction and outline

Run-level results

Overriding run-level results

This table has no enumeration dimensions, so consists of a single cell (not counting the measure dimension). The measure dimension has 3
measures/expressions: E0 , E1 , and E2 . As with all derived tables, each measure has an implicit associated 'fake' accumulator which for this
table are named acc0 , acc1 , and acc2 .

In this example, model code populates the cells mechanically for each sub as follows:

The cell E1 is always set to 1.0 .

The cell E2 is set to the number of the sub {0,1,2, ...} .

The cell E0 is set to the quotient E1 / E2 .

Here are the values of T00_Test for each sub for a 2-sub run:

Sub E0 E1 E2

0 1.0 1.0 1.0

1 0.5 1.0 2.0

Here's the model code which populates T00_Test for each sub:

Because T00_Test is a derived table, the run-level value is normally calculated using the OM_AVG() aggregation function, as follows:

Sub E0 E1 E2

0 1.0 1.0 1.0

1 0.5 1.0 2.0

Run-level formula OM_AVG(acc0) OM_AVG(acc1) OM_AVG(acc2)

Run-level value 0.75 1.0 1.5

In words, the default formula computes E0 by averaging the ratios in E0 over the subs.
The run result for E0 is

E0 = ((1/1) + (1/2))/2
 = (1.0 + 0.5) / 2
 = 1.5 / 2
 = 0.75

If the formula to compute E0 at the run-level is overridden by

//EXPR T00_Test.E0 OM_SUM(acc1) / OM_DIV_BY(acc2)

the calculation instead becomes

Sub E0 E1 E2

0 1.0 1.0 1.0

1 0.5 1.0 2.0

Run-level formula OM_SUM(acc1) / OM_DIV_BY(acc2) OM_AVG(acc1) OM_AVG(acc2)

Run-level value 0.66666 1.0 1.5

In words, the override formula computes E0 by summing the numerators over the subs, summing the denominators over the subs, and then
computing the quotient.
The run result for E0 is

E0 = (1+1)/(1+2)
 = 2.0 / 3.0
 = 0.66666

[back to topic contents]

Home > Model Development Topics > Test Models

This topic contains detailed information about the OpenM++ test_models utility. test_models builds, runs, and compares results for different versions
of the same model, or for the same model built in different ways or on different platforms.

Introduction and overview

Windows Quick start

Linux or MacOS Quick start

Concepts

Arguments and Options

Control - Files

Output - Report

Output - Files

Example 1: Preparing the default run

Example 2: A new OpenM++ release

Example 3: A model code change (under construction)

Example 4: When results differ (under construction)

Example 5: Exercising a model in Debug (under construction)

Example 6: A performance comparison

Example 7: Using event trace output (under construction, some content present)

The test_models utility builds, runs, and compares results for different versions of the same model, or for the same model built on different
platforms. It can process multiple models in a single invocation and can compare OpenM++ and Modgen versions of cross-compatible models. It
can play a useful role during incremental model development, and for quality assurance.

test_models is efficient enough that it can be used routinely in model development workflow cycles, even for large models (using a small sized
Default simulation). even multiple times per hour or more during active model development.

When used routinely to assess the effects of incremental model changes, test_models can help identify bugs in model logic. It highlights when
model changes have unexpected effects in model outputs, by comparing all cells of all output tables between a Current run and a Reference run.

test_models can be used to compare outputs of ompp model versions across platforms. Such differences are rare, and are typically caused by
errors in model logic (often due to bad C++ code in models, eg use of uninitialized variables, or accessing memory beyond array limits using
index variables with bad values).

test_models works with the standard model folder structure illustrated in the sample models in the OpenM++ distribution. It organizes results
herarchically in a subfolder test_models of the model folder. test_models organizes comparisons in two dimensions. The first dimension is
{Reference, Current}. A user can tell test_models to move Current results to Reference results to create a new point of reference for subsequent
output comparisons. The second dimension of comparison is the platform ‘flavour’ {modgen, ompp-win, ompp-linux, ompp-macos}. Arguments to
test_models determine where model results will be stored and which comparisons will be performed after test_models does the requested runs. For

speed and ease of use, each model output table is converted to three forms: full precision, rounded precision, and a summary 'digest' of the file
contents. The use of rounded precision eliminates most (but not all) spurious differences, eg differences at 6-7th decimal place. The table digest
makes it possible for test_models to determine whether two versions of a table differ at very high speed, without comparing the two tables cell-by-
cell.

test_models can compare results of Modgen and ompp versions of models, despite large underlying differences in output storage schema and
technology. It reads the database of each and converts output tables into a common comparable csv format.

Test Models

Topic contents

Introduction and overview

test_models can be very useful for cross-compatible model conversion. One can break cross-compatible model conversion into atomic steps and
use test_models after each atomic step to verify that Modgen results have not changed, even before an OpenM++ version of the model is
buildable. The comparisons relevant during cross-compatible model conversion are

1. Current(modgen) vs. Reference(modgen) - Modgen results should remain identical at each atomic change to model source, when build in
Modgen.

2. Current(ompp) vs. Current(modgen) – After the model code is cross-compatible, ie when the ompp version can be built with no compiler
errors, the model can be run in both versions and model results should be identical, because the model specifications are identical (same
model source code and same Default scenario). Sometimes they are not, in which case the tables which differ can sometimes provide a
clue.

When tracking down the cause of an unexpected difference in two runs, it can cometimes be useful to simplify the Default scenario and run
test_models again, to see which area of the model might responsible for the difference. For example, if all tables differ, but when one turns off

immigration in the Default scenario all differences disappear, one knows that the immigration code is somehow responsible. It can also be useful
to turn on event tracking in the model with a small simulated population. If test_models indicates that the two event tracking files are identical, but
table results are different, then the cause could be a Modgen tabulation bug.

test_models is also useful for model development. One can break model development into small atomic steps to help identify unexpected changes
in model outputs. If possible, one can structure model changes so that Default parameters and code changes should have no effect on outputs,
eg by turning a new model option off in Default parameters. That can identify whether the new model code, when disabled using the new
parameters, has unexpected effects on other parts of the model (it should not). The test_models comparisons typically used for model
development are

1. Current(ompp) vs. Reference(ompp) - Model results from incremental changes should affect only new tables or expected interactions among
model components. Once verified, one can tell test_models to copy Current results to Reference results (using the --newref option) to create
a new Reference for the next atomic set of changes to model code.

If one prefers to work in the Modgen environment for model development, one can instead use

1. Current(modgen) vs. Reference(modgen) - See notes above.

2. Current(modgen) vs. Current(ompp) – From time to time, build the ompp version to identify if non cross-compatible code has crept into the
model source, and rectify if so.

test_models also standardizes the detailed event trace outputs (if activated) in ompp and Modgen models so that they are comparable and
readable. This can identify precisely when a simulation diverges in the Modgen and ompp versions of a model, or in (for example) two ompp
versions of a model. This is useful for unexpected and hard-to-understand differences in simulations. If the time and event of earliest divergence
in the two runs is insufficient to understand the cause in and of itself, that information provides what’s required to set conditional breakpoints for a
parallel debugging session of the two runs, stepping through the simulation in each of the two debugging sessions, to identify the precise code
location responsible for the divergence in the simulation in the two versions.

test_models also notes some tombstone information about each set of outputs, eg the modgen version. It also keeps a copy of the build log output
and Default run log output. test_models can also report the elpased time of various steps, including model build and model run. A count of compiler
warnings is also reported.

test_models can run and process a single model, or multiple models in subfolders of a parent folder. That can be useful for testing mutliple
scenarios of a single model, using mutliple git clones inside a parent folder. It can also be useful to bulk test multiple models routinely, for
example after a change in the OpenM++ version.

[back to topic contents]

A 64-bit Windows executable version of test_models is distributed with OpenM++ at OM_ROOT/bin/test_models.exe , where OM_ROOT stands for the
OpenM++ installation directory. A 32-bit version is at OM_ROOT/bin/test_models32.exe . The 32-bit version may be required for the Modgen flavour to
work successfully using the executable version of test_models . To test installation and operation of test_models , open a command prompt, change
the current directory to OM_ROOT/bin , and type the command

test_models -v

Output should be similar to the following:

Windows Quick Start

1. Verify installation of test_models (Windows)

test_models version 2.1

test_models is written in the Perl language, and distributed with OpenM++ at OM_ROOT/Perl/test_models.pl . Most examples in this topic invoke
test_models using the Perl interpreter from the OM_ROOT/Perl directory, eg

perl test_models.pl -v

On Windows, unless you have Perl and the required Perl components installed, invoke the executable version of test_models from the
OM_ROOT/bin directory with a command like

test_models -v

or

test_models32 -v

From the OM_ROOT/bin directory, type the command

test_models -h

Output should be similar to the following:

test_models [-hmv] [long options...] model...
 -m STR --models_root STR directory containing models (default is .)
 --newref replace Reference results with Current
 results
 --noompp skip OpenM++ build and run
 --nomodgen skip Modgen build and run
 --nocomp skip flavour comparison
 --allfiles report all different and orphaned files
 --timing report elapsed time of steps
 --nosteps skip reporting which step is being
 performed
 --config STR build configuration: debug or
 release(default)
 --mpi_processes INT build MPI version and run with n
 processes (default 0, means no MPI)
 --gencode keep a copy of the generated C++ code
 --ini STR OpenM++ model ini file to pass to model
 (in model root, default is
 test_models.ini if present)
 --clean remove all build files after run
 --significant_digits INT significant digits (default 6)
 --nocells disable fallback cell-by-cell
 verification of differing tables and copy
 of original data
 -h --help report usage message and exit
 -v --version report test_models version and exit
 --windows_platform STR Windows platform: x64(default) or Win32
 --modgen_platform STR Modgen platform: Win32(default) or x64on of unrounded versions
 of tables

From the OM_ROOT/bin directory, type the command

test_models -m ../models RiskPaths

If Modgen is installed, use test_models32 instead of test_models . test_models will build and run both the OpenM++ and the Modgen versions of
RiskPaths, and compare their results. Output should be similar to the following:

2. Display test_models options (Windows)

3. Run test_models on the RiskPaths model (Windows)

 =========================
 test_models 2.0
 =========================

 Testing: RiskPaths
 modgen settings: version=12,1,3,0 (2019-12-19 20:31 GMT) platform=Win32 configuration=release
 ompp-win settings: compiler=omc.exe (2021-05-28 02:28 GMT) platform=x64 configuration=release

 RiskPaths: modgen: Build model and prepare Default scenario
 RiskPaths: modgen: Run model using RiskPaths.ini
 RiskPaths: modgen: Convert outputs (7 digits of precision)
 RiskPaths: modgen: Create digests of current outputs
 RiskPaths: modgen: No Reference outputs - create using Current outputs
 RiskPaths: modgen: Current vs. Reference: 9 the same (of 9)
 RiskPaths:
 RiskPaths: ompp-win: Build and publish model and Default scenario
 warning => RiskPaths: ompp-win: 10 build warning(s) - see RiskPaths/test_models/current/ompp-win/logs/build.log
 RiskPaths: ompp-win: Run model using RiskPaths.ini
 RiskPaths: ompp-win: Convert outputs (7 digits of precision)
 RiskPaths: ompp-win: Create digests of current outputs
 RiskPaths: ompp-win: No Reference outputs - create using Current outputs
 RiskPaths: ompp-win: Current vs. Reference: 9 the same (of 9)
 RiskPaths:
 RiskPaths: Flavour comparisons:
 RiskPaths:
 RiskPaths: ompp-win vs. modgen: Reference: 9 the same (of 9)
 RiskPaths:
 RiskPaths: ompp-win vs. modgen: Current: 9 the same (of 9)

If Modgen is not installed, output will not include the Modgen portion nor the flavour comparison portions of the report.

test_models uses the Microsoft application msbuild.exe to build models. msbuild.exe is normally installed as part of Visual Studio installation, but the
install location can vary. test_models attempts to determine the location of msbuild.exe but may not always succeed. If you encounter issues
running test_models which seem related to msbuild.exe you can provide test_models the location explicitly using the environment variable
MSBUILD_EXE , for example:

set MSBUILD_EXE=C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\MSBuild\Current\Bin\msbuild.exe

in the command window before invoking test_models .

[back to topic contents]

test_models is a Perl script distributed with OpenM++ at OM_ROOT/Perl/test_models.pl , where OM_ROOT stands for the OpenM++ installation
directory. To test installation and operation of test_models , open a command prompt, change the current directory to OM_ROOT\Perl , and type the
command

perl test_models.pl -v

Output should be similar to the following:

test_models version 2.1

Depending on your operating system version and installation history, Perl may ask you to install missing Perl modules required by test_models.pl . If
so, it will name them explicitly when you invoke test_models.pl . We do recommend to use cpanm for Perl modules installation. Typical scenario is:

cpan App::cpanminus # initialize cpanm, if not done before

cpanm Getopt::Long::Descriptive
cpanm Capture::Tiny
cpanm Config::Tiny
cpanm File::Copy::Recursive
cpanm File::Which

Above list of modules can be different and depends on your current Perl configuration, and on the version of test_models.

From the OM_ROOT/Perl directory, type the command

Linux or MacOS Quick Start

1. Verify installation of test_models (Linux, MacOS)

2. Display test_models options (Linux, MacOS)

perl test_models.pl -h

Output should be similar to the following:

test_models [-hmv] [long options...] model...
 -m STR --models_root STR directory containing models (default is .)
 --newref replace Reference results with Current
 results
 --noompp skip OpenM++ build and run
 --nomodgen skip Modgen build and run
 --nocomp skip flavour comparison
 --allfiles report all different and orphaned files
 --timing report elapsed time of steps
 --nosteps skip reporting which step is being
 performed
 --config STR build configuration: debug or
 release(default)
 --mpi_processes INT build MPI version and run with n
 processes (default 0, means no MPI)
 --gencode keep a copy of the generated C++ code
 --ini STR OpenM++ model ini file to pass to model
 (in model root, default is
 test_models.ini if present)
 --clean remove all build files after run
 --significant_digits INT significant digits (default 6)
 --nocells disable fallback cell-by-cell
 verification of differing tables and copy
 of original data
 -h --help report usage message and exit
 -v --version report test_models version and exit
 --windows_platform STR Windows platform: x64(default) or Win32
 --modgen_platform STR Modgen platform: Win32(default) or x64

From the OM_ROOT/Perl directory, type the command

perl test_models.pl -m ../models RiskPaths

Output should be similar to the following:

 =========================
 test_models 2.0
 =========================

 Testing: RiskPaths
 ompp-linux settings: compiler=omc (2021-05-29 16:47 GMT) configuration=release

 RiskPaths: ompp-linux: Build and publish model and Default scenario
 RiskPaths: ompp-linux: Run model using RiskPaths.ini
 RiskPaths: ompp-linux: Convert outputs (7 digits of precision)
 RiskPaths: ompp-linux: Create digests of current outputs
 RiskPaths: ompp-linux: No Reference outputs - create using Current outputs.
 RiskPaths: ompp-linux: Current vs. Reference: 9 the same (of 9)

[back to topic contents]

This subtopic describes key underlying concepts used in test_models .

Run version: Current or Reference

Run flavour: Windows, Linux, MacOS, Modgen

Output comparison:

Build options:

Run options:

[back to topic contents]

=== under construction ===

3. Run test_models on the RiskPaths model (Linux, MacOS)

Concepts

Run version

Current or Reference

[back to concepts]
[back to topic contents]

=== under construction ===

Windows, Linux, MacOS, Modgen

[back to concepts]
[back to topic contents]

=== under construction ===

[back to concepts]
[back to topic contents]

=== under construction ===

[back to concepts]
[back to topic contents]

=== under construction ===

[back to concepts]
[back to topic contents]

This subtopic describes the command line options and arguments of test_models , organized into sections. It also describes default test_models

behaviour for each section.

Syntax: The syntax of test_models arguments

Models: The models to process

Actions: The actions to perform on a model

Verbosity: The level of report detail

Build: How a model is built

Run: How a model is run

Comparison: How result are compared

Informational: Informational options

EventTrace: EventTrace options

A complete list of options is displayed by issuing the command

perl test_models.pl -h

Run flavour

Output comparison

Build options

Run options

Arguments and Options

test_models [-hmv] [long options...] model...
 -m STR --models_root STR directory containing models (default is .)
 --newref replace Reference results with Current
 results
 --noompp skip OpenM++ build and run
 --nomodgen skip Modgen build and run
 --nocomp skip flavour comparison
 --allfiles report all different and orphaned files
 --timing report elapsed time of steps
 --nosteps skip reporting which step is being
 performed
 --config STR build configuration: debug or
 release(default)
 --mpi_processes INT build MPI version and run with n
 processes (default 0, means no MPI)
 --gencode keep a copy of the generated C++ code
 --ini STR OpenM++ model ini file to pass to model
 (in model root, default is
 test_models.ini if present)
 --clean remove all build files after run
 --significant_digits INT significant digits (default 6)
 --zero_fuzz NUM zero fuzz value (default 1e-15)
 --nocells disable fallback cell-by-cell
 verification of differing tables and copy
 of original data
 -h --help report usage message and exit
 -v --version report test_models version and exit
 --time_format STR time format for event trace (default
 13.6f)
 --modgen_id_offset INT offset adjustment to Modgen IDs (default
 0)
 --windows_platform STR Windows platform: x64(default) or Win32
 --modgen_platform STR Modgen platform: Win32(default) or x64

[back to arguments and options]
[back to topic contents]

Arguments to test_models consist of a series of options followed by a list of models to process. Either or both may be empty, in which case default
values are used. An option starts with -- followed immediately by the option name. Some options may be followed by an option value. Some
options have a synonymous short form consisting of a single - followed imediately by a single letter.

[back to arguments and options]
[back to topic contents]

The --models_root option (short form -m) specifies the parent folder of one or more folders each of which contains a model. If not specified, the
models root is the current working directory. Consider the following command, issued after setting the current working directory to OM_ROOT/Perl :

perl test_models.pl -m ../models NewCaseBased RiskPaths

On Windows without Perl installed, a similar command would be issued after setting the current working directory to OM_ROOT/bin :

test_models -m ../models NewCaseBased RiskPaths

The command instructs test_models to set the models root to the sister directory models in the OpenM++ distribution. That folder is
OM_ROOT/models and contains several sample models distributed with OpenM++, each in its own subfolder, eg OM_ROOT/models/RiskPaths . The

final two arguments instruct test_models to process the two models in the subfolders OM_ROOT/models/NewCaseBased and OM_ROOT/models/RiskPaths .

On Linux, output is similar to:

Syntax

Models

 =========================
 test_models 2.0
 =========================

 Testing: NewCaseBased, RiskPaths
 ompp-linux settings: compiler=omc (2021-05-29 16:47 GMT) configuration=release

 NewCaseBased: ompp-linux: Build and publish model and Default scenario
 NewCaseBased: ompp-linux: Run model using test_models.ini
 NewCaseBased: ompp-linux: Convert outputs (7 digits of precision)
 NewCaseBased: ompp-linux: Create digests of current outputs
 NewCaseBased: ompp-linux: No Reference outputs - create using Current outputs
 NewCaseBased: ompp-linux: Current vs. Reference: 3 the same (of 3)

 RiskPaths: ompp-linux: Build and publish model and Default scenario
 RiskPaths: ompp-linux: Run model using RiskPaths.ini
 RiskPaths: ompp-linux: Convert outputs (7 digits of precision)
 RiskPaths: ompp-linux: Create digests of current outputs
 RiskPaths: ompp-linux: No Reference outputs - create using Current outputs
 RiskPaths: ompp-linux: Current vs. Reference: 9 the same (of 9)

On Windows with Modgen installed, output is similar to:

 =========================
 test_models 2.0
 =========================

 Testing: NewCaseBased, RiskPaths
 modgen settings: version=12,1,3,0 (2019-12-19 20:31 GMT) platform=Win32 configuration=release
 ompp-win settings: compiler=omc.exe (2021-05-28 02:28 GMT) platform=x64 configuration=release

 NewCaseBased: modgen: Build model and prepare Default scenario
 NewCaseBased: modgen: Run model using test_models.ini
 NewCaseBased: modgen: Convert outputs (7 digits of precision)
 NewCaseBased: modgen: Create digests of current outputs
 NewCaseBased: modgen: No Reference outputs - create using Current outputs
 NewCaseBased: modgen: Current vs. Reference: 3 the same (of 3)
 NewCaseBased:
 NewCaseBased: ompp-win: Build and publish model and Default scenario
 warning => NewCaseBased: ompp-win: 3 build warning(s) - see NewCaseBased/test_models/current/ompp-win/logs/build.log
 NewCaseBased: ompp-win: Run model using test_models.ini
 NewCaseBased: ompp-win: Convert outputs (7 digits of precision)
 NewCaseBased: ompp-win: Create digests of current outputs
 NewCaseBased: ompp-win: No Reference outputs - create using Current outputs
 NewCaseBased: ompp-win: Current vs. Reference: 3 the same (of 3)
 NewCaseBased:
 NewCaseBased: Flavour comparisons:
 NewCaseBased:
 NewCaseBased: ompp-win vs. modgen: Reference: 3 the same (of 3)
 NewCaseBased:
 NewCaseBased: ompp-win vs. modgen: Current: 3 the same (of 3)

 RiskPaths: modgen: Build model and prepare Default scenario
 RiskPaths: modgen: Run model using RiskPaths.ini
 RiskPaths: modgen: Convert outputs (7 digits of precision)
 RiskPaths: modgen: Create digests of current outputs
 RiskPaths: modgen: No Reference outputs - create using Current outputs
 RiskPaths: modgen: Current vs. Reference: 9 the same (of 9)
 RiskPaths:
 RiskPaths: ompp-win: Build and publish model and Default scenario
 warning => RiskPaths: ompp-win: 10 build warning(s) - see RiskPaths/test_models/current/ompp-win/logs/build.log
 RiskPaths: ompp-win: Run model using RiskPaths.ini
 RiskPaths: ompp-win: Convert outputs (7 digits of precision)
 RiskPaths: ompp-win: Create digests of current outputs
 RiskPaths: ompp-win: No Reference outputs - create using Current outputs
 RiskPaths: ompp-win: Current vs. Reference: 9 the same (of 9)
 RiskPaths:
 RiskPaths: Flavour comparisons:
 RiskPaths:
 RiskPaths: ompp-win vs. modgen: Reference: 9 the same (of 9)
 RiskPaths:
 RiskPaths: ompp-win vs. modgen: Current: 9 the same (of 9)

If no models are specified on the command line, test_models will process All subfolders of the models root.

[back to arguments and options]
[back to topic contents]

Unless instructed otherwise, test_models builds and runs all available 'flavours' of a model on the current operating system. On Windows, two

Actions

flavours are available: OpenM++ and Modgen (if installed). On Linux and MacOS, the only available flavour is OpenM++. After building and
running each flavour, test_models compares Current results to existing Reference results. If there are no Reference results, test_models creates
them by copying Current results. After completing all flavours for a model, test_models compares results for other flavours (if present) to results for
the OpenM++ flavour on the current operating system.

This default behaviour can be modified by the following command options:

--newref For each flavour in this invocation, discard all Reference results and replace them with Current results

--noompp Suppress processing the OpenM++ flavour

--nomodgen Suppress processing the Modgen flavour (only applies if invoked on Windows)

--nocomp Suppress reporting on differences between flavours

For example, on Windows, the command

test_models -m ../models --noompp --nomodgen RiskPaths

would process the RiskPaths model, but skip build and run of both Windows flavours (OpenM++ and Modgen). test_models would still compare
results for any previously run flavours to OpenM++ Windows results (if present). Output might be similar to the following (or could be empty, if no
other flavours were run previously):

 =========================
 test_models 2.0
 =========================

 Testing: RiskPaths

 RiskPaths:
 RiskPaths: Flavour comparisons:
 RiskPaths:
 RiskPaths: ompp-win vs. modgen: Reference: 9 the same (of 9)
 RiskPaths:
 RiskPaths: ompp-win vs. modgen: Current: 9 the same (of 9)
 RiskPaths:
 RiskPaths: ompp-win vs. ompp-linux: Reference: 9 the same (of 9)
 RiskPaths:
 RiskPaths: ompp-win vs. ompp-linux: Current: 9 the same (of 9)

In this invocation, the RiskPaths model was neither built nor run. test_models detected the presence of Current and Reference results for two
other flavours (Modgen and OpenM++ on Linux), and compared them to results from OpenM++ on Windows which were present from a previous
invocation of test_models . Incidentally, because test_models uses digests to compare results, comparing all results between two flavours is almost
instantaneous, even for models with many tables or with very large tables.

[back to arguments and options]
[back to topic contents]

Unless instructed otherwise, test_models reports which step it is processing, It does not report the elapsed time of each step. When comparing
results, test_models reports file counts and reports by name the first five differing or orphaned files.

This default behaviour can be modified by the following command options:

--allfiles Report each differing and orphaned file by name, not just the first five

--timing Also report the elapsed time for each step

--nosteps Don't report which step is being processed

For example, on Windows, the command

perl test_models.pl -m ../models --nomodgen --nocomp --timing --allfiles --significant_digits 8 OzProj

instructs test_models to build and run just the OpenM++ version of OzProj, suppress the flavour comparison output, report elapsed time of each
step, and report every differing file by name, not just the first five. For illustrative purposes, this invocation also changes the number of significant
digits used to construct digests from 7 to 8 to deliberately produce differences between Current and Reference OzProj results. Output is similar to
the following:

Verbosity

 =========================
 test_models 2.0
 =========================

 Testing: OzProj
 ompp-win settings: compiler=omc.exe (2021-05-28 02:28 GMT) platform=x64 configuration=release

 OzProj: ompp-win: Build and publish model and Default scenario
 OzProj: ompp-win: Build time 0m 7s
 warning => OzProj: ompp-win: 63 build warning(s) - see OzProj/test_models/current/ompp-win/logs/build.log
 OzProj: ompp-win: Run model using OzProj.ini
 OzProj: ompp-win: Run time 0m 2s
 OzProj: ompp-win: Convert outputs (8 digits of precision)
 OzProj: ompp-win: Convert time 0m 0s
 OzProj: ompp-win: Create digests of current outputs
 OzProj: ompp-win: Digest time 0m 0s
 OzProj: ompp-win: Current vs. Reference: 13 the same (of 21)
DIFFERS ===> OzProj: ompp-win: Current vs. Reference: 8 differ
DIFFERS ===> OzProj: ompp-win: Current vs. Reference: DIFFERS: 0_SIGNIFICANT_DIGITS.txt
DIFFERS ===> OzProj: ompp-win: Current vs. Reference: DIFFERS: Experiment1.csv
DIFFERS ===> OzProj: ompp-win: Current vs. Reference: DIFFERS: Experiment2.csv
DIFFERS ===> OzProj: ompp-win: Current vs. Reference: DIFFERS: Experiment3.csv
DIFFERS ===> OzProj: ompp-win: Current vs. Reference: DIFFERS: Experiment4.csv
DIFFERS ===> OzProj: ompp-win: Current vs. Reference: DIFFERS: Experiment5.csv
DIFFERS ===> OzProj: ompp-win: Current vs. Reference: DIFFERS: Experiment6.csv
DIFFERS ===> OzProj: ompp-win: Current vs. Reference: DIFFERS: PersonYearsLived.csv

The specially-named 'result' file 0_SIGNIFICANT_DIGITS.txt is described elswhere in this topic.

[back to arguments and options]
[back to topic contents]

Unless instructed otherwise, test_models builds a Release version of a model, without MPI multi-processing capability, and does not save copy of
generated C++ code.

This default behaviour can be modified by the following command options:

--config Build configuration: debug or release(default)

--mpi_processes Build MPI version (default 0, means no MPI)

--gencode Save a copy of the generated C++ code in subfolder generated_code

The Debug version of a model is typically considerably slower than the Release version. The Debug version can, however, perform run-time
checks which are absent in the Release version. This is particularly true if C++ model code uses assert↗ to verify that expected logical conditions
are satisfied at run time (in Debug mode only).

Supply a non-zero value to --mpi_processes to build an MPI-enabled model (OpenM++ only). The value will be used to launch that number of MPI
instances when the model is subsequently run as described in Run. The suffix _mpi will be appended to the name of the model executable to
distinguish it from the normal non-MPI version.

The specialized --gencode option creates a copy of the C++ code generated by the omc compiler (or by the Modgen compiler for the modgen

flavour). If this option is activated, the src temporary build folder is copied to the output folder generated_code . The --gencode option can be used to
compare the C++ code generated by different versions of the OpenM++ compiler.

Incidentally, models are capable of multi-threading independent of MPI.

[back to arguments and options]
[back to topic contents]

Unless instructed otherwise, test_models builds and runs a non-MPI enabled model using the Default scenario. It retains all files from the build,
including the model executable and database after the model is run. Also by default, test_models looks in the model root for a model ini file to use
to run the model. The search for the ini file proceeds as follows: If the file test_models.ini is present, it is used. If test_models.ini is not present, the file
MODEL.ini is used if present, where MODEL stands for the name of the model. For more on how test_models uses a model ini file, see Control -

Files.

This default behaviour can be modified by the following command options:

Build

Run

https://en.cppreference.com/w/cpp/error/assert

--ini The name of the OpenM++ model ini used when the model is run

--mpi_processes The number of mpi processes to launch

--clean Remove all build files after the run

For example, if the file OM_ROOT/RiskPaths/Test.ini exists with content

[OpenM]
SubValues = 16
Threads = 4

[Parameter]
SimulationCases = 16000000

and the following command is issued

perl test_models.pl -m ../models --newref --nomodgen --nocomp --timing --mpi_processes 4 --ini Test.ini RiskPaths

an MPI-enabled version of RiskPaths is built and 4 instances are launched on the workstation under MPI control. The run consists of 16
replicates with 1,000,000 cases in each replicate, for a total of 16,000,000 cases. Each MPI instance will run with 4 threads.

Output is similar to the following:

 =========================
 test_models 2.0
 =========================

 Testing: RiskPaths
 ompp-win settings: compiler=omc.exe (2021-05-28 02:28 GMT) platform=x64 configuration=release mpi_processes=4

 RiskPaths: ompp-win: Deleting previous Reference information
 RiskPaths: ompp-win: Build and publish model and Default scenario
 RiskPaths: ompp-win: Build time 0m 5s
 warning => RiskPaths: ompp-win: 10 build warning(s) - see RiskPaths/test_models/current/ompp-win/logs/build.log
 RiskPaths: ompp-win: Run model using Test.ini
 RiskPaths: ompp-win: Run time 2m 15s
 RiskPaths: ompp-win: Convert outputs (7 digits of precision)
 RiskPaths: ompp-win: Convert time 0m 0s
 RiskPaths: ompp-win: Create digests of current outputs
 RiskPaths: ompp-win: Digest time 0m 0s
 RiskPaths: ompp-win: No Reference outputs - create using Current outputs
 RiskPaths: ompp-win: Current vs. Reference: 9 the same (of 9)

The truncated log file of the run is similar to the following:

2021-05-31 16:18:57.819 RiskPaths
2021-05-31 16:18:57.819 RiskPaths
2021-05-31 16:18:57.993 Parallel run of 4 modeling processes, 4 thread(s) each
2021-05-31 16:18:57.994 Model build : Windows 64 bit Release
2021-05-31 16:18:57.995 Prepare fixed and missing parameters
2021-05-31 16:18:58.012 Run: 102 Default
2021-05-31 16:18:58.012 Get scenario parameters for process
2021-05-31 16:18:58.013 Model build : Windows 64 bit Release
2021-05-31 16:18:58.013 Prepare fixed and missing parameters
2021-05-31 16:18:58.013 Run: 102 Default
2021-05-31 16:18:58.014 Get scenario parameters for process
2021-05-31 16:18:58.014 member=0 Bind scenario parameters
2021-05-31 16:18:58.014 member=0 Compute derived parameters
2021-05-31 16:18:58.014 member=0 Prepare for simulation
2021-05-31 16:18:58.015 member=1 Bind scenario parameters
2021-05-31 16:18:58.015 member=1 Compute derived parameters
2021-05-31 16:18:58.015 member=1 Prepare for simulation
2021-05-31 16:18:58.015 member=0 Simulation progress=0% cases=0
...

[back to arguments and options]
[back to topic contents]

After running a model, test_models extracts each output table from the model database and saves a copy of the original data as well as a version
rounded to 6 significant digits. test_models then computes and stores a digest of each rounded csv file which it uses for subsequent comparisons.
When a rounded table differs, test_models verifies that at least one cell differs by more than one part per million using the original table data,
before reporting the table as different.

Comparison

This default behaviour can be modified by the following command options:

--significant_digits The number of significant digits for table result comparison

--zero_fuzz Set table cell values to zero if within this value of zero

--nocells Disable fallback cell-by-cell verification of differing tables and copy of original data

The number of significant digits used for rounding can be modified using the --significant_digits option. The default value is 6 (one part in one
million). This level of precision can help reduce the number of differing tables reported by test_models while still identifying differences of
substantive or logical significance.

Rounding reduces the number of spurious differences which would otherwise be reported by test_models . It is not unusual for different model
versions to produce slightly different results, often at the level of numerical precision (15-16 digits of precision). This can occur due to different
C++ compiler optimizations, or by logically equivalent but slightly different algorithms in models. Rounding to less precision reduces the number
of spurious differences reported by test_models .

Most spurious differences are eliminated by rounding, but not all. For example, two numbers can differ only at the 7th digit of precision but round
to different values at 6 digits of precision if the two numbers happen to fall on different sides of a 'rounding boundary' (last digit 5). test_models

eliminates these false positives by verifying differing rounded tables using the original unrounded data. In practice, this verification is rapid. This
verification can be disabled using the --nocells command line option. The --nocells option also disables the creation of original (unrounded)
copies of model output tables.

The value of a table cell can be undefined, eg the mean value of an attribute for a cell with no observations. This is not the same as a table cell
value of zero, eg a mean value of 0.0 calculated from one or more observations. test_models considers an undefined value to be different from the
value 0.

Table measures using subtraction can sometimes produce values very close to zero as an artifact of floating-point computations. The presence of
such values can produce false positives: tables which test_models considers different but which are not different substantively. test_models uses a
zero-fuzz value to handle this situation. If the absolute value of a table cell is within zero_fuzz of 0.0 , the table cell will be set to 0.0 . The default
zero_fuzz value is 1e-15 . The zero_fuzz value can be set to 0 to disable zero_fuzz altogether.

test_models computes digests using the MD5 cryptographic algorithm. For example, the MD5 digest of the RiskPaths table
T04_FertilityRatesByAgeGroup in the Default run, rounded to 6 digits and normalized to csv is the hexadecimal value 993ead71da6eed5dde398342278f629a .

The MD5 digest is always 32 hexadecimal digits in length, independent of the size of the input file. Files with different digests are guaranteed to
be different, and it is extremely unlikely (read almost impossible) for different files to have the same digest.

[back to arguments and options]
[back to topic contents]

The following options are informational.

--help report usage message and exit

--version report test_models version and exit

They have short form versions -h and -v .

If either option is on the command line, test_models will display the requested information and immediately exit.

[back to arguments and options]
[back to topic contents]

The following options affect the normalization of event trace output, if present..

--time_format STR time format for event trace (default 13.6f)

--modgen_id_offset INT offset adjustment to Modgen IDs (default 0)

The --time_format option changes the precision of time in the normalized event trace report. For example, specifying --time_format 19.12f increases
the precision from 6 to 12 digits after the decimal point, producing output like

Informational

EventTrace

 1969.960131010721 BirthdayEvent (Person 29)
 1970.960131010721 timeBirthdayEvent (Person 29)

The --modgen_id_offset option corrects the entity ID in the Modgen normalized event trace report. This is helpful if the run reproduces a single case
from a larger run using a case seed. For such runs, Modgen assigns entity IDs incorrectly, causing spurious differences with ompp event trace
output. To fix the issue, the entity IDs in the Modgen event trace report need to be offset by the number of the sub they came from. That sub #
may already be known, but if not it can be calculated from the case seed by dividing the case seed by 2^31 and taking the integer part of the
result. For example, to determine the sub # of the case seed 11636581014 , divide it by 2147483648 giving 5.4187052948... . The sub # of the case is
5 . Specifying --modgen_id_offset 5 will offset all entity IDs in the Modgen event trace report by 5, correcting the error and bringing the Modgen

event trace report into alignment.

[back to arguments and options]
[back to topic contents]

--windows_platform Windows platform: x64(default) or Win32

--modgen_platform Modgen platform: Win32(default) or x64

If desired, a 32-bit OpenM++ version of a model can be built instead of a 64-bit version, on Windows only, using the --windows_platform option.

Possibly, a 64-bit version of a Modgen model can be built instead of a 32-bit version using the --modgen_platform option. The build or run may fail,
and run functionality may be limited or compromised.

[back to arguments and options]
[back to topic contents]

=== under construction ===

test_model operation is controlled mainly by command-line options, but also by the presence and contents of optional specially-named files in the
model folder.

OpenM++ model ini files are described here. test_models always enables Model development options by automatically specifying the -

OpenM.IniAnyKey to the model when a model ini file is used.

[back to topic contents]

=== under construction ===

test_models writes a report line by line to the command window where it was invoked as it carries out operations.

[back to topic contents]

test_models produces two kinds of output: A report it writes to the command window where it was invoked, and files which record and persist
information about the model runs it performs. The files created by test_folders can be useful to probe details behind the summary information in a
test_models report. For example, test_models reports a count of warnings during model build and also creates the file build.log containing more

information about those warnings.

This subtopic contains the following sections.

test_models folder: The test_models folder hierarchy and contents

table outputs: The tables from a model run

event trace: The normalized event trace from a model run

The output files generated by test_models are in the subfolder test_models of the model folder. The test_models subfolder and hierarchy are created
automatically by test_models as needed. The test_models subfolder can be deleted at any time, and will be recreated on a subsequent invocation of

Deprecated

Control - Files

Output - Report

Output - Files

test_models folder

test_models .

The following diagram shows the hierarchical structure of the test_models folder for the RiskPaths model, with some other subfolders of RiskPaths

shown for context. In this example, test_models was previously invoked for the three flavours ompp-win , ompp-linux , and modgen .

RiskPaths
├───code
├───modgen
│ ├───bin
│ └───src
├───ompp
│ ├───bin
│ └───src
├───ompp-linux
│ ├───bin
│ └───src
├───parameters
│ └───Default
└───test_models
 ├───current
 │ ├───modgen
 │ │ ├───logs
 │ │ └───outputs
 │ │ └───original
 │ ├───ompp-linux
 │ │ ├───logs
 │ │ └───outputs
 │ │ └───original
 │ └───ompp-win
 │ ├───logs
 │ └───outputs
 │ └───original
 └───reference
 ├───modgen
 │ ├───logs
 │ └───outputs
 │ └───original
 ├───ompp-linux
 │ ├───logs
 │ └───outputs
 │ └───original
 └───ompp-win
 ├───logs
 └───outputs
 └───original

test_models organizes information using two folder hierarchy levels, as illustrated. For example, RiskPaths results for the Reference run with the
ompp-win flavour are in the folder RiskPaths/test_models/reference/ompp-win .

Below is a list of all files produced by test_models within each flavour folder, eg within RiskPaths/current/ompp-win :

tombstone.txt - Contains basic information about the compiler, members, ini file, etc. used to build and run the model. test_models reports if this
file differs between Current and Reference.

logs/build.log - A copy of captured console output from all stages of the build process.

logs/run.log - A copy of the log file produced by the model when run.

outputs/trace.txt - A normalized version of the event trace file, if produced by the model.

outputs/0_MODEL_INI.txt - The contents of the model ini file used to run the model, if any.

outputs/0_SIGNIFICANT_DIGITS.txt - Contains the number of significant digits used to round model output tables before computing digests.

outputs/digests.txt - Contains the name and digest value of each file in the outputs folder (excluding subfolders).

outputs/*.csv - Model output tables, rounded.

outputs/original/*.csv - Model output tables, original (unrounded).

[back to output files]
[back to topic contents]

Each table is saved in a flat csv format with a header line. Zero-based indexes identify the table cell. Each row consists of all classificatory

table outputs

dimension indices, followed by the single measure dimension index, followed by the cell value. The order of classificatory dimensions is the same
as the order in the table statement which declared the table in model code. Classificatory dimensions will include an additional trailing level for
the margin, if a margin is specified for the dimension in the table declaration. The measure index is always present even if there is only one
measure in the measure dimension. The cell value can be empty. Here's an example extract:

Dim0,Dim1,Dim2,Dim3,Value
0,0,0,0,258.453
0,0,0,1,1119.96
0,0,0,2,933.714
0,0,0,3,86.1511
0,0,1,0,172.302
...

[back to output files]
[back to topic contents]

=== under construction ===

Note that times >= 32767 will be shown as 99999, as will +inf, to improve comparability between ompp and Modgen event trace files.

Note options which control normalized event trace operation.

Ompp models must set EventTrace.Style to modgen for event trace files to be normalized and comparable.

[back to output files]
[back to topic contents]

This example illustrates how to arrange that the default test_models run is fast, and is easier to debug or investigate if run-time anomalies or
unexpected outputs occur during model development. The underlying idea is to develop a model in small incremental steps, and use test_models

to "fail fast, fail early", after each incremental change to the model. This approach is efficient only if the testing phase is fast. This example uses
the OncoSimX model on the Windows platform.

Step 1 investigates how the model performs with a normal Default run. First, a fresh version of the model is created using git to clone from the git
server to the temporary folder C:/Temp/OncoSimX . Next, test_models is run with the --timing option to evaluate the performance of the Default run.

C:\temp\OncoSimX>%OM_ROOT%\bin\test_models -m .. --nomodgen --nocomp --timing OncoSimX
 =========================
 test_models 2.1
 =========================

 Testing: OncoSimX
 ompp-win settings: compiler=omc.exe (2021-06-29 06:31 GMT) platform=x64 configuration=release

 OncoSimX: ompp-win: Build and publish model and Default scenario
 OncoSimX: ompp-win: Build time 1m 47s
 warning => OncoSimX: ompp-win: 1794 build warnings - see OncoSimX/test_models/current/ompp-win/logs/build.log
 OncoSimX: ompp-win: Run model using OncoSimX.ini
 OncoSimX: ompp-win: Run time 25m 3s
 OncoSimX: ompp-win: Convert outputs (6 digits of precision)
 OncoSimX: ompp-win: Convert time 1m 33s
 OncoSimX: ompp-win: Create digests of current outputs
 OncoSimX: ompp-win: Digest time 0m 0s
 OncoSimX: ompp-win: No Reference outputs - create using Current outputs
 OncoSimX: ompp-win: Current vs. Reference: 215 the same (of 215)
 OncoSimX: ompp-win: Compare time 0m 0s

The test_models report shows that the run itself took 25m, and that the run used the model ini file OncoSimX.ini . An ini file with the same name as
the model is used by default if it exists. Here's the contents of that file:

[OpenM]
SubValues = 12
Threads = 6

[Parameter]
SimulationCases = 1000000
SimulationSeed = 16807

; Complete example of ini-file located at: props/model/ompp/Model-example.ini

event trace

Example 1 Preparing the default run

The run had 1,000,000 cases divided among 12 members (aka replicates or sub-samples), and was accelerated by running 6 threads in parallel
(the workstation for the run had 8 processor cores). As a test, 1,000,000 cases does explore many conditions in the model and can produce
statistically meaningful results, but a run of that size with OncoSimX is not suitable for quick iteration during model development. Moreover, a
multi-threaded run is much more difficult to debug than a single-threaded run, making it a poor choice for testing during development. Ignoring
run time, test_models took about 3m 15s. If the run were modified to take 1m 45s of run time instead, with one thread of execution, the total time
would be about 5m, which would be acceptable for rapid testing.

Step 2 creates a new model ini file named test_models.ini based on the original model ini file OncoSimX.ini with several modifications. The number
of members is changed to 1, the number of threads to 1, and the the number of cases changed somewhat arbitrarily to 5,000 to see how fast that
will turn out:

[OpenM]
SubValues = 1
Threads = 1

[Parameter]
SimulationSeed = 1
SimulationCases = 5000

The choice of file name for the modified model ini file was not arbitrary. test_models will use by default a model ini file named test_models.ini if it
exists.

Step 3 runs test_models with the new model ini test_models.ini which it will use by default. The --newref option is used to replace the previous
results to avoid reporting meaningless differences.

C:\temp\OncoSimX>%OM_ROOT%\bin\test_models -m .. --nomodgen --nocomp --timing --newref OncoSimX
 =========================
 test_models 2.1
 =========================

 Testing: OncoSimX
 ompp-win settings: compiler=omc.exe (2021-06-29 06:31 GMT) platform=x64 configuration=release

 OncoSimX: ompp-win: Deleting previous Reference information
 OncoSimX: ompp-win: Build and publish model and Default scenario
 OncoSimX: ompp-win: Build time 1m 46s
 warning => OncoSimX: ompp-win: 1794 build warnings - see OncoSimX/test_models/current/ompp-win/logs/build.log
 OncoSimX: ompp-win: Run model using test_models.ini
 OncoSimX: ompp-win: Run time 1m 41s
 OncoSimX: ompp-win: Convert outputs (6 digits of precision)
 OncoSimX: ompp-win: Convert time 1m 19s
 OncoSimX: ompp-win: Create digests of current outputs
 OncoSimX: ompp-win: Digest time 0m 1s
 OncoSimX: ompp-win: No Reference outputs - create using Current outputs
 OncoSimX: ompp-win: Current vs. Reference: 215 the same (of 215)
 OncoSimX: ompp-win: Compare time 0m 0s

The report shows that test_models.ini was used as intended. The total time for test_models to build, run, and compare results was 4m 47s, which is
about what was targeted as a quick test for incremental model development.

Step 4 uses git to add test_models.ini to the local repository in C:/Temp/OncoSimX , and then push the change to the server repository to persist it and
make it available to others on the modelling team.

Step 5 runs test_models a final time using test_models.ini to see how long the Modgen version takes.

C:\Development\X\ompp\Perl>perl test_models.pl -m ../../models --noompp --timing OncoSimX
 =========================
 test_models 2.1
 =========================

 Testing: OncoSimX
 modgen settings: version=12,1,3,0 (2019-12-19 20:31 GMT) platform=Win32 configuration=release

 OncoSimX: modgen: Build model and prepare Default scenario
 OncoSimX: modgen: Build time 0m 15s
 warning => OncoSimX: modgen: 1 build warnings - see OncoSimX/test_models/current/modgen/logs/build.log
 OncoSimX: modgen: Run model using test_models.ini
 OncoSimX: modgen: Run time 38m 54s
 warning => OncoSimX: modgen: 1 run warnings - see OncoSimX/test_models/current/modgen/logs/run.log
 OncoSimX: modgen: Convert outputs (6 digits of precision)
 OncoSimX: modgen: Convert time 12m 3s
 OncoSimX: modgen: Create digests of current outputs
 OncoSimX: modgen: Digest time 0m 1s
 OncoSimX: modgen: Current vs. Reference: 205 the same (of 205)
 OncoSimX: modgen: Compare time 0m 0s

Even with the small run in test_models.ini , the Modgen version takes 50m 13s, making it not suitable for quick development tests for the OncoSimmX

model with all tables. The Modgen version simulates quickly, but writing all table outputs and converting those outputs takes a long time. The
reason is that Modgen uses a Microsoft Access database for storing tables, and MS Access is slow.

The folder C:/Temp/OncoSimX is now deleted, having served its purpose.

[back to topic contents]

In this example, a new OpenM++ release has been announced, and a model developer is asked to verify that the team's model successfully
builds and runs with the new version and produces identical results. The model developer uses a Windows workstation.

Step 1 downloads and extracts the new version of OpenM++, released on 2021-06-29, to a new folder on the workstation. To simplify changing
between OpenM++ versions, the model developer previously created a folder named C:/ompp_versions on the workstation. A new command
prompt is opened and used to verify the contents of that folder after the download and extraction:

C:\ompp_versions>dir
 Volume in drive C is OS
 Volume Serial Number is 14E2-D15F

 Directory of C:\ompp_versions

2021-06-29 07:27 AM

 .
2021-06-29 07:27 AM

 ..
2021-06-12 09:49 PM

 openmpp_win_20210505
2021-06-12 09:50 PM

 openmpp_win_20210602
2021-06-12 09:50 PM

 openmpp_win_20210612
2021-06-29 07:27 AM

 openmpp_win_20210629
 0 File(s) 0 bytes
 6 Dir(s) 1,717,655,265,280 bytes free

A command is issued to verify the version of OpenM++ currently in use on the workstation:

C:\ompp_versions>echo %OM_ROOT%
C:\ompp_versions\openmpp_win_20210602

The version currently in use is 2021-06-02 which is two versions old because the development team decided to skip the mid-month OpenM++
bug-fix release because that bug was known not to affect the team's model.

Step 2 prepares the test. The OncoSimX model is used in this example and it's assumed that the model developer is working actively on the
model and has unchecked code changes. To not interfere with that current work-in-progress, git is used to create a new temporary clone of the

Example 2 A new OpenM++ release

stable trunk version of OncoSimX in the temporary folder C:/Temp/OncoSimX .

Step 3 invokes test_models to create a Reference run using the team's working version (2021-06-02) of OpenM++:

C:\ompp_versions>cd C:\Temp\OncoSimX
C:\temp\OncoSimX>perl %OM_ROOT%/perl/test_models.pl -m .. --nomodgen --nocomp OncoSimX
 =========================
 test_models 2.0
 =========================

 Testing: OncoSimX
 ompp-win settings: compiler=omc.exe (2021-06-02 03:23 GMT) platform=x64 configuration=release

 OncoSimX: ompp-win: Build and publish model and Default scenario
 warning => OncoSimX: ompp-win: 1794 build warning(s) - see OncoSimX/test_models/current/ompp-win/logs/build.log
 OncoSimX: ompp-win: Run model using test_models.ini
 OncoSimX: ompp-win: Convert outputs (7 digits of precision)
 OncoSimX: ompp-win: Create digests of current outputs
 OncoSimX: ompp-win: No Reference outputs - create using Current outputs
 OncoSimX: ompp-win: Current vs. Reference: 215 the same (of 215)

The -m .. option specifies that the folder containing models is the parent folder of the current folder.

Step 4 switches to the new OpenM++ release dated 2021-06-29 by changing the OM_ROOT environment variable:

C:\temp\OncoSimX>set OM_ROOT=C:\ompp_versions\openmpp_win_20210629

and invokes test_models again using the same arguments:

C:\temp\OncoSimX>perl %OM_ROOT%/perl/test_models.pl -m .. --nomodgen --nocomp OncoSimX
 =========================
 test_models 2.1
 =========================

 Testing: OncoSimX
 ompp-win settings: compiler=omc.exe (2021-06-29 06:31 GMT) platform=x64 configuration=release

 OncoSimX: ompp-win: Build and publish model and Default scenario
 warning => OncoSimX: ompp-win: 1794 build warnings - see OncoSimX/test_models/current/ompp-win/logs/build.log
 OncoSimX: ompp-win: Run model using test_models.ini
 OncoSimX: ompp-win: Convert outputs (6 digits of precision)
 OncoSimX: ompp-win: Create digests of current outputs
 OncoSimX: ompp-win: Current vs. Reference: tombstone info differs:
 OncoSimX: ompp-win: Reference: compiler=omc.exe (2021-06-02 03:23 GMT) platform=x64 configuration=release members=1
 OncoSimX: ompp-win: Current: compiler=omc.exe (2021-06-29 06:31 GMT) platform=x64 configuration=release members=1
 OncoSimX: ompp-win: Current vs. Reference: 214 the same (of 215)
DIFFERS ===> OncoSimX: ompp-win: Current vs. Reference: 1 differ
DIFFERS ===> OncoSimX: ompp-win: Current vs. Reference: DIFFERS: 0_SIGNIFICANT_DIGITS.txt

test_models reports that the OpenM++ compiler versions for the Reference and Current runs differ, as expected. Unexpectedly, it reported a single
differing file. The name of that file and the two test_models reports pinpoint the cause: The default number of digits used by test_models was
changed from 7 digits to 6 digits between the two OpenM++ releases. The change in the number of significant digits turned out not to affect the
rounded versions of the model output tables in the two runs.

The test, at this point, has established that the model builds and runs successfully with the new version of OpenM++ and produces identical
outputs for the small fast run used normally by test_models during OncoSimX development.

In step 5, the model developer decides to perform a more demanding verification by comparing results between the two OpenM++ releases using
a larger run of 1,000,000 cases and 12 replicates. These are the settings in the model ini file OncoSimX/OncoSimX.ini :

[OpenM]
SubValues = 12
Threads = 6

[Parameter]
SimulationCases = 1000000
SimulationSeed = 16807

; Complete example of ini-file located at: props/model/ompp/Model-example.ini

The OpenM++ version is switched back to the older 2021-06-02 version

C:\temp\OncoSimX>set OM_ROOT=C:\ompp_versions\openmpp_win_20210602

and test_models is invoked, this time explicitly specifying the number of significant digits as well as the model ini file to use. The --newref option is
used to create a new Reference run using the larger run specified in the ini file.

C:\temp\OncoSimX>perl %OM_ROOT%/perl/test_models.pl -m .. --nomodgen --nocomp --significant_digits 6 --ini OncoSimX.ini --newref OncoSimX
 =========================
 test_models 2.0
 =========================

 Testing: OncoSimX
 ompp-win settings: compiler=omc.exe (2021-06-02 03:23 GMT) platform=x64 configuration=release

 OncoSimX: ompp-win: Deleting previous Reference information
 OncoSimX: ompp-win: Build and publish model and Default scenario
 warning => OncoSimX: ompp-win: 1794 build warning(s) - see OncoSimX/test_models/current/ompp-win/logs/build.log
 OncoSimX: ompp-win: Run model using OncoSimX.ini
 OncoSimX: ompp-win: Convert outputs (6 digits of precision)
 OncoSimX: ompp-win: Create digests of current outputs
 OncoSimX: ompp-win: No Reference outputs - create using Current outputs
 OncoSimX: ompp-win: Current vs. Reference: 215 the same (of 215)

The OpenM++ version is switched once again to the new release 2021-06-29

C:\temp\OncoSimX>set OM_ROOT=C:\ompp_versions\openmpp_win_20210629

and test_models is run again to produce a comparable Current run and compare it to the Reference run:

C:\temp\OncoSimX>perl %OM_ROOT%/perl/test_models.pl -m .. --nomodgen --nocomp --significant_digits 6 --ini OncoSimX.ini OncoSimX
 =========================
 test_models 2.1
 =========================

 Testing: OncoSimX
 ompp-win settings: compiler=omc.exe (2021-06-29 06:31 GMT) platform=x64 configuration=release

 OncoSimX: ompp-win: Build and publish model and Default scenario
 warning => OncoSimX: ompp-win: 1794 build warnings - see OncoSimX/test_models/current/ompp-win/logs/build.log
 OncoSimX: ompp-win: Run model using OncoSimX.ini
 OncoSimX: ompp-win: Convert outputs (6 digits of precision)
 OncoSimX: ompp-win: Create digests of current outputs
 OncoSimX: ompp-win: Current vs. Reference: tombstone info differs:
 OncoSimX: ompp-win: Reference: compiler=omc.exe (2021-06-02 03:23 GMT) platform=x64 configuration=release members=12
 OncoSimX: ompp-win: Current: compiler=omc.exe (2021-06-29 06:31 GMT) platform=x64 configuration=release members=12
 OncoSimX: ompp-win: Current vs. Reference: 215 the same (of 215)

The larger run executed successfully with the new OpenM++ release, and all output results were the same to 6 significant digits.

In this example, the OM_ROOT environment variable was changed using the set command (not the setx command) to select an OpenM++
version. The changed value of OM_ROOT applied only to commands issued in the command prompt window used for the test. The value of
OM_ROOT in other command prompt windows or Visual Studio sessions was unaffected by the test.

[back to topic contents]

=== under construction ===

[back to topic contents]

=== under construction ===

[back to topic contents]

In this example, test_models is used to build and run Debug versions of a model, using both OpenM++ and Modgen versions. Debug versions run
more slowly but contain more run-time checks which can identify errors, so it is a good idea to test the Debug versions from time to time.
test_models1 makes that easy. This example uses the OncoSimX` model running on a Windows system.

In step 1, a fresh set of Reference runs are created:

Example 3 A model code change

Example 4 When results differ

Example 5 Exercising a model in Debug

The Modgen run took considerably longer than the OpenM++ run.

[back to topic contents]

In this example, test_models is used to evaluate the performance difference between two versions of the same model, holding other effects
constant. Specifically, this example seeks to measure the performance cost of the run-time checks which OpenM++ performs to ensure that
attributes are not modified directly or indirectly in event time functions. Although those runtime checks are core OpenM++ functionality, the
OpenM++ option verify_attribute_modification can be used to remove them.

Step 1 sets up the experiment. The OncoSimX model is chosen because it is a large-scale production model with many events. The experiment is
done on a secondary (older) Windows workstation which will run no other tasks during the experiment. The experiment is temporary, so a single
git command is issued to create a new clone of OncoSimX in a convenient temporary location, which in this example is C:/Temp/OncoSimX . The
OncoSimX clone contains no test_models results, which is appropriate for a model git repository. It does contain the model ini file test_models.ini in

the model root.

Step 2 sets up the test_models model run to serve as a performance test. Normally, a model run for test_models is small and fast. This experiment
requires a run which is large enough to produce reliable performance information. The OncoSimX model ini file test_models.ini produces small fast
runs for rapid development. The contents are:

[OpenM]
SubValues = 1
Threads = 1

[Parameter]
SimulationSeed = 1
SimulationCases = 5000

[Tables]
;Retain = \
; TG01_Breast_Cancer_Tables

A single line is modified to increase the number of cases from 5,000 to 1,000,000 for the experiment.

SimulationCases = 1000000

Step 3 uses test_models to create a Reference run to serve as a basis for comparison. A command window is opened and test_models is invoked:

perl test_models.pl -m C:/Temp --timing --nomodgen OncoSimX

The temporary OncoSimX clone was created in the folder C:/Temp , so that folder is specified as the models folder using the -m option. Timing
information is requested using the --timing option. The experiment is being done on a Windows workstation with Modgen installed, so the --

nomodgen argument is used to suppress that flavour.

The output is

 =========================
 test_models 2.1
 =========================

 Testing: OncoSimX
 ompp-win settings: compiler=omc.exe (2021-07-01 12:27 GMT) platform=x64 configuration=release

 OncoSimX: ompp-win: Build and publish model and Default scenario
 OncoSimX: ompp-win: Build time 3m 58s
 warning => OncoSimX: ompp-win: 1794 build warnings - see OncoSimX/test_models/current/ompp-win/logs/build.log
 OncoSimX: ompp-win: Run model using test_models.ini
 OncoSimX: ompp-win: Run time 98m 8s
 OncoSimX: ompp-win: Convert outputs (6 digits of precision)
 OncoSimX: ompp-win: Convert time 2m 10s
 OncoSimX: ompp-win: Create digests of current outputs
 OncoSimX: ompp-win: Digest time 0m 1s
 OncoSimX: ompp-win: No Reference outputs - create using Current outputs
 OncoSimX: ompp-win: Current vs. Reference: 215 the same (of 215)
 OncoSimX: ompp-win: Compare time 0m 0s
 OncoSimX: Flavour compare time 0m 0s

Example 6 A performance comparison

Note that test_models created Reference results from Current results because no Reference run was present. The reported run time was 98m 8s.

Step 4 modifies the model to remove the normal run-time checks for the experiment. Because this is a temporary clone of OncoSimX which will
be discarded after the experiment, the source code can be modified freely with no consequences. The small source file TraceOptions.mpp was
selected arbitrarily to implement the experiment, and the following line added:

options verify_attribute_modification = off;

Step 5 uses test_models to create a Current run which will be compared to the Reference run. The invocation of test_models is identical to the
previous invocation.

perl test_models.pl -m C:/Temp --timing --nomodgen OncoSimX

The output is

 =========================
 test_models 2.1
 =========================

 Testing: OncoSimX
 ompp-win settings: compiler=omc.exe (2021-07-01 12:27 GMT) platform=x64 configuration=release

 OncoSimX: ompp-win: Build and publish model and Default scenario
 OncoSimX: ompp-win: Build time 3m 58s
 warning => OncoSimX: ompp-win: 1794 build warnings - see OncoSimX/test_models/current/ompp-win/logs/build.log
 OncoSimX: ompp-win: Run model using test_models.ini
 OncoSimX: ompp-win: Run time 95m 16s
 warning => OncoSimX: ompp-win: 1 run warnings - see OncoSimX/test_models/current/ompp-win/logs/run.log
 OncoSimX: ompp-win: Convert outputs (6 digits of precision)
 OncoSimX: ompp-win: Convert time 2m 12s
 OncoSimX: ompp-win: Create digests of current outputs
 OncoSimX: ompp-win: Digest time 0m 0s
 OncoSimX: ompp-win: Current vs. Reference: 215 the same (of 215)
 OncoSimX: ompp-win: Compare time 0m 0s
 OncoSimX: Flavour compare time 0m 0s

All model outputs are identical as expected. test_models reports one run-time warning which was absent in the first run. That's because OpenM++,
by design, emits a warning on every run of a model which disables run-time checking of event times. test_models noted the warning and reported
it when it analyzed the run log. The reported run time was 95m 16s.

Step 6 compares performance between the Reference and Current runs. The model run time in the Current run was 172s less than the Reference
run, and shows that about 2.9% of the elapsed time of the Reference run was overhead associated with the run-time checks. That is a realistic
assessment of the overhead of the run-time checks for OncoSimX when used in production.

The elapsed time reported by test_models includes the time required to read parameters and to assemble and write tables, which can be
significant. It might also be interesting to assess the performance effect on the simulation time alone, removing the fixed cost of parameter
reading and table assembly and writing. The model log files saved by test_models can be used to perform that calculation.

Here's a line extracted from the Reference log file, located at
C:/Temp/OncoSimX/test_models/reference/ompp-win/logs/run.log :

2021-07-01 10:16:52.928 member=0 Simulation summary: cases=1000000, events/case=1128.9, entities/case=5.4, elapsed=5693.747633s

and here's the corresponding line extracted from the Current log file, located at
C:/Temp/OncoSimX/test_models/current/ompp-win/logs/run.log .

2021-07-01 12:31:45.777 member=0 Simulation summary: cases=1000000, events/case=1128.9, entities/case=5.4, elapsed=5525.430919s

Conveniently, this line in the OpenM++ model log reports the elapsed time of the computational phase, in seconds. The simulation time was
5694s for the Reference run and 5525s for the Current run, for a difference of 168s. So about 3.0% of the computation time was overhead
associated with the run-time checks. That's only slightly higher than the proportion computed using elapsed time because the time required to
read parameters and to assemble and write tables (about 190s) is a relatively small portion of the elapsed time of an OncoSimX run of 1,000,000
(5525s).

[back to topic contents]

=== under construction ===

The following applies to a case-based model.

If test_models detects unexpected output differences which are not immediately explained by recent model code changes or by perusing
differences in specific tables, it can be useful to determine whether the differences are due to a handful of different cases in the run, or to some
other cause.

To find out, turn on the case checksum option by adding the statement

options case_checksum = on;

to model code. In the RiskPaths example model, this is done in a dedicated model source file named TraceOptions.mpp whcih is normally:

//LABEL(TraceOptions, EN) Control options for trace output

/* NOTE(TraceOptions, EN)
 The options must be set to off for normal use.
 If the options are on, very large trace output files may be produced by the model.
*/

options event_trace = off;
options case_checksum = off;

Turning case_checksum on will cause a trace file to be generated when test_models runs the model which contains one line for each case. For
RiskPaths, the first lines of the trace file look like this:

Seed: 1 Sample: 0 Checksum: 4.4094661700e+02
Seed: 470583131 Sample: 0 Checksum: 4.1293225500e+02
Seed: 1715377866 Sample: 0 Checksum: 3.4860055300e+02
Seed: 430166727 Sample: 0 Checksum: 1.3482143400e+02
Seed: 743781969 Sample: 0 Checksum: 1.4831547800e+02
Seed: 594673803 Sample: 0 Checksum: 4.1803896100e+02
Seed: 2048386738 Sample: 0 Checksum: 3.5386231900e+02
Seed: 1681919254 Sample: 0 Checksum: 4.0119902000e+02
Seed: 78320563 Sample: 0 Checksum: 3.9439706500e+02
Seed: 1637697257 Sample: 0 Checksum: 4.9065368400e+02
Seed: 127732046 Sample: 0 Checksum: 9.8715092900e+02
Seed: 2114816392 Sample: 0 Checksum: 3.9576701300e+02
Seed: 1616242686 Sample: 0 Checksum: 1.2478963010e+03
Seed: 1222943222 Sample: 0 Checksum: 4.5861339400e+02
Seed: 170881636 Sample: 0 Checksum: 1.4320257000e+02

This file is noticed by test_models and will participate in test_models comparisons. Test_models saves the trace file under the name trace.txt in
the same folder where it places csv versions of tables.

If test_models reports that the file trace.txt differs between the ompp and modgen versions, then one or more cases differ in the two flavours. Use a
tool or text editor to compare the two versions of trace.txt to determine the seed of the first case which has a differing checksum in the two
variants.

More to follow...

[back to topic contents]

Example 7 Using event trace output

Home > Model Development Topics > Time-like and Event-like Attributes

This topic describes the distinction between event-like and time-like attributes, and forbidden uses of time-like attributes in model code.

Model Code

Time-like and event-like attributes: Definitions and examples

Potential issues: How time-like attributes could violate the model specification

Protection against potential issues: How OpenM++ protects against these issues

Disabling protection: How to disable OpenM++ run-time protection

An OpenM++ simulation consists of a sequence of events which change values of attributes when the events occur. Attributes are observed only
at events, not between events. Some attributes, however, can undergo unobserved changes between events. An example is the built-in attribute
time , which changes continuously between events, even though it is observed only when events occur. Attributes like time or age which

undergo unobserved changes between events are called time-like.

Another example of a time-like attribute is the identity attribute

bool first6months = (age <= 0.5);

Logically, the attribute first6months changes value when age is exactly equal to 0.5. However, unless there is an event which occurs precisely at
that moment, the transition of first6months from true to false will not be observed when it logically occurs. For example, if the first event in the
entity occurs at age 1.0, the value of first6months will become false at that time, but the transition of first6months from true to false at age 0.5 will
not have been noted at the time it logically occurred.

An attribute which changes only at events is called event-like. For example, the attribute

bool is_alive = {true);

is event-like. It has initial value true and changes to false when the Mortality event occurs (code not shown).

All self-scheduling attributes are event-like because they schedule an internal event at appropriate times. For example, self_scheduling_int(age) is an
event-like attribute with value equal to integer age of the entity. It is event-like because it schedules an internal event when age will attain its next
integer value.

A derived attribute which observes a time-like attribute may be event-like. For example, the derived attribute

value_at_first_entrance(is_alive, false, age)

which records age at death is event-like because it observes the value of age when is_alive transitions to false during the Mortality event.

The OpenM++ compiler deduces whether an attribute is event-like or time-like from the model specification.

[back to topic contents]

There are three situations where use of a time-like attribute could violate the model specification and produce unexpected or incorrect model
results.

1. A time-like filter of an entity table or entity set;

2. A time-like dimension of an entity table or entity set;

Time-like and Event-like Attributes

Related topics

Topic contents

Time-like and event-like attributes

Potential issues

3. The use of a time-like attribute in an event time function.

For situation 1, consider the following table declaration using the time-like attribute first6months introduced above.

table Host MyTable
[first6months]
{
 {
 duration() //EN duration
 }
};

Logically, this table should sum the value 0.5 for each entity which survives to age 0.5 or beyond. But if the first event occurs later, for example
when age is 1.0, the value 1.0 would be summed instead, producing a logically erroneous result given the table specification.

For situation 2, consider a modified version of this table which uses the time-like attribute first6months as a dimension instead of as a filter. The
total duration in the table would be correct, but it would be misclassified between the two cells in the table.

For situation 3, consider if the time-like attribute first6months is used in an event time function. Assume that the model implements a first tranche of
vaccination when an infant is 6 months old. Model code in the time function of the ChildVaccination event might include a statement like

if (!vaccinated && !first6months) return WAIT(0);

to trigger the ChildVaccination event when the child is 6 months old. However, the attribute first6months is time-like and changes value at 6 months
of age only if some other event happens to occur at that precise value of age . If there is no such event, the ChildVaccination event would be
triggered at some later time when the value of first6months is next updated, perhaps at the first birthday when age is 1.0.

[back to topic contents]

OpenM++ identifies situations 1 and 2 at build time and issues an error message like

error : the filter of table 'TimeLikeTest' must not be time-like
error : dimension 'first6months' of table 'TimeLikeTest' must not be time-like

OpenM++ identifies situation 3 at run time and halts the simulation with an error message such as the following:

Simulation error: Attempt to access the time-like attribute age
 by the event time function of event OneTime
 in entity_id 2
 when current time is -inf
 before enter_simulation
 in simulation member 0
 with combined seed 1

Modgen-specific: In Modgen parlance a time-like attribute is called a continuously-updated state (CUS). Modgen issues an error message at
build time for situations 1 and 2. Modgen attempts to detect situation 3 at build time, by prohibiting some types of C++ code (including
links/pointers) in event time functions, and by scanning event time functions for any symbol which has the same name as an attribute. The
OpenM++ design takes a different approach, instead imposing no restrictions on model C++ code and detecting situation 3 directly at run-time.

[back to topic contents]

There is some overhead associated with run-time detection of situation 3 which is typically minor. It can be eliminated by disabling run-time
detection using the statement

options verify_timelike_attribute_access = off;

If this run-time detection is disabled, the model will write the following warning to the log on every model run:

Warning : prohibited time-like attribute access is not detected with verify_timelike_attribute_access = off

[back to topic contents]

Protection against potential issues

Disabling protection

Home > Topic placeholder

Topic summary, two sentences max.

Model Code

Subtopic #1 Short description of Subtopic 1

Subtopic 1 content.

[back to topic contents]

Use Modules

Related topics

Topic contents

Subtopic 1

Home > Model Development Topics > Weighted Tabulation

For case-based models, the weighted_tabulation option creates, for each entity, the built-in attribute entity_weight which scales the entity's
contribution to tables.

Model Code

Population Size and Scaling

Introduction and Background

Syntax and Use How to activate and use

Limitations Limitations of the current implementation

Modgen-specific Modgen issues Weighted tabulation in a x-compatible model

Some case-based microsimulation models use micro-data directly from a survey, census, or administrative source. Micro-data from such sources
often has a weight associated with each observation which reflects the sampling design and maybe post-stratification or under-count adjustment.
Case weights can also be useful in microsimulation models which are not based on micro-data. Such models instead generate cases synthetically
from multivariate distributions. They may deliberately over-sample portions of the synthetic population of particular interest, and then adjust for
that oversampling by assigning a case weight equal to the reciprocal of the oversampling factor.

OpenM++ contains optional functionality to associate a weight with each entity. That weight scales the contribution of the entity to table counts
and sums. The functionality facilitates assigning the same case weight to all of the entities in a case for table coherence. This is important for
models which have multiple entities in each case, e.g. ancillary family members of a core entity which may be created later in the simulation of the
case. The design integrates with population scaling by computing and using the sum of case weights.

A time-based microsimulation model simulates interacting entities. It is unclear how one might validly represent an interaction of entities which
have non-equal weights. Instead, for time-based models based on weighted micro-data, a micro-data record is typically cloned or sampled based
on its weight to produce a starting population of entities whose weights are all equal. Such an equal-weighted population can represent a real-
world population of a different size by using population scaling, rather than by assigning a weight to each entity with all weights being equal. The
end result is the same, but population scaling is more efficient for memory and computation compared to identical entity weights. Also, it is not
clear how to implement population scaling in a time-based model with entity weights if the model contains entities of different types, e.g. a single
special Ticker entity, or multiple Dwelling , Person , and Family entities, or a fixed number of Region entities. For these reasons, entity weights are
forbidden in time-based models in OpenM++. Use population scaling to make a time-based model represent a real population of a different size.
See Population Size and Scaling for more information.

[back to topic contents]

By default, entities are unweighted. To activate entity weights, include the statement

options weighted_tabulation = on;

in the source code of a case-based model. A natural place to insert this statement is the module ompp_framework.ompp . If weighting is turned on in
a time-based model, an error message like the following is emitted:

error : weighted tabulation is not allowed with a time-based model, use population scaling instead.

When weighting is turned on, each entity has a new built-in attribute named entity_weight , of type double . Usually model code does not assign a
value directly to entity_weight . Instead, before entities are created for a case, model code sets the initial value of entity_weight for all entities in the
case by calling the function set_initial_weight , as in the following contrived example:

Weighted Tabulation

Related topics

Topic contents

Introduction and Background

Syntax and Use

void CaseSimulation(case_info &ci)
{
 extern void SimulateEvents(); // defined in a simulation framework module

 // Provide the weight used to initialize the entity_weight attribute for new entities
 set_initial_weight(2.0);

 // For Modgen-compatible models, use the following instead
 //SetCaseWeight(2.0);

 // Initialize the person entity
 auto prPerson = new Person();
 prPerson->Start();

 // Simulate events until there are no more.
 SimulateEvents();
}

Calling set_initial_weight before creating any entities in the case ensures that the built-in attribute entity_weight will have that same value for all
entities in the case. The call to set_initial_weight also enables the calculation of the sum of case weights. That sum of weights is used to correctly
scale the population to a specified size if the model uses both weights and population scaling. For that to work correctly, set_initial_weight must be
called once and only once in the logic of the case, before any entities in the case are created.

If weighted tabulation is not enabled, entities have no attribute named entity_weight , and calls to set_initial_weight have no effect (but are benign).

If weighted tabulation is enabled, but set_initial_weight is not called before creating entities in the case, the entity_weight attribute will be 1.0.
However, the total sum of weights used for population scaling will be incorrect because the calculation depends internally on the call to
set_initial_weight . Ensure that model code calls set_initial_weight once and only once before creating entities in the case.

[back to topic contents]

Weighted tabulation works for table statistics based on counts and sums. It does not work yet for ordinal statistics such as the median or the gini
coefficient. Such statistics will be computed ignoring weights, i.e. as though all weights are 1.0. If a table uses an ordinal statistic and
weighted_tabulation is on, the OpenM++ compiler will issue a warning. For example, the table

table Person DurationOfLife //EN Duration of Life
{
 {
 value_in(alive), //EN Population size
 min_value_out(duration()), //EN Minimum duration of life decimals=4
 max_value_out(duration()), //EN Maximum duration of life decimals=4
 duration() / value_in(alive), //EN Life expectancy decimals=4
 P50(value_out(duration())) //EN Median duration of life decimals=4
 } //EN Demographic characteristics
};

would emit a warning like

warning : weighting is not supported for ordinal statistic 'P50' in table 'DurationOfLife' ...

[back to topic contents]

Modgen implements similar case weighting functionality and weight-based population scaling to OpenM++ using a function named SetCaseWeight .
X-compatible models can call SetCaseWeight instead of set_initial_weight as in the commented statement in the previous example. The OpenM++
framework supplies versions of SetCaseWeight which call set_initial_weight internally.

OpenM++ functions intrinsically at the sub-sample/replicate/member level, so the notion of a distinct total weight and sub-sample weight does not
apply in OpenM++.

Modgen does not implement population scaling for time-based models. To work around this limitation, model developers have called the Modgen
function Set_actor_weight in actor Start functions to scale results to represent a larger population. Consider a time-based model which includes two
exogenous parameters, StartingPopulationRealSize for the size of the true real-world population which is represented by the model, and

Limitations

Modgen issues

case-based models (Modgen)

time-based models (Modgen)

StartingPopulationSize for the size (number of entities) of the synthetic starting population in the model. The Modgen approach might look like this:

void Person::Start()
{
 // Initialize all attributes (OpenM++).
 initialize_attributes();

 // The following function calls implement population scaling for Modgen,
 // using identical weights for each Person entity in the simulation.
 // These calls do nothing in OpenM++.
 // OpenM++ can implement population scaling directly for time-based models.

 double dWeight = (double) StartingPopulationRealSize / (double) StartingPopulationSize;
 Set_actor_weight(dWeight);
 Set_actor_subsample_weight(dWeight);
...

The OpenM++ framework includes do-nothing versions of the Modgen functions Set_actor_weight and Set_actor_subsample_weight so this same code
will build without error in OpenM++.

To perform the identical population scaling directly in the OpenM++ version of the model (without weights), include the following statement in
ompp_framework.ompp :

use "time_based/time_based_scaling_exogenous.ompp";

That use module integrates with the OpenM++ framework to scale table counts and sums by the factor

(double) StartingPopulationRealSize / (double) StartingPopulationSize

using the exogenous parameters StartingPopulationRealSize and StartingPopulationSize .

These two parameters are already declared in the use module time_based_scaling_exogenous.ompp in OpenM++. Declare them in the Modgen
version using a Modgen-only source code file name, for example modgen_PopulationSize.mpp , with content

parameters
{
 //EN Simulation population size
 int StartingPopulationSize;

 //EN True population size
 double StartingPopulationRealSize;
};

and then make the values of these two parameters available to both Modgen and OpenM++ by placing them in a file processed by both, for
example PopulationSize.dat with contents like

parameters
{
 //EN Simulation population size
 int StartingPopulationSize = 25000;

 //EN True population size
 double StartingPopulationRealSize = 10000000;
};

For more about the visibility of model source code and parameter value files in OpenM++ and Modgen, see Model Code. For more about
population scaling in OpenM++, see Population Size and Scaling.

[back to topic contents]

Home > Common Topics > File-based Parameter Values

This topic describes how parameter values can be be represented in files in OpenM++. File-based parameter values are used by several
OpenM++ components including build, run, UI, scripting, import, export.

Modgen-specific: CsvToDat utility: Command-line utility to convert CSV parameters to DAT format

Introduction

How to use CSV or TSV files for input parameters values

CSV or TSV file with dimension(s) and parameter value(s)

CSV or TSV file with dimension(s) and multiple parameter sub-values

CSV or TSV files with IDs as dimension(s) items

CSV or TSV file with parameter values only

In several contexts, the value(s) of a parameter can be in a file whose name is the name of the parameter followed by a suffix which indicates
content and format.

For example, if a file named AgeBaselinePreg1.csv is present in the folder `RiskPaths/parameters/Default', it will be used by the OpenM++ compiler
to provide values for that parameter when publishing the Default scenario when the model is built.

The suffix of the file indicates how the contents of the file are interpreted, as follows:

File suffix Meaning

.csv Comma-separated values (CSV) with header and dimension values, one value per line

.tsv Tab-separated values (TSV) with header and dimension values, one value per line

.id.csv CSV with header and dimension values as 0-based ID's

.id.tsv TSV with header and dimension values as 0-based ID's

.value.csv CSV with values only (no header or dimension values)

.value.tsv TSV with values with (no header or dimension values)

The header line contains the column names of indices as specified in the parameter declaration in model code. The header line can optionally
start with an initial column named sub_id . If so, the first value in each line is the 0-based index of the replicate (aka sub, subsample, member).

[back to topic contents]

You can use CSV or TSV files to supply input parameter values for your model. For example, if the RiskPaths model has the
SeparationDurationBaseline parameter:

partition DISSOLUTION_DURATION //EN Duration since union dissolution
{
 2, 6, 10, 15
};
..........
// Separation Duration Baseline of 2nd Formation
double SeparationDurationBaseline[DISSOLUTION_DURATION] = {
 0.1995702, 0.1353028, 0.1099149, 0.0261186, 0.0456905
};

File-based Parameter Values

Related topics

Topic contents

Introduction

How to use CSV or TSV files for input parameters values

then you can supply parameter values from RiskPaths/parameters/RiskPths.dat or from RiskPaths/parameters/SeparationDurationBaseline.csv :

dim0, param_value
"(-∞,2)", 0.1995702
"[2,6)", 0.1353028
"[6,10)", 0.1099149
"[10,15)", 0.0261186
"[15,∞)", 0.0456905

If parameter values are coming from CSV or TSV file then you can use Markdown file(s) to provide parameter value notes. For example,
RiskPaths/parameters/SeparationDurationBaseline.EN.md :

This is a parameter values for Separation Duration Baseline of 2nd Formation.

It is a test sample model and data may not be accurate.

and RiskPaths/parameters/SeparationDurationBaseline.FR.md :

Translation below created by Google, please provide a proper French translation before publishing the model

Il s'agit d'une valeur de paramètre pour la ligne de base de la durée de séparation de la 2e formation.

Il s'agit d'un modèle d'échantillon de test et les données peuvent ne pas être exactes.

The following rules are applied to parameter CSV or TSV files:

file name must be the same as parameter name, which is SeparationDurationBaseline in example above

it can be parameter.csv with comma-separated values or parameter.tsv with tab-separated values

if dimension item name or parameter value contains comma then it must be "quoted"

header line of the file must contain dimension names and "param_value", for example: dim0,otherDim,dim3,param_value

(optional) if parameter has multiple sub-values then header line must start with "sub_id" (see example below)

if the scenario directory contains a .dat file with values for ParameterName and also a file named ParameterName.csv the CSV values will
override the .dat values.

The following formats of CSV or TSV files are supported:

CSV or TSV file with dimension(s) and parameter value(s)

CSV or TSV file with dimension(s) and multiple parameter sub-values

CSV or TSV files with IDs as dimension(s) items

CSV or TSV file with parameter values only, without dimensions (omc only)

Subsequent sub-topics describe each in turn, with examples.

[back to topic contents]

Dimension items must be supplied as item "names", similar to partition DISSOLUTION_DURATION above. Or take a look into another example of two-
dimensional parameter:

CSV (or TSV) file with dimension(s) and parameter value(s)

classification SEX //EN Sex
{
 FEMALE,
 MALE
};
range YEAR //EN Year
{
 2019,
 2021
};
............
double GenderByYearRatio[SEX][YEAR] = {
 0.1, (2)0.2, 0.5, 0.6, 0.7
};

GenderByYearRatio.csv file:

dim0, dim1, param_value
FEMALE, 2019, 0.1
FEMALE, 2020, 0.2
FEMALE, 2021, 0.2
MALE, 2019, 0.5
MALE, 2020, 0.6
MALE, 2021, 0.7

Line order in the file is not important and openM++ will sort it automatically.

If there some line(s) are missing then parameter value will be a default for that parameter type, for example: 0.0.

[back to topic contents]

It can be used for uncertainty probabilistic analysis, file example:

sub_id, dim0, dim1, param_value
 0, FEMALE, 2019, 0.1
 0, FEMALE, 2020, 0.2
 0, FEMALE, 2021, 0.2
 0, MALE, 2019, 0.5
 0, MALE, 2020, 0.6
 0, MALE, 2021, 0.7
 1, FEMALE, 2019, 1.1
 1, FEMALE, 2020, 1.2
 1, FEMALE, 2021, 1.2
 1, MALE, 2019, 1.5
 1, MALE, 2020, 1.6
 1, MALE, 2021, 1.7
...........

Header line must start with "sub_id" in order to indicate presnse of sub values in parameter.csv file.

Sub value id's can be any integer values, for example: -1, 0, 4, 8, 12, 42. It must be integer but does not need to be positive or sequential.

The first sub value id in a CSV file is considered to be the "default" sub value for that parameter.

[back to topic contents]

You can use dimension item ID instead of item names, for example SeparationDurationBaseline.id.csv:

dim0, param_value
0, 0.1995702
1, 0.1353028
2, 0.1099149
3, 0.0261186
4, 0.0456905

GenderByYearRatio.id.csv:

CSV (or TSV) file with dimension(s) and multiple parameter sub-values

CSV or TSV files with IDs as dimension(s) items

dim0, dim1, param_value
0, 0, 0.1
0, 1, 0.2
0, 2, 0.2
1, 0, 0.5
1, 1, 0.6
1, 2, 0.7

Please notice file naming convention: ParameterName.id.csv or ParameterName.id.tsv

[back to topic contents]

This format is only supported for parameters read at build time by the OpenM++ compiler (omc).

In this format the file contains only parameter value(s) without dimensions, for example SeparationDurationBaseline.value.csv :

 0.1995702, 0.1353028, 0.1099149, 0.0261186, 0.0456905

GenderByYearRatio.value.csv :

 0.1, 0.2, 0.2,
 0.5,
 0.6, 0.7

Please note the file naming convention: ParameterName.value.csv or ParameterName.value.tsv

Values in the file must be ordered according to the dimension order in the parameter declaration, ie the same order as in a .dat file.

Any number of values may be given on each line.

Each pair of values must be separated by a comma, including the last value on a line and the first value on the subsequent line.

[back to topic contents]

CSV or TSV file with parameter values only

OpenM++ web-service (oms) is a JSON web-service written in Go and used from openM++ UI JavaScript. Today most of popular development
platforms (.NET, Java, Python, Perl, R, JavaScript, etc.) with only few lines of code allow to create HTTP client and send-receive JSON data.
That makes integration with openM++ very easy.

OpenM++ web-service does not required any installation. It can be run with default settings from command-line prompt.

To start openM++ web-service on Windows:

download and unzip openM++ https://github.com/openmpp/main/releases/latest binaries into C:\SomeDir\

run oms from command-line:

C:
cd \SomeDir\openmpp_win_20190508\
bin\oms.exe

2022-09-14 15:51:30.477 Models directory: models\bin
2022-09-14 15:51:30.565 HTML UI directory: html
2022-09-14 15:51:30.567 Etc directory: etc
2022-09-14 15:51:30.567 Oms instance name: localhost_4040
2022-09-14 15:51:30.574 Listen at localhost:4040
2022-09-14 15:51:30.574 To start open in your browser: http://localhost:4040
2022-09-14 15:51:30.574 To finish press Ctrl+C

OpenM++ UI is a client of oms web-service, after above command you can open UI in browser at http://localhost:4040

To start openM++ web-service on Linux:

download and unpack openM++, i.e.:

wget https://github.com/openmpp/main/releases/download/v1.2.0/openmpp_debian_20190508.tar.gz
tar xzf openmpp_debian_20190508.tar.gz

run oms executable:

cd openmpp_debian_20190508/
bin/oms

2022-09-14 15:51:30.477 Models directory: models/bin
2022-09-14 15:51:30.565 HTML UI directory: html
2022-09-14 15:51:30.567 Etc directory: etc
2022-09-14 15:51:30.567 Oms instance name: localhost_4040
2022-09-14 15:51:30.574 Listen at localhost:4040
2022-09-14 15:51:30.574 To start open in your browser: http://localhost:4040
2022-09-14 15:51:30.574 To finish press Ctrl+C

Note: We recommend to use normal Windows command line cmd.exe. If you are using Windows PowerShell then it may be necessary to put
"quotes" around command line options, e.g:

oms.exe "-oms.ApiOnly"

By default oms.exe started in "full" web-UI mode. That means it handles web-service requests and web-UI content from ./html sub-directory. If
you want only "pure" web-service mode without UI then use:

oms -oms.ApiOnly

Following arguments most often used in web-service methods:

Oms: openM++ web-service
What is openM++ web-service

How to start openM++ web-service

Oms as "pure" web-service vs "full" web-UI

How to use oms: arguments of web-service methods

https://github.com/openmpp/main/releases/latest
http://localhost:4040

Example of method:

GET /api/model/:model

Call example:

http://localhost:4040/api/model/f5024ac32c4e8abfc696a0f925141c95
http://localhost:4040/api/model/modelOne

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

Example of method:

GET /api/model/:model/run/:run/status
GET /api/model/:model/task/:task/run-status/run/:run

Call example:

http://localhost:4040/api/model/modelOne/run/modelOne_first_run/status
http://localhost:4040/api/model/modelOne/run/d06f4a0a45a9514c22593025e489f933/status
http://localhost:4040/api/model/modelOne/task/taskOne/run-status/run/First Task Run

This argument is used to identify model run or modeling task run.

Modeling task run can be identified by task run stamp or task run name.

Model run can be identified by run digest, run stamp or run name. It is recommended to use run digest because it is uniquely identifies model run.
Run stamp can be explicitly specified as command line option when you run the model. If run stamp not specified then it is automatically
generated as timestamp string, ex.: 2016_08_17_21_07_55_123. It is also possible to use run name, which is more human readable than digest,
but if there are multiple runs with same name in database than result is undefined.

Example of method:

GET /api/model/:model/text/lang/:lang

Call example:

http://localhost:4040/api/model/modelOne/text/lang/EN
http://localhost:4040/api/model/modelOne/text/lang/en_US

Language code can be a model language (ex.: EN, FR) or any MIME language (see BCP47 or RFC3282). If no language explicitly specified then
Accept-Language header is used (supplied by browser).

Result returned in best matched language supported by model. For example for en_US result is model language EN, if model supported EN
language. If no such language then result is in default model language or can be empty.

Method examples:

GET /api/model/:model/workset/:set/status
POST /api/model/:model/workset/:set/readonly/:val

Call examples:

:model - model digest or model name

:run - model run or model task run

:lang - language code

:set - set of input data (a.k.a. workset)

https://tools.ietf.org/html/bcp47
https://tools.ietf.org/html/rfc3282

http://localhost:4040/api/model/modelOne/workset/modelOne_set/status
curl -v -X POST http://localhost:4040/api/model/modelOne/workset/modelOne_set/readonly/1

Workset is a set of model input parameters (a.k.a. "scenario" input) and it used to run the model Each model workset uniquely identified by
name.

Method examples:

GET /api/model/:model/task/:task/text/lang=FR

Call examples:

http://localhost:4040/api/model/modelOne/task/taskOne/text
curl -v http://localhost:4040/api/model/modelOne/task/taskOne/text/lang=fr_CA

Modelling task consists of multiple input data sets (a.k.a. worksets or scenarios in Modgen). Task can be used to run the model in batch mode.

Method examples:

GET /api/model/:model/profile/:profile
POST /api/model/:model/profile/:profile/key/:key/value/:value

Call examples:

http://localhost:4040/api/model/modelOne/profile/modelOne
curl -v -X POST http://localhost:4040/api/model/modelOne/profile/m1/key/Parameter.StartingSeed/value/4095

Profile is a set of key-value options and it used to run the model. Each profile uniquely identified by profile name. Each profile can include multiple
key-value options.

Model run status and task run status may contain one of the following values:

 i = initial state, not running yet
 p = run in progress
 w = task wait for additional input
 s = completed successfully
 x = completed by exit (reserved fro internal use)
 e = completed with error

Important: if model run failed with exception (e.g. database write exception) then status may not be updated and still p=in progress .

Oms default configuration options can be overwritten by command-line arguments or ini-file. For example:

listen from any host on port 7070:

oms -l :7070

serve only API calls and not html for openM++ UI:

oms -oms.ApiOnly

listen from localhost port 4044 only and read more oms run options from oms.ini file:

oms -l localhost:4044 -ini oms.ini

:task - modelling task

:profile - set of key-value options

Results of web-service methods

Run status

Oms web-service configuration

models directory relative path is: ../some/dir

oms -oms.ModelDir ../some/dir

typical log settings for remote server:
log user request

log into the file instead of cosole by default

log files rotation: create new log file every day

oms -l localhost:4044 -oms.LogRequest -OpenM.LogToConsole false -OpenM.LogToFile -OpenM.LogUseDailyStamp

typical settings for model user in cloud:
allow user home directory with downloads and uploads

use model run jobs to manage back-end computational servers resources

oms -l localhost:4044 -oms.HomeDir models/home -oms.AllowDownload -oms.AllowUpload -oms.JobDir job

It is recommended to use oms.ini file to avoid long command lines, especially for cloud environment where you may want to combine
log options and user options from two examples above.

Clients of oms web-service can retrieve configuration by calling GET web-service configuration or simply by open
http://localhost:4040/api/service/config in the browser. Response to that call may also contain client environment variables which names started
from OM_CFG_ prefix (oms web-service does not use any of OM_CFG_ environment variables, it only passes it to clients) .

For example openM++ UI uses following server variables:

OM_CFG_LOGIN_URL=/public/login_required.html
OM_CFG_LOGOUT_URL=/login?logout=true
OM_CFG_DEFAULT_RUN_TMPL=run.Win32.Debug.template.txt
OM_CFG_INI_ALLOW=true
OM_CFG_INI_ANY_KEY=true

OpenM++ UI is using above variables as follow:

OM_CFG_LOGIN_URL : display user login button linked to the URL

OM_CFG_LOGOUT_URL : display user logout button linked to the URL

OM_CFG_DEFAULT_RUN_TMPL : use this template to run the model, e.g.: to debug from IDE

OM_CFG_INI_ALLOW : allow user to run the model with ini-file, e.g.: RiskPaths.ini

OM_CFG_INI_ANY_KEY : allow to use model development options from ini-file

Note: Model ini-files and model development options described at: Model Run Options and ini file.

Following options supported by oms:

Get and use oms web-service configuration

Oms run options

http://localhost:4040/api/service/config

-oms.Listen: address to listen, default: localhost:4040
-l: address to listen (short form of -oms.Listen)
-OpenM.IniFile: path to ini-file
-ini ini-file: path to ini-file (short of OpenM.IniFile)
-oms.ApiOnly: if true then API only web-service, no web UI
-oms.RootDir: oms root directory, default: current directory
-oms.ModelDir: models directory, if relative then must be relative to oms root directory, default: models/bin
-oms.ModelLogDir: models log directory, if relative then must be relative to oms root directory: default: "models/log
-oms.ModelDocDir: models documentation directory, if relative then must be relative to oms root directory: default: "models/doc
-oms.HomeDir: user personal home directory, if relative then must be relative to oms root directory
-oms.AllowDownload: if true then allow download from user home/io/download directory
-oms.AllowUpload: if true then allow upload to user home/io/upload directory
-oms.AllowMicrodata: if true then allow model run microdata
-oms.HtmlDi: front-end UI directory, if relative then must be relative to oms root directory, default: html
-oms.EtcDir: configuration files directory, if relative then must be relative to oms root directory, default: etc
-oms.JobDir: model run jobs directory, if relative then must be relative to oms root directory
-oms.Name: oms instance name, used model run by jobs, automatically generated if empty
-oms.UrlSaveTo: file path to save oms URL in form of: http://localhost:4040, if relative then must be relative to oms root directory
-oms.Languages: comma-separated list of supported languages, default: en
-oms.CodePage: code page to convert source file into utf-8, e.g.: windows-1252
-oms.DoubleFormat: format to convert float or double value to string, default: %.15g
-oms.AdminAll if true then allow global administrative routes: /admin-all/
-oms.NoAdmin if true then disable loca administrative routes: /admin/
-oms.NoShutdown if true then disable shutdown route: /shutdown/

-OpenM.LogToConsole: if true then log to standard output (default true)
-v: if true then log to standard output (short of OpenM.LogToConsole)
-OpenM.LogToFile: if true then log to file
-OpenM.LogFilePath: path to log file, default = current/dir/oms.log
-OpenM.LogUseDailyStamp: if true then use daily-stamp in log file name
-OpenM.LogUsePidStamp: if true then use process id stamp in log file name
-OpenM.LogUseTimeStamp: if true then use time-stamp in log file name
-OpenM.LogSql: if true then log sql statements into log file
-oms.LogRequest: if true then log HTTP requests

There are many common options, e.g.: -OpenM.LogToFile which can be used with any openM++ executable: models, compiler, dbcopy and oms.

It is highly recomended to put model documentation in doc/ subdirectory, e.g.: C:\any-dir\doc or /home/me/any/path/doc . UI expect model
documentation URL similar to: https://your-domain-name.here/doc/ModelName.doc.FR.html .

Example of oms.ini

; This is a comment
This is also a comment

; Ini file can be supplied to oms.exe as command line option "-ini" or "-OpenM.IniFile"
; "-ini" is a short form of "-OpenM.IniFile", command lines below are equal:
;
oms.exe -ini path/to/oms.ini
oms.exe -OpenM.IniFile path/to/oms.ini

; "-l" is a short form of "-oms.Listen", command lines below are equal:
;
oms.exe -l localhost:4040
oms.exe -oms.Listen localhost:4040

; boolean options can be "true" or "false" or empty value
; boolean empty value is the same as "true"
; for example both command lines below are equal:
;
oms -oms.ApiOnly
oms -oms.ApiOnly true

[oms]
;
; Listen = localhost:4040 # address to listen, default: localhost:4040
; RootDir = # oms "root" directory, expected to have log subfolder
; ModelDir = models/bin # models executable and model.sqlite directory, if relative then must be relative to oms root directory
; ModelLogDir = models/log # models log directory, if relative then must be relative to oms root directory
; ModelDocDir = models/doc # models documentation directory, default: models/doc, if relative then must be relative to oms root directory
; HomeDir = models/home # user personal home directory, if relative then must be relative to oms root directory
; AllowDownload = false # if true then allow download from user home sub-directory: home/io/download
; AllowUpload = false # if true then allow upload to user home sub-directory: home/io/upload
; AllowMicrodata = false # if true then allow model run microdata
; UrlSaveTo = # file path to save oms URL, if relative then must be relative to oms root directory
; LogRequest = false # if true then log HTTP requests
; ApiOnly = false # if true then API only web-service, no web UI
; HtmlDir = html # front-end web UI directory, if relative then must be relative to oms root directory
; EtcDir = etc # configuration files directory, if relative then must be relative to oms root directory
; JobDir = # jobs control directory, if empty then jobs control disabled
; Name = # instance name, used for job control
; Languages = en # comma-separated list of supported languages
; CodePage = # code page to convert source file into utf-8, e.g.: windows-1252
; DoubleFormat = %.15g # format to convert float or double value to string, e.g. %.15g
; Admin = false # if true then allow global administrative routes: /admin-all/

[OpenM]
;
; LogToConsole = true # if true then log to standard output
; LogToFile = false # if true then log to file
; LogFilePath = oms.log # log file path, default = current/dir/exeName.log
; LogUseTimeStamp = false # if true then use time-stamp in log file name
; LogUsePidStamp = false # if true then use pid-stamp in log file name
; LogUseDailyStamp = false # if true then use daily-stamp in log file name
; LogSql = false # if true then log sql statements into log file

; "-v" is a short form of "-OpenM.LogToConsole"

; log settings:
; log can be enabled/disabled for 3 independent streams:
; console - standard output
; "current" log file - log file with specified name, overwritten on every model run
; "stamped" log file - log file with unique name, created for every model run
;
; "stamped" name produced from "current" name by adding time-stamp and/or pid-stamp, i.e.:
; oms.log => oms.2012_08_17_16_04_59_148.123456.log
#
; LogUseDailyStamp creates new log file every day
; by default LogUseDailyStamp:
; = false if log file disabled (default)
; = false if "stamped" log file enabled
; = true if log file enabled and "stamped" log file disabled

Following directory structure expected by default:

./ -> oms "root" directory, by default it is current directory
 html/ -> web-UI directory with HTML, js, css, images...
 etc/ -> config files directory, contain template(s) to run models
 log/ -> recommended log files directory
 models/
 bin/ -> default model.exe and model.sqlite directory
 log/ -> default directory for models run log files
 doc/ -> models documentation directory

Oms directory structure: user home and jobs directories

If you don't don't want web-UI or don't have html directory then start oms as:

oms -oms.ApiOnly

You can explicitly specify oms log files location, models and models log directory, e.g.:

oms -oms.ModelDir /my-models -oms.ModelLogDir /my-models-log -oms.ModelDocDir /my-models/doc

If you want to use log file and no console messages:

oms -OpenM.LogToConsole=false -OpenM.LogToFile
oms -OpenM.LogToConsole=false -OpenM.LogFilePath log/oms.log

If you want to use "daily" log files:

oms -OpenM.LogUseDailyStamp -OpenM.LogToFile
oms -OpenM.LogUseDailyStamp -OpenM.LogFilePath log/oms.log

You can enable user home directory to store home directory for user personal settings, downloads of model model run results or upload input
scenarios:

oms -oms.HomeDir models/home -oms.AllowDownload -oms.AllowUpload

Above command assume directory structure with home , download and upload sub-folders of models :

./ -> oms "root" directory, by default it is current directory
 html/ -> web-UI directory with HTML, js, css, images...
 etc/ -> config files directory, contain template(s) to run models
 log/ -> recommended log files directory
 models/
 bin/ -> default model.exe and model.sqlite directory
 log/ -> default directory for models run log files
 doc/ -> models documentation directory
 home/ -> user personal home directory
 io/download -> user directory for download files
 io/upload -> user directory to upload files

Note: openM++ dbcopy utility is required for download and upload, it must be located in the same directory where oms executable is.

If you want to have model runs queue, or using openM++ in cloud and want automatically scale up and down cloud resources, e.g. start and stop
virtual machines for model runs then start oms with job control option:

oms -oms.JobDir job

Following directory structure expected:

User home directory

Model run jobs directory structure

./ -> oms "root" directory, by default it is current directory
 html/ -> web-UI directory with HTML, js, css, images...
 etc/ -> config files directory, contain template(s) to run models
 log/ -> recommended log files directory
 models/
 bin/ -> default model.exe and model.sqlite directory
 log/ -> default directory for models run log files
 doc/ -> models documentation directory
 home/ -> user personal home directory
 io/download -> user directory for download files
 io/upload -> user directory to upload files
 job/ -> model run jobs control directory
 job.ini -> (optional) job control settings to restrict storage size
 disk.ini -> (optional) disk usage control settings to set storage quotas
 active/ -> active model run state files
 history/ -> model run history files
 past/ -> (optional) shadow copy of history folder, invisible to the end user
 queue/ -> model run queue files
 state/ -> jobs state and computational servers state files
 jobs.queue.paused -> if such file exists then jobs queue is paused
 jobs.queue.all.paused -> if such file exists then all jobs in all queues are paused

Please visit following page to find out how to use oms in cloud and manage model runs queue.

:model - model digest or model name
:lang - language code
:run - model run digest, run stamp or run name, modeling task run stamp or task run name
:set - name of workset (input set of model parameters)
:profile - profile name
:task - modeling task

See more details at: Arguments of web-service methods.

GET /api/model-list

GET /api/model-list/text
GET /api/model-list/text/lang/:lang

GET /api/model/:model
GET /api/model/:model/pack

GET /api/model/:model/text
GET /api/model/:model/text/lang/:lang
GET /api/model/:model/pack/text
GET /api/model/:model/pack/text/lang/:lang

GET /api/model/:model/text-all

GET /api/model/:model/lang-list

GET /api/model/:model/word-list
GET /api/model/:model/word-list/lang/:lang

GET /api/model/:model/profile/:profile

GET /api/model/:model/profile-list

Oms: openM++ web-service API
Web-service methods arguments

GET Model Metadata

GET model list

GET model list including text (description and notes)

GET model definition metadata

GET model metadata including text (description and notes)

GET model metadata including text in all languages

GET Model Extras

GET model languages

GET model language-specific strings

GET model profile

GET list of profiles

GET Model Run results metadata

GET list of model runs

GET /api/model/:model/run-list

GET /api/model/:model/run-list/text
GET /api/model/:model/run-list/text/lang/:lang

GET /api/model/:model/run/:run/status

GET /api/model/:model/run/:run/status/list

GET /api/model/:model/run/status/first

GET /api/model/:model/run/status/last

GET /api/model/:model/run/status/last-completed

GET /api/model/:model/run/:run

GET /api/model/:model/run/:run/text
GET /api/model/:model/run/:run/text/lang/:lang

GET /api/model/:model/run/:run/text-all

GET /api/model/:model/workset-list

GET /api/model/:model/workset-list/text
GET /api/model/:model/workset-list/text/lang/:lang

GET /api/model/:model/workset/:set/status
GET /api/model/:model/workset/:set

GET list of model runs including text (description and notes)

GET status of model run

GET status of model run list

GET status of first model run

GET status of last model run

GET status of last completed model run

GET model run metadata and status

GET model run including text (description and notes)

GET model run including text in all languages

GET Model Workset metadata: set of input parameters

GET list of model worksets

GET list of model worksets including text (description and notes)

GET workset status

GET model default workset status

GET /api/model/:model/workset/status/default

GET /api/model/:model/workset/:set/text
GET /api/model/:model/workset/:set/text/lang/:lang

GET /api/model/:model/workset/:set/text-all

POST /api/model/:model/workset/:set/parameter/value

POST /api/model/:model/workset/:set/parameter/value-id

POST /api/model/:model/run/:run/parameter/value

POST /api/model/:model/run/:run/parameter/value-id

POST /api/model/:model/run/:run/table/value

POST /api/model/:model/run/:run/table/value-id

POST /api/model/:model/run/:run/table/calc

POST /api/model/:model/run/:run/table/calc-id

POST /api/model/:model/run/:run/table/compare

POST /api/model/:model/run/:run/table/compare-id

POST /api/model/:model/run/:run/microdata/value

GET workset including text (description and notes)

GET workset including text in all languages

Read Parameters, Output Tables or Microdata values

Read parameter values from workset

Read parameter values from workset (enum id's)

Read parameter values from model run

Read parameter values from model run (enum id's)

Read output table values from model run

Read output table values from model run (enum id's)

Read output table calculated values from model run

Read output table calculated values from model run (enum id's)

Read output table values and compare model runs

Read output table values and compare model runs (enun id's)

Read microdata values from model run

Read microdata values from model run (enum id's)

POST /api/model/:model/run/:run/microdata/value-id

POST /api/model/:model/run/:run/microdata/calc

POST /api/model/:model/run/:run/microdata/calc-id

POST /api/model/:model/run/:run/microdata/compare

POST /api/model/:model/run/:run/microdata/compare-id

GET /api/model/:model/workset/:set/parameter/:name/value
GET /api/model/:model/workset/:set/parameter/:name/value/start/:start
GET /api/model/:model/workset/:set/parameter/:name/value/start/:start/count/:count

GET /api/model/:model/run/:run/parameter/:name/value
GET /api/model/:model/run/:run/parameter/:name/value/start/:start
GET /api/model/:model/run/:run/parameter/:name/value/start/:start/count/:count

GET /api/model/:model/run/:run/table/:name/expr
GET /api/model/:model/run/:run/table/:name/expr/start/:start
GET /api/model/:model/run/:run/table/:name/expr/start/:start/count/:count

GET /api/model/:model/run/:run/table/:name/calc/:calc
GET /api/model/:model/run/:run/table/:name/calc/:calc/start/:start
GET /api/model/:model/run/:run/table/:name/calc/:calc/start/:start/count/:count

GET /api/model/:model/run/:run/table/:name/compare/:compare/variant/:variant
GET /api/model/:model/run/:run/table/:name/compare/:compare/variant/:variant/start/:start
GET /api/model/:model/run/:run/table/:name/compare/:compare/variant/:variant/start/:start/count/:count

GET /api/model/:model/run/:run/table/:name/acc
GET /api/model/:model/run/:run/table/:name/acc/start/:start
GET /api/model/:model/run/:run/table/:name/acc/start/:start/count/:count

GET /api/model/:model/run/:run/table/:name/all-acc
GET /api/model/:model/run/:run/table/:name/all-acc/start/:start
GET /api/model/:model/run/:run/table/:name/all-acc/start/:start/count/:count

Read aggregated microdata from model run

Read aggregated microdata from model run (enum id's)

Read microdata run comparison

Read microdata run comparison (enum id's)

GET Parameters, Output Tables or Microdata values

GET parameter values from workset

GET parameter values from model run

GET output table expression(s) from model run

GET output table calculated expression(s) from model run

GET output table values and compare model runs

GET output table accumulator(s) from model run

GET output table all accumulators from model run

GET /api/model/:model/run/:run/microdata/:name/value
GET /api/model/:model/run/:run/microdata/:name/value/start/:start
GET /api/model/:model/run/:run/microdata/:name/value/start/:start/count/:count

GET /api/model/:model/run/:run/microdata/:name/group-by/:group-by/calc/:calc
GET /api/model/:model/run/:run/microdata/:name/group-by/:group-by/calc/:calc/start/:start
GET /api/model/:model/run/:run/microdata/:name/group-by/:group-by/calc/:calc/start/:start/count/:count

GET /api/model/:model/run/:run/microdata/:name/group-by/:group-by/compare/:compare/variant/:variant
GET /api/model/:model/run/:run/microdata/:name/group-by/:group-by/compare/:compare/variant/:variant/start/:start
GET /api/model/:model/run/:run/microdata/:name/group-by/:group-by/compare/:compare/variant/:variant/start/:start/count/:count

GET /api/model/:model/workset/:set/parameter/:name/csv
GET /api/model/:model/workset/:set/parameter/:name/csv-bom

GET /api/model/:model/workset/:set/parameter/:name/csv-id
GET /api/model/:model/workset/:set/parameter/:name/csv-id-bom

GET /api/model/:model/run/:run/parameter/:name/csv
GET /api/model/:model/run/:run/parameter/:name/csv-bom

GET /api/model/:model/run/:run/parameter/:name/csv-id
GET /api/model/:model/run/:run/parameter/:name/csv-id-bom

GET /api/model/:model/run/:run/table/:name/expr/csv
GET /api/model/:model/run/:run/table/:name/expr/csv-bom

GET /api/model/:model/run/:run/table/:name/expr/csv-id
GET /api/model/:model/run/:run/table/:name/expr/csv-id-bom

GET /api/model/:model/run/:run/table/:name/calc/:calc/csv
GET /api/model/:model/run/:run/table/:name/calc/:calc/csv-bom

GET /api/model/:model/run/:run/table/:name/calc/:calc/csv-id
GET /api/model/:model/run/:run/table/:name/calc/:calc/csv-id-bom

GET microdata values from model run

GET aggregated microdata from model run

GET microdata run comparison

GET Parameters, Output Tables or Microdata values as CSV

GET csv parameter values from workset

GET csv parameter values from workset (enum id's)

GET csv parameter values from model run

GET csv parameter values from model run (enum id's)

GET csv output table expressions from model run

GET csv output table expressions from model run (enum id's)

GET csv calculated table expressions from model run

GET csv calculated table expressions from model run (enum id's)

GET csv model runs comparison table expressions

GET /api/model/:model/run/:run/table/:name/compare/:compare/variant/:variant/csv
GET /api/model/:model/run/:run/table/:name/compare/:compare/variant/:variant/csv-bom

GET /api/model/:model/run/:run/table/:name/compare/:compare/variant/:variant/csv-id
GET /api/model/:model/run/:run/table/:name/compare/:compare/variant/:variant/csv-id-bom

GET /api/model/:model/run/:run/table/:name/acc/csv
GET /api/model/:model/run/:run/table/:name/acc/csv-bom

GET /api/model/:model/run/:run/table/:name/acc/csv-id
GET /api/model/:model/run/:run/table/:name/acc/csv-id-bom

GET /api/model/:model/run/:run/table/:name/all-acc/csv
GET /api/model/:model/run/:run/table/:name/all-acc/csv-bom

GET /api/model/:model/run/:run/table/:name/all-acc/csv-id
GET /api/model/:model/run/:run/table/:name/all-acc/csv-id-bom

GET /api/model/:model/run/:run/microdata/:name/csv
GET /api/model/:model/run/:run/microdata/:name/csv-bom

GET /api/model/:model/run/:run/microdata/:name/csv-id
GET /api/model/:model/run/:run/microdata/:name/csv-id-bom

GET /api/model/:model/run/:run/microdata/:name/group-by/:group-by/calc/:calc/csv
GET /api/model/:model/run/:run/microdata/:name/group-by/:group-by/calc/:calc/csv-bom

GET /api/model/:model/run/:run/microdata/:name/group-by/:group-by/calc/:calc/csv-id
GET /api/model/:model/run/:run/microdata/:name/group-by/:group-by/calc/:calc/csv-id-bom

GET /api/model/:model/run/:run/microdata/:name/group-by/:group-by/compare/:compare/variant/:variant/csv
GET /api/model/:model/run/:run/microdata/:name/group-by/:group-by/compare/:compare/variant/:variant/csv-bom

GET /api/model/:model/run/:run/microdata/:name/group-by/:group-by/compare/:compare/variant/:variant/csv-id
GET /api/model/:model/run/:run/microdata/:name/group-by/:group-by/compare/:compare/variant/:variant/csv-id-bom

GET csv model runs comparison table expressions (enum id's)

GET csv output table accumulators from model run

GET csv output table accumulators from model run (enum id's)

GET csv output table all accumulators from model run

GET csv output table all accumulators from model run (enum id's)

GET csv microdata values from model run

GET csv microdata values from model run (enum id's)

GET csv aggregated microdata from model run

GET csv aggregated microdata from model run (enum id's)

GET csv microdata run comparison

GET csv microdata run comparison (enum id's)

GET Modeling Task metadata and task run history

GET list of modeling tasks

GET /api/model/:model/task-list

GET /api/model/:model/task-list/text
GET /api/model/:model/task-list/text/lang/:lang

GET /api/model/:model/task/:task/sets

GET /api/model/:model/task/:task/runs

GET /api/model/:model/task/:task/run-status/run/:run

GET /api/model/:model/task/:task/run-status/list/:run

GET /api/model/:model/task/:task/run-status/first

GET /api/model/:model/task/:task/run-status/last

GET /api/model/:model/task/:task/run-status/last-completed

GET /api/model/:model/task/:task/text
GET /api/model/:model/task/:task/text/lang/:lang

GET /api/model/:model/task/:task/text-all

PATCH /api/model/:model/profile

DELETE /api/model/:model/profile/:profile

POST /api/model/:model/profile/:profile/key/:key/value/:value

GET list of modeling tasks including text (description and notes)

GET modeling task input worksets

GET modeling task run history

GET status of modeling task run

GET status of modeling task run list

GET status of modeling task first run

GET status of modeling task last run

GET status of modeling task last completed run

GET modeling task including text (description and notes)

GET modeling task text in all languages

Update Model Profile: set of key-value options

PATCH create or replace profile

DELETE profile

POST create or replace profile option

DELETE /api/model/:model/profile/:profile/key/:key

POST /api/model/:model/workset/:set/readonly/:readonly

PUT /api/workset-create

PUT /api/workset-replace

PATCH /api/workset-merge

DELETE /api/model/:model/workset/:set

POST /api/model/:model/delete-worksets

DELETE /api/model/:model/workset/:set/parameter/:name

PATCH /api/model/:model/workset/:set/parameter/:name/new/value

PATCH /api/model/:model/workset/:set/parameter/:name/new/value-id

PATCH /api/model/:model/workset/:set/parameter-text

PUT /api/model/:model/workset/:set/copy/parameter/:name/from-run/:run

PATCH /api/model/:model/workset/:set/merge/parameter/:name/from-run/:run

PUT /api/model/:model/workset/:set/copy/parameter/:name/from-workset/:from-set

DELETE profile option

Update Model Workset: set of input parameters

POST update workset read-only status

PUT create new workset

PUT create or replace workset

PATCH create or merge workset

DELETE workset

POST delete multiple worksets

DELETE parameter from workset

PATCH update workset parameter values

PATCH update workset parameter values (enum id's)

PATCH update workset parameter(s) value notes

PUT copy parameter from model run into workset

PATCH merge parameter from model run into workset

PUT copy parameter from workset to another

PATCH /api/model/:model/workset/:set/merge/parameter/:name/from-workset/:from-set

PATCH /api/run/text

DELETE /api/model/:model/run/:run

POST /api/model/:model/delete-runs

PATCH /api/model/:model/run/:run/parameter-text

PUT /api/task-new

PATCH /api/task

DELETE /api/model/:model/task/:task

POST /api/run

GET /api/run/log/model/:model/stamp/:stamp
GET /api/run/log/model/:model/stamp/:stamp/start/:start/count/:count

PUT /api/run/stop/model/:model/stamp/:stamp

GET /api/download/log/file/:name

PATCH merge parameter from workset to another

Update Model Runs

PATCH update model run text (description and notes)

DELETE model run

POST delete model runs

PATCH update run parameter(s) value notes

Update Modeling Tasks

PUT create or replace modeling task

PATCH create or update modeling task

DELETE modeling task

Run Models: run models and monitor progress

POST a request to run the model

GET state of current model run

PUT stop model run

Download model, model run results or input parameters

GET download log file

GET all download log files for the model

GET /api/download/log/model/:model

GET /api/download/log-all

GET /api/download/file-tree/:folder

POST /api/download/model/:model

POST /api/download/model/:model/run/:run

POST /api/download/model/:model/workset/:set

DELETE /api/download/delete/:folder
DELETE /api/download/start/delete/:folder

DELETE /api/download/delete-all
DELETE /api/download/start/delete-all

GET /api/upload/log/file/:name

GET /api/upload/log/model/:model

GET /api/upload/log-all

GET /api/upload/file-tree/:folder

POST /api/upload/model/:model/run
POST /api/upload/model/:model/run/:run

GET all download log files

GET download files tree

POST initiate model download

POST initiate model run download

POST initiate model workset download

DELETE download files

DELETE all download files

Upload model runs or worksets

GET upload log file

GET all upload log files for the model

GET all upload log files

GET upload files tree

POST initiate model run upload

POST initiate workset upload

POST /api/upload/model/:model/workset
POST /api/upload/model/:model/workset/:set

DELETE /api/upload/delete/:folder
DELETE /api/upload/start/delete/:folder

DELETE /api/upload/delete-all
DELETE /api/upload/start/delete-all

GET /api/user/view/model/:model

PUT /api/user/view/model/:model

DELETE /api/user/view/model/:model

GET /api/service/config

GET /api/service/state

GET /api/service/disk-use

POST /api/service/disk-use/refersh

GET /api/service/job/active/:job

GET /api/service/job/queue/:job

GET /api/service/job/history/:job

DELETE upload files

DELETE all upload files

User: manage user settings and data

GET user views for the model

PUT user views for the model

DELETE user views for the model

Model run jobs and service state

GET service configuration

GET job service state

GET disk usage state

POST refresh disk space usage info

GET state of active model run job

GET state of model run job from queue

GET state of model run job from history

PUT model run job into other queue position

PUT /api/service/job/move/:pos/:job

DELETE /api/service/job/delete/history/:job

POST /api/admin/all-models/refresh

POST /api/admin/all-models/close

POST /api/admin/model/:model/close

POST /api/admin/db-file-open/:path

POST /api/admin/db-cleanup/:path
POST /api/admin/db-cleanup/:path/name/:name
POST /api/admin/db-cleanup/:path/name/:name/digest/:digest

GET /api/admin/db-cleanup/log-all

GET /api/admin/db-cleanup/log/:name

POST /api/admin/jobs-pause/:pause

POST /api/admin-all/jobs-pause/:pause

PUT /shutdown

DELETE state of model run job from history

Administrative: manage web-service state

POST a request to refresh models catalog

POST a request to close models catalog

POST a request to close model database

POST a request to open database file

POST a request to cleanup database file

GET the list of database cleanup logs

GET database cleanup log file

POST a request to pause model run queue

POST a request to pause all queues of model runs

PUT a request to shutdown web-service

OpenM++ provides multiple different ways to supply input parameters and run the models as described at:

Model Run Cycle: How model finds input parameters

Model Run: How to Run the Model

You don't have to do any programming or database operations in order to provide model input parameters, you can:

provide parameter value as command line argument

run model with default workset (default "scenario")

use workset name ("scenario" name) to run the model

use ini-file to provide model parameters

supply parameter values as csv-file(s)

Also following API available for advanced parameter manipulation and output results processing:

JSON web-service to use with any modern framework (.NET, JavaScript, Python, etc.)

Go library and tools

OpenMpp R package and R usage examples

Current page describe an usage of openM++ JSON web-service (oms) in order to prepare, examine and modify model input parameters. There
are two terms are used in text below: "workset" and "base run". Please see Model Run Cycle: How model finds input parameters page for details.

Workset is a set of model input parameters in database which we can use to run the model. Each workset has unique name. Each model must
have "default workset", which is a first set of model input parameters. Model user can create, modify and delete worksets.

Each model run started from creating full copy of model input parameters in database, which are used for that particular model run. Because
usually only small portion of model parameters are changing between model runs it is convenient to create new workset (new "scenario") based
on input parameters of previous model run, which is called "base run". In that case we only need to supply few modified parameter values and
the rest is coming from "base run" parameters.

Below we are using oms web-service to prepare model input. Most examples are created with browser output and curl to avoid any unnecessary
programing languages details.

You can start oms web-service on Windows:

C:
cd \SomeDir\openmpp_win_20190508\
bin\oms.exe -oms.ApiOnly

Or Linux:

cd openmpp_debian_20190508/
bin/oms -oms.ApiOnly

If your models are not in models/bin sub-folder then use:

bin/oms -oms.ApiOnly -oms.ModelDir ../my_model_dir

Please see Oms web-service page for more details.

Oms: How to prepare model input parameters
Overview

Workset: set of model input parameters (a.k.a. "scenario")

Base run

Start Oms: OpenM++ JSON web-service

https://godoc.org/github.com/openmpp/go
http://openmpp.org/r/html/00Index.html

We need to know model name at least, or better model digest to find or modify model input parameters. Open your favorite browser and type:

http://localhost:4040/api/model-list

Result can look like:

[
 {
 "ModelId": 1,
 "Name": "modelOne",
 "Digest": "_201208171604590148_",
 "Type": 0,
 "Version": "1.0",
 "CreateDateTime": "2012-08-17 16:04:59.0148",
 "DefaultLangCode": "EN"
 },
 {
 "ModelId": 101,
 "Name": "RiskPaths",
 "Digest": "db6e5168c74a73a4f5b194cb2a793444",
 "Type": 0,
 "Version": "3.0.0.0",
 "CreateDateTime": "2018-12-14 18:36:05.0272",
 "DefaultLangCode": "EN"
 }
]

Go to:

http://localhost:4040/api/model/modelOne/workset-list

[
 {
 "ModelName": "modelOne",
 "ModelDigest": "_201208171604590148_",
 "Name": "Default",
 "BaseRunDigest": "",
 "IsReadonly": true,
 "UpdateDateTime": "2013-05-29 23:55:07.1234",
 "Txt": [],
 "Param": []
 },
........
]

First workset is a default set of model input parameters. You can explore more it at

http://localhost:4040/api/model/modelOne/workset/Default/text

and look at each parameter values, for example:

http://localhost:4040/api/model/modelOne/workset/Default/parameter/StartingSeed/value

[
 {
 "Dims": [],
 "IsNull": false,
 "Value": 8191,
 "SubId": 0
 }
]

Or

http://localhost:4040/api/model/modelOne/workset/Default/parameter/ageSex/value

Get list of published models

Get list of model worksets (set of input parameters, a.k.a. "scenarios")

Model default set of input parameters

[
{"Dims":["10-20","M"],"IsNull":false,"Value":0.1,"SubId":0}
,{"Dims":["10-20","F"],"IsNull":false,"Value":0.2,"SubId":0}
,{"Dims":["20-30","M"],"IsNull":false,"Value":0.3,"SubId":0}
,{"Dims":["20-30","F"],"IsNull":false,"Value":0.4,"SubId":0}
,{"Dims":["30-40","M"],"IsNull":false,"Value":0.5,"SubId":0}
,{"Dims":["30-40","F"],"IsNull":false,"Value":0.6,"SubId":0}
,{"Dims":["40+","M"],"IsNull":false,"Value":0.7,"SubId":0}
,{"Dims":["40+","F"],"IsNull":false,"Value":0.8,"SubId":0}
]

To see the history of model runs:

http://localhost:4040/api/model/modelOne/run-list

[
 {
 "ModelName": "modelOne",
 "ModelDigest": "_201208171604590148_",
 "Name": "Default",
 "SubCount": 1,
 "SubStarted": 1,
 "SubCompleted": 1,
 "CreateDateTime": "2019-01-10 18:36:13.0655",
 "Status": "s",
 "UpdateDateTime": "2019-01-10 18:36:13.0669",
 "Digest": "6fbad822cb9ae42deea1ede626890711",
 "Txt": [],
 "Opts": {},
 "Param": [],
 "Progress": []
 },
........
 {
 "ModelName": "modelOne",
 "ModelDigest": "_201208171604590148_",
 "Name": "Parameter sub-values 2 from csv",
 "SubCount": 2,
 "SubStarted": 2,
 "SubCompleted": 2,
 "CreateDateTime": "2019-01-10 18:36:13.0745",
 "Status": "s",
 "UpdateDateTime": "2019-01-10 18:36:13.0762",
 "Digest": "ac72e96b549638d31acaf6ee965b23c2",
 "Txt": [],
 "Opts": {},
 "Param": [],
 "Progress": []
 },
........
]

Model run can be uniquely identified by run digest, for example above:

digest: "ac72e96b549638d31acaf6ee965b23c2" , run name: "Parameter sub-values 2 from csv"

digest: "6fbad822cb9ae42deea1ede626890711" , run name: "Default"

Run name may not be unique, but in examples below we going to use name just to improve readability.

To see the parameter value from particular model run:

http://localhost:4040/api/model/modelOne/run/Default/parameter/StartingSeed/value

[
 {
 "Dims": [],
 "IsNull": false,
 "Value": 1023,
 "SubId": 0
 }
]

Or

Model run results and run input parameters

http://localhost:4040/api/model/modelOne/run/Default/parameter/baseSalary/value

[
 {
 "Dims": [],
 "IsNull": false,
 "Value": "Full",
 "SubId": 0
 }
]

Profile is a set of key-value options, similar to ini-file, which can be used to run the model. Each profile can be identified by profile name. It may
be more convenient to use profiles instead of ini-files because profiles are stored in database and you don't need to deal with multiple files in
order to publish and run the model in cloud.

To create profile named seed-1-base-full with values of StartingSeed and baseSalary parameters :

curl -v -X PATCH -H "Content-Type: application/json" \
 "http://localhost:4040/api/model/modelOne/profile" \
 -d \
 '{ "Name": "seed-1-base-full",
 "Opts": {
 "OpenM.StartingSeed": "1023",
 "OpenM.baseSalary": "Full"
 }
 }'

Above curl command line is Linux specific, on Windows you must use ^ instead of \ for multi-line input and also double "quotes" and \" instead of
single 'quotes'.

To view model profile:

http://localhost:4040/api/model/modelOne/profile/seed-1-base-full

{
 "Name": "seed-1-base-full",
 "Opts": {
 "OpenM.StartingSeed": "1023",
 "OpenM.baseSalary": "Full"
 }
}

To modify profile value:

curl -v -X POST http://localhost:4040/api/model/modelOne/profile/seed-1-base-full/key/Parameter.StartingSeed/value/4095

You can create multiple profiles similar to above in order to run the model with different StartingSeed and baseSalary parameter values:

modelOne -OpenM.Profile seed-1-base-full
modelOne -OpenM.Profile seed-1-base-part
modelOne -OpenM.Profile seed-2-base-full
modelOne -OpenM.Profile seed-2-base-part

It is the same as supply parameter values on command line:

modelOne -Parameter.StartingSeed 1023 -Parameter.baseSalary Full
modelOne -Parameter.StartingSeed 1023 -Parameter.baseSalary Part
modelOne -Parameter.StartingSeed 2047 -Parameter.baseSalary Full
modelOne -Parameter.StartingSeed 2047 -Parameter.baseSalary Part

Above model runs are using profile or command line values of StartingSeed and baseSalary and all other parameters are coming from "default"
workset (default set of input parameters, a.k.a. default "scenario").

Use model profile to supply parameter values

Simple way to create new workset (input set of parameters)

If you already run the model then database contains run results in output tables and copy of input parameters of that model run. We can use
previous run parameters as "base" for our new workset, modify only some of it and run our model again.

1. To create New-Set of model parameters based on model run named "Default" with digest "6fbad822cb9ae42deea1ede626890711":

curl -v -X PUT \
 -F 'workset={
 "ModelName": "modelOne",
 "Name": "New-Set",
 "BaseRunDigest": "6fbad822cb9ae42deea1ede626890711",
 "Txt": [
 { "LangCode": "EN", "Descr": "My new set of input parameters" }
],
 "Param": [
 {
 "Name": "StartingSeed",
 "SubCount": 1,
 "Txt": [
 { "LangCode": "EN", "Note": "Starting seed new value" }
],
 "Value": [
 {"Dims": [], "IsNull": false, "Value": 8191, "SubId": 0}
]
 },
 {
 "Name": "ageSex",
 "SubCount": 1,
 "Txt": [],
 "Value": [
 {"Dims": ["10-20","M"], "IsNull": false, "Value": 0.1, "SubId": 0},
 {"Dims": ["10-20","F"], "IsNull": false, "Value": 0.2, "SubId": 0},
 {"Dims": ["20-30","M"], "IsNull": false, "Value": 0.3, "SubId": 0},
 {"Dims": ["20-30","F"], "IsNull": false, "Value": 0.4, "SubId": 0},
 {"Dims": ["30-40","M"], "IsNull": false, "Value": 0.5, "SubId": 0},
 {"Dims": ["30-40","F"], "IsNull": false, "Value": 0.6, "SubId": 0},
 {"Dims": ["40+","M"], "IsNull": false, "Value": 0.7, "SubId": 0},
 {"Dims": ["40+","F"], "IsNull": false, "Value": 0.8, "SubId": 0}
]
 }
]
 }' \
 http://localhost:4040/api/workset-create

That New-Set conatins new values for StartingSeed and ageSex parameters. All other input values are identical to previous "Default" model run
input.

Each input set of model parameters (each workset) must have unique name. Different models can have worksets with same name, i.e. each
model can have workset with name "Default". If workset with the same name New-Set already exist then this method return an error.

You don't have to create workset based on previous model run, you can omit BaseRunDigest and include all parameter values in the new workset.
However it may be difficult for complex model with hundreds input parameters.

If you already run the model then database contains run results in output tables and copy of input parameters of that model run. We can use
previous run parameters as "base" for our new workset, modify only some of it and run our model again.

1. To create new MyFirstSet of model parameters based on model run named "Default" with digest "6fbad822cb9ae42deea1ede626890711":

curl -v -X PUT \
 -F 'workset={
 "ModelName": "modelOne",
 "Name": "MyFirstSet",
 "BaseRunDigest": "6fbad822cb9ae42deea1ede626890711",
 "Txt": [
 { "LangCode": "EN", "Descr": "My first set of input parameters" }
]
 }' \
 http://localhost:4040/api/workset-replace

That workset does not yet include any new parameter values, all input is identical to previous "Default" model run input. In order to modify
parameter values we first need to copy into our new workset from any model run, any other workset or upload as csv-file.

2. Copy parameter StartingSeed value into MyFirstSet workset from Default-4 model run:

Advanced way to create new workset (input set of parameters) based on previous model run

curl -v -X PUT http://localhost:4040/api/model/modelOne/workset/MyFirstSet/copy/parameter/StartingSeed/from-run/Default-4

3. Copy parameter baseSalary value into MyFirstSet workset from modelOne_other workset:

curl -v -X PUT http://localhost:4040/api/model/modelOne/workset/MyFirstSet/copy/parameter/baseSalary/from-workset/modelOne_other

4. Upload parameter ageSex values into MyFirstSet workset from my_age_sex.csv csv file:

curl -v -X PATCH \
 -F 'workset={
 "ModelName": "modelOne",
 "Name": "MyFirstSet",
 "Param": [
 { "Name": "ageSex", "SubCount": 1 }
]
 }' \
 -F 'parameter-csv=@my_age_sex.csv;filename=ageSex.csv' \
 http://localhost:4040/api/workset-merge

where content of my_age_sex.csv is:

sub_id,dim0,dim1,param_value
0,10-20,M,11
0,10-20,F,12
0,20-30,M,13
0,20-30,F,14
0,30-40,M,15
0,30-40,F,16
0,40+,M,17
0,40+,F,18

It is also possible to modify some part of parameter values. For example, ageSex parameter above is 4*3 matrix and if want to modify values:

 [30-40, M] = 0.15
 [30-40, F] = 0.16

then:

curl -v -X PATCH -H "Content-Type: application/json" \
 http://localhost:4040/api/model/modelOne/workset/MyFirstSet/parameter/ageSex/new/value \
 -d '[
 {"Dims": ["30-40", "M"], "IsNull": false, "SubId":0, "Value": 0.15},
 {"Dims": ["30-40", "F"], "IsNull": false, "SubId":0, "Value": 0.16}
]'

Finally our "MyFirstSet" input set contains new values for 3 parameters: StartingSeed, baseSalary, ageSex , which different from previous "base run"
parameters. And now we can run our model with that new workset:

modelOne -OpenM.SetName MyFirstSet

It is also possible to delete parameter from workset, delete entire workset in order to cleanup database and perform some other operations.
Please see Oms: openM++ web-service API for details.

Modeling task consists of multiple sets of input data and can be run in batch mode. There is an example of modeling task at Run RiskPaths
model from R page where we creating 800 sets of input data to study Childlessness by varying

Age baseline for first union formation

Relative risks of union status on first pregnancy After preparing such modeling task we can submit RiskPath model to high performance
cluster (HPC) grid or in cloud where model will read 800 input sets and produce 800 model run outputs.

It is also possible to create or modify or delete modeling task without R, using Oms JSON web-service from programming language of your
choice.

In order to do this we need first to prepare our input worksets as described above and after that we can create modeling task. For example, if we

Create or modify modeling task

have two worksets: MyFirstSet, MySecondSet then we can create task:

curl -v -X PUT -H "Content-Type: application/json" \
 http://localhost:4040/api/task-new \
 -d '{
 "ModelName": "modelOne",
 "Name": "MyTask",
 "Txt": [{
 "LangCode": "EN",
 "Descr": "Task to vary 3 parameters",
 "Note": "Study effect of 3 parameters on output results"
 }
],
 "Set": [
 "MyFirstSet",
 "MySecondSet"
]
 }'

You can see the list of modeling tasks:

http://localhost:4040/api/model/modelOne/task-list

examine task metadata, input sets or task run history:

http://localhost:4040/api/model/modelOne/task/MyTask/text
http://localhost:4040/api/model/modelOne/task/MyTask/sets
http://localhost:4040/api/model/modelOne/task/MyTask/runs

It is also possible to delete or modify task. For example, if you want to add MyThirdSet set of parameters to the task above:

curl -v -X PATCH -H "Content-Type: application/json" \
 http://localhost:4040/api/task \
 -d '{
 "ModelName": "modelOne",
 "Name": "MyTask",
 "Set": [
 "MyThirdSet"
]
 }'

After that task will contain 3 input worksets:

http://localhost:4040/api/model/modelOne/task/MyTask/sets

{
 "ModelName": "modelOne",
 "ModelDigest": "_201208171604590148_",
 "Name": "MyTask",
 "Txt": [],
 "Set": [
 "MyFirstSet",
 "MySecondSet",
 "MyThirdSet"
],
 "TaskRun": []
}

Now you can run the model with that task:

modelOne -OpenM.SubValues 16 -OpenM.TaskName MyTask -OpenM.TaskRunName MyTask-sub16

and examine history of modeling task run:

http://localhost:4040/api/model/modelOne/task/MyTask/runs

{
 "ModelName": "modelOne",
 "ModelDigest": "_201208171604590148_",
 "Name": "MyTask",
 "Txt": [],
 "Set": [],
 "TaskRun": [
 {
 "Name": "MyTask-sub16",
 "SubCount": 16,
 "CreateDateTime": "2019-01-16 04:38:53.0298",
 "Status": "s",
 "UpdateDateTime": "2019-01-16 04:38:53.0461",
 "TaskRunSet": [
 {
 "Run": {
 "Name": "MyTask_sub16_MyFirstSet_2019_01_16_04_38_53_0304_111",
 "SubCompleted": 16,
 "CreateDateTime": "2019-01-16 04:38:53.0304",
 "Status": "s",
 "Digest": "1cece5a11d522b6225d7f9cb5afda39a"
 },
 "SetName": "MyFirstSet"
 },
 {
 "Run": {
 "Name": "MyTask_sub16_MySecondSet_2019_01_16_04_38_53_0357_112",
 "SubCompleted": 16,
 "CreateDateTime": "2019-01-16 04:38:53.0357",
 "Status": "s",
 "Digest": "4a55cd6614f8f7be439c0776b2a473ab"
 },
 "SetName": "MySecondSet"
 },
 {
 "Run": {
 "Name": "MyTask_sub16_MyThirdSet_2019_01_16_04_38_53_0410_113",
 "SubCompleted": 16,
 "CreateDateTime": "2019-01-16 04:38:53.0410",
 "Status": "s",
 "Digest": "d112237f501317422943880eca54d07b"
 },
 "SetName": "MyThirdSet"
 }
]
 }
]

OpenM++ web-service (oms) can provide basic computational resources management for your local computer or cluster of servers on local
network or in cloud. It can manage model runs queue if your computational resources (CPU and memory) are limited and also can automatically
start and stop cloud servers.

Examples below assuming you are familiar with basics of Oms: openM++ web-service.

If you want to have model runs queue, or using openM++ in cloud and want automatically scale up and down cloud resources, e.g. start and stop
virtual machines for model runs then start oms with job control option:

oms -oms.JobDir job

Following directory structure expected:

./ -> oms "root" directory, by default it is current directory
 html/ -> web-UI directory with HTML, js, css, images...
 etc/ -> config files directory, contain template(s) to run models
 log/ -> recommended log files directory
 models/
 bin/ -> default model.exe and model.sqlite directory
 log/ -> default directory for models run log files
 doc/ -> models documentation directory
 home/ -> user personal home directory
 io/download -> user directory for download files
 io/upload -> user directory to upload files
 job/ -> model run jobs control directory
 job.ini -> job control settings
 disk.ini -> (optional) disk usage control settings to set storage quotas
 active/ -> active model run state files
 history/ -> model run history files
 past/ -> (optional) shadow copy of history folder, invisible to the end user
 queue/ -> model run queue files
 state/ -> jobs state and computational servers state files
 jobs.queue.paused -> if such file exists then jobs queue is paused
 jobs.queue.all.paused -> if such file exists then all jobs in all queues are paused

By default oms assumes:

all models are running on localhost

there are no limits on CPU cores or memory usage

You can create model run queue on your local computer by setting a limit on number of CPU cores available. To do it modify job.ini file in a job

directory, for example:

[Common]
LocalCpu = 8 ; localhost CPU cores limit, localhost limits are applied only to non-MPI jobs
LocalMemory = 0 ; gigabytes, localhost memory limit, zero means no limits

You don't have to set memory limits until model run memory requirements are known.

CPU cores which are you limiting in job.ini does not need to be an actual cores. You can have 8 cores on your PC and set LocalCpu = 16 which
allow 200% overload and may significantly slow down your local machine. Or if you set LocalCpu = 4 then your models would be able to use only
half of actual cores.

Example of local network (LAN) cluster:

small front-end server with 4 cores

4 back-end servers: cpc-1, cpc-2, cpc-3, cpc-4 with 16 cores each

Oms: Cloud and model runs queue

Model runs queue and computational resources (servers, nodes, clusters)

Model run queue on local computer

LAN: front-end server and back-end cluster of servers

[Common]
LocalCpu = 4 ; localhost CPU cores limit, localhost limits are applied only to non-MPI jobs
LocalMemory = 0 ; gigabytes, localhost memory limit, zero means no limits
MpiCpu = 40 ; max MPI cpu cores available for each oms instance, zero means oms instances can use all cpu's available
MpiMemory = 0 ; gigabytes, max MPI memory available for each oms instance, zero means oms instances can use all memory available
MpiMaxThreads = 8 ; max number of modelling threads per MPI process
MaxErrors = 10 ; errors threshold for compute server or cluster

Servers = cpc-1, cpc-2, cpc-3, cpc-4 ; computational servers or clusters

[cpc-1]
Cpu = 16 ; default: 1 CPU core
Memory = 0 ; zero means no limits

[cpc-2]
Cpu = 16 ; default: 1 CPU core
Memory = 0 ; zero means no limits

[cpc-3]
Cpu = 16 ; default: 1 CPU core
Memory = 0 ; zero means no limits

[cpc-4]
Cpu = 16 ; default: 1 CPU core
Memory = 0 ; zero means no limits

; OpenMPI hostfile (on Linux)
;
; cpm slots=1 max_slots=1
; cpc-1 slots=2
; cpc-3 slots=4
;
[hostfile]
HostFileDir = models/log
HostName = @-HOST-@
CpuCores = @-CORES-@
RootLine = cpm slots=1 max_slots=1
HostLine = @-HOST-@ slots=@-CORES-@

; MS-MPI machinefile (on Windows with Microsoft MPI)
;
; cpm:1
; cpc-1:2
; cpc-3:4
;
; [hostfile]
; HostFileDir = models\log
; HostName = @-HOST-@
; CpuCores = @-CORES-@
; RootLine = cpm:1
; HostLine = @-HOST-@:@-CORES-@

Based on job.ini above oms will create MPI hostfile with back-end servers assignment for each particular model run.

In order to use that hostfile you should modify model run template(s) in openM++ etc/ directory. For example on Linux with openMPI:

{{/*
oms web-service:
 Template to run modelName_mpi executable on Linux using OpenMPI

It is not recommended to use root process for modelling

Oms web-service using template for exec.Command(exeName, Args...):
 - skip empty lines
 - substitute template arguments
 - first non-empty line is a name of executable to run
 - each other line is a command line argument for executable

Arguments of template:
 ModelName string // model name
 ExeStem string // base part of model exe name, usually modelName
 Dir string // work directory to run the model
 BinDir string // bin directory where model exe is located
 MpiNp int // number of MPI processes
 HostFile string // if not empty then path to hostfile
 Args []string // model command line arguments
 Env map[string]string // environment variables to run the model

Example of result:

 mpirun --hostfile host.ini --bind-to none --oversubscribe -wdir models/bin -x key=value ./modelName_mpi -OpenM.LogToFile false

*/}}

mpirun
--bind-to
none
--oversubscribe
{{with .HostFile}}
--hostfile
{{.}}
{{end}}
{{with .Dir}}
-wdir
{{.}}
{{end}}
{{range $key, $val := .Env}}
-x
{{$key}}={{$val}}
{{end}}
{{.BinDir}}/{{.ExeStem}}_mpi
{{range .Args}}
{{.}}
{{end}}

Note: If you are using OpenMPI then it is a good idea to have --oversubscribe --bind-to none as above in order to avoid MPI models run failure or
performance degradation.

If you are using Microsoft MPI on Windows servers then modify etc\ model template file(s) to have it similar to:

{{/*
oms web-service:
 Template to run modelName_mpi.exe on Windows Microsoft MPI using machinefile

To use this template rename it into:
 mpi.ModelRun.template.txt

Oms web-service using template for exec.Command(exeName, Args...):
 - skip empty lines
 - substitute template arguments
 - first non-empty line is a name of executable to run
 - each other line is a command line argument for executable

Arguments of template:
 ModelName string // model name
 ExeStem string // base part of model exe name, usually modelName
 Dir string // work directory to run the model
 BinDir string // bin directory where model exe is located
 DbPath string // absolute path to sqlite database file: models/bin/model.sqlite
 MpiNp int // number of MPI processes
 HostFile string // if not empty then path to hostfile
 Args []string // model command line arguments
 Env map[string]string // environment variables to run the model

Example of result:
 mpiexec -machinefile hosts.ini -wdir models\bin -env key value ..\bin\modelName_mpi -OpenM.LogToFile false

*/}}

mpiexec
{{with .HostFile}}
-machinefile
{{.}}
{{end}}
{{with .Dir}}
-wdir
{{.}}
{{end}}
{{range $key, $val := .Env}}
-env
{{$key}}
{{$val}}
{{end}}
{{.BinDir}}\{{.ExeStem}}_mpi
{{range .Args}}
{{.}}
{{end}}

Use oms jobs control abilities to organize model runs queue and, if required, automatically scale up down cloud resources, e.g.: start and stop
virtual machines or nodes.

For example, if you want to have two users: Alice and Bob who are running models then start oms as:

bin/oms -l localhost:4050 -oms.RootDir alice -oms.Name alice -ini oms.ini
bin/oms -l localhost:4060 -oms.RootDir bob -oms.Name bob -ini oms.ini

where content of oms.ini is:

[oms]
JobDir = ../job
EtcDir = ../etc
HomeDir = models/home
AllowDownload = true
AllowUpload = true
LogRequest = true

[OpenM]
LogFilePath = log/oms.log
LogToFile = true
LogUseDailyStamp = true
LogToConsole = false

Above assume following directory structure:

Cloud auto scaling: automatically start and stop servers

./ -> current directory
 bin/
 oms -> oms web service executable, on Windows: `oms.exe`
 dbcopy -> dbcopy utility executable, on Windows: `dbcopy.exe`
 html/ -> web-UI directory with HTML, js, css, images...
 etc/ -> config files directory, contain template(s) to run models
 alice/ -> user Alice "root" directory
 log/ -> recommended Alice's log files directory
 models/
 bin/ -> Alice's model.exe and model.sqlite directory
 log/ -> Alice's directory for models run log files
 doc/ -> models documentation directory
 home/ -> Alice's personal home directory
 io/download -> Alice's directory for download files
 io/upload -> Alice's directory to upload files
 bob/ -> user Bob "root" directory
 log/ -> recommended Bob's log files directory
 models/
 bin/ -> Bob's model.exe and model.sqlite directory
 log/ -> Bob's directory for models run log files
 doc/ -> models documentation directory
 home/ -> Bob's personal home directory
 io/download -> Bob's directory for download files
 io/upload -> Bob's directory to upload files
 job/ -> model run jobs control directory, it must be shared between all users
 job.ini -> (optional) job control settings
 disk.ini -> (optional) disk usage control settings to set storage quotas for Bob and Alice
 active/ -> active model run state files
 history/ -> model run history files
 past/ -> (optional) shadow copy of history folder, invisible to the end user
 queue/ -> model run queue files
 state/ -> jobs state and computational servers state files
 jobs.queue.paused -> if such file exists then jobs queue is paused
 jobs.queue.all.paused -> if such file exists then all jobs in all queues are paused

You don't have to follow that directory structure, it is flexible and can be customized through oms run options.

IMPORTANT: Job directory must be in a SHARED location and accessible to all users who are using the same queue and the same
computational resources (servers, nodes, clusters).

You don't need to create OS users, e.g. Alice and Bob does not need a login accounts on your server (cloud, Active Directory, etc.). All you need
is to setup some authentication mechanism and reverse proxy which would allow Alice to access localhost:4050 and Bob localhost:4060 on your
front-end. Actual OS user can have any name, e.g. oms :

sudo -u oms OM_ROOT=/shared/alice bash -c 'source ~/.bashrc; bin/oms -l localhost:4050 -oms.RootDir alice -oms.Name alice -ini oms.ini &'
sudo -u oms OM_ROOT=/shared/bob bash -c 'source ~/.bashrc; bin/oms -l localhost:4060 -oms.RootDir bob -oms.Name bob -ini oms.ini &'

You may want to set the limits on disk space usage and enforce storage cleanup by users. It can be done through job/disk.ini file. If job/disk.ini

exists then oms web-service will monitor and report disk usage by user(s) and may set a limit on storage space. You can set a limit for individual
user, group of users and grand total space limit on storage space used by all users. If user exceeding disk space quotas then she/he cannot run
the model or upload files to cloud, only download is available. User can Cleanup Disk Space through UI.

Example of disk.ini :

Cloud disks usage: limit storage space usage

; Example of storage usage control settings
; "user" term below means oms instance
; "user name" is oms instance name, for example: "localhost_4040"
;
; if job/disk.ini file exists then storage usage control is active

[Common]

; seconds, storage scan interval, if too small then default value used
;
ScanInterval = 0

; GBytes, user storage quota, default: 0 (unlimited)
;
UserLimit = 0

; GBytes, total storage quota for all users, default: 0 (unlimited)
; if non-zero then it restricts the total storage size of all users
;
AllUsersLimit = 128

; Database cleanup script:
; creates new model.sqlite database and copy model data
;
DbCleanup = etc/db-cleanup_linux.sh

; user groups can be created to simplify settings
;
Groups = Low, High, Others

[Low]
Users = localhost_4040, bob, alice
UserLimit = 2

[High]
Users = king, boss, cheif
UserLimit = 20

[king]
UserLimit = 100 ; override storage settings for oms instance "king"

; "me" is not a member of any group
;
[me]
UserLimit = 0 ; unlimited

There is a small front-end server with 4 cores and 4 back-end servers: cpc-1, cpc-2, cpc-3, cpc-4 with 16 cores each. You are using public cloud
and want to pay only for actual usage of back end servers:

server(s) must be started automatically when user (Alice or Bob) want to run the model;

server(s) must stop after model run completed to reduce cloud cost

Scripts below are also available at our GitHub↗

Google cloud: front-end server and and auto scale of multiple back-end servers

https://github.com/openmpp/other

[Common]
LocalCpu = 4 ; localhost CPU cores limit, localhost limits are applied only to non-MPI jobs
LocalMemory = 0 ; gigabytes, localhost memory limit, zero means no limits
MpiMaxThreads = 8 ; max number of modelling threads per MPI process
MaxErrors = 10 ; errors threshold for compute server or cluster
IdleTimeout = 900 ; seconds, idle time before stopping server or cluster
StartTimeout = 180 ; seconds, max time to start server or cluster
StopTimeout = 180 ; seconds, max time to stop server or cluster

Servers = cpc-1, cpc-2, cpc-3, cpc-4 ; computational servers or clusters

StartExe = /bin/bash ; default executable to start server
StopExe = /bin/bash ; default executable to stop server
ArgsBreak = -@- ; arguments delimiter in StartArgs or StopArgs line
 ; delimiter can NOT contain ; or # chars, which are reserved for # comments
 ; it can be any other delimiter of your choice, e.g.: +++
; StartArgs = ../etc/compute-start.sh ; default command line arguments to start server, server name will be appended
; StopArgs = ../etc/compute-stop.sh ; default command line arguments to start server, server name will be appended

[cpc-1]
Cpu = 16 ; default: 1 CPU core
Memory = 0 ; zero means no limits
StartArgs = ../etc/compute-start-4.sh-@-us-zone-b-@-cpc-1
StopArgs = ../etc/compute-stop-4.sh-@-us-zone-b-@-cpc-1

[cpc-2]
Cpu = 16 ; default: 1 CPU core
Memory = 0 ; zero means no limits
StartArgs = ../etc/compute-start-4.sh-@-us-zone-c-@-cpc-2
StopArgs = ../etc/compute-stop-4.sh-@-us-zone-c-@-cpc-2

[cpc-3]
Cpu = 16 ; default: 1 CPU core
Memory = 0 ; zero means no limits
StartArgs = ../etc/compute-start-4.sh-@-us-zone-d-@-cpc-3
StopArgs = ../etc/compute-stop-4.sh-@-us-zone-d-@-cpc-3

[cpc-4]
Cpu = 16 ; default: 1 CPU core
Memory = 0 ; zero means no limits
StartArgs = ../etc/compute-start-4.sh-@-us-zone-a-@-cpc-4
StopArgs = ../etc/compute-stop-4.sh-@-us-zone-a-@-cpc-4

; OpenMPI hostfile
;
; cpm slots=1 max_slots=1
; cpc-1 slots=2
; cpc-3 slots=4
;
[hostfile]
HostFileDir = models/log
HostName = @-HOST-@
CpuCores = @-CORES-@
RootLine = cpm slots=1 max_slots=1
HostLine = @-HOST-@ slots=@-CORES-@

; MS-MPI machinefile (on Windows with Microsoft MPI)
;
; cpm:1
; cpc-1:2
; cpc-3:4
;
; [hostfile]
; HostFileDir = models\log
; HostName = @-HOST-@
; CpuCores = @-CORES-@
; RootLine = cpm:1
; HostLine = @-HOST-@:@-CORES-@

Oms is using StartExe and StartArgs in order to start each server. On Linux result of above job.ini is:

/bin/bash etc/compute-start.sh cpc-1

On Windows you can use cmd or PowerShell in order to control servers. Related part of job.ini can look like:

StartExe = cmd ; default executable to start server
StartArgs = /C-@-etc\compute-start.bat ; default command line arguments to start server, server name will be appended
StopExe = cmd ; default executable to stop server
StopArgs = /C-@-etc\compute-stop.bat ; default command line arguments to start server, server name will be appended

which result in following command to start server:

cmd /C etc\compute-start.bat cpc-1

Start and stop scripts can look like (Google cloud version):

#!/bin/bash
#
start computational server, run as:
#
sudo -u $USER-NAME compute-start.sh host-name

srv_zone="us-zone-b"
srv_name="$1"

if [-z "$srv_name"] || [-z "$srv_zone"] ;
then
 echo "ERROR: invalid (empty) server name or zone: $srv_name $srv_zone"
 exit 1
fi

gcloud compute instances start $srv_name --zone $srv_zone
status=$?

if [$status -ne 0];
then
 echo "ERROR $status at start of: $srv_name"
 exit $status
fi

wait until MPI is ready

for i in 1 2 3 4; do

 sleep 10

 echo "[$i] mpirun -n 1 -H $srv_name hostname"

 mpirun -n 1 -H $srv_name hostname
 status=$?

 if [$status -eq 0] ; then break; fi
done

if [$status -ne 0];
then
 echo "ERROR $status from MPI at start of: $srv_name"
 exit $status
fi

echo "Start OK: $srv_name"

#!/bin/bash
#
stop computational server, run as:
#
sudo -u $USER-NAME compute-stop.sh host-name

set -e

srv_zone="us-zone-b"
srv_name="$1"

if [-z "$srv_name"] || [-z "$srv_zone"] ;
then
 echo "ERROR: invalid (empty) server name or zone: $srv_name $srv_zone"
 exit 1
fi

for i in 1 2 3 4 5 6 7; do

 gcloud compute instances stop $srv_name --zone $srv_zone
 status=$?

 if [$status -eq 0] ; then break; fi

 sleep 10
done

if [$status -ne 0];
then
 echo "ERROR $status at stop of: $srv_name"
 exit $status
fi

echo "Stop OK: $srv_name"

There is a small front-end server with 4 cores and 2 back-end servers: dc1, dc2 with 4 cores each. You are using public cloud and want to pay
only for actual usage of back end servers:

server(s) must be started automatically when user (Alice or Bob) want to run the model;

server(s) must stop after model run completed to reduce cloud cost

Scripts below are also available at our GitHub↗

Azure cloud: front-end server and and auto scale of multiple back-end servers

https://github.com/openmpp/other

[Common]
LocalCpu = 4 ; localhost CPU cores limit, localhost limits are applied only to non-MPI jobs
LocalMemory = 0 ; gigabytes, localhost memory limit, zero means unlimited
MpiMaxThreads = 8 ; max number of modelling threads per MPI process
MaxErrors = 10 ; errors threshold for compute server or cluster
IdleTimeout = 900 ; seconds, idle time before stopping server or cluster
StartTimeout = 90 ; seconds, max time to start server or cluster
StopTimeout = 90 ; seconds, max time to stop server or cluster

Servers = dc1, dc2 ; computational servers or clusters for MPI jobs

StartExe = /bin/bash ; default executable to start server
StopExe = /bin/bash ; default executable to stopt server
StartArgs = ../etc/az-start.sh-@-dm_group ; default command line arguments to start server, server name will be appended
StopArgs = ../etc/az-stop.sh-@-dm_group ; default command line arguments to start server, server name will be appended

ArgsBreak = -@- ; arguments delimiter in StartArgs or StopArgs line
 ; delimiter can NOT contain ; or # chars, which are reserved for # comments
 ; it can be any other delimiter of your choice, e.g.: +++

[dc1]
Cpu = 4 ; default: 1 CPU core
Memory = 0

[dc2]
Cpu = 4 ; default: 1 CPU core
Memory = 0

; OpenMPI hostfile
;
; dcm slots=1 max_slots=1
; dc1 slots=2
; dc2 slots=4
;
[hostfile]
HostFileDir = models/log
HostName = @-HOST-@
CpuCores = @-CORES-@
RootLine = dm slots=1 max_slots=1
HostLine = @-HOST-@ slots=@-CORES-@

Oms is using StartExe and StartArgs in order to start each server. On Linux result of above job.ini is similar to:

/bin/bash etc/az-start.sh dm_group dc1

Start and stop scripts can look like (Azure cloud version):

#!/bin/bash
#
start Azure server, run as:
#
sudo -u $USER-NAME az-start.sh resource-group host-name

set -e

res_group="$1"
srv_name="$2"

if [-z "$srv_name"] || [-z "$res_group"] ;
then
 echo "ERROR: invalid (empty) server name or resource group: $srv_name $res_group"
 exit 1
fi

login

az login --identity
status=$?

if [$status -ne 0];
then
 echo "ERROR $status from az login at start of: $res_group $srv_name"
 exit $status
fi

Azure VM start

az vm start -g "$res_group" -n "$srv_name"
status=$?

if [$status -ne 0];
then
 echo "ERROR $status at: az vm start -g $res_group -n $srv_name"
 exit $status
fi

wait until MPI is ready

for i in 1 2 3 4 5; do

 sleep 10

 echo "[$i] mpirun -n 1 -H $srv_name hostname"

 mpirun -n 1 -H $srv_name hostname
 status=$?

 if [$status -eq 0] ; then break; fi
done

if [$status -ne 0];
then
 echo "ERROR $status from MPI at start of: $srv_name"
 exit $status
fi

echo "Start OK: $srv_name"

#!/bin/bash
#
stop Azure server, run as:
#
sudo -u $USER-NAME az-stop.sh resource-group host-name

set -e

res_group="$1"
srv_name="$2"

if [-z "$srv_name"] || [-z "$res_group"] ;
then
 echo "ERROR: invalid (empty) server name or resource group: $srv_name $res_group"
 exit 1
fi

login

az login --identity
status=$?

if [$status -ne 0];
then
 echo "ERROR $status from az login at start of: $res_group $srv_name"
 exit $status
fi

Azure VM stop

for i in 1 2 3 4; do

 az vm deallocate -g "$res_group" -n "$srv_name"

 if [$status -eq 0] ; then break; fi

 sleep 10
done

if [$status -ne 0];
then
 echo "ERROR $status at stop of: $srv_name"
 exit $status
fi

echo "Stop OK: $srv_name"

Security consideration:

In wiki I am describing the most simple but least secure configuration, for your production environment you may want to:

use a separate web front-end server, separate oms control server with firewall in between

never use front-end web-server OS user as oms control server OS user

do not use the same OS user, like oms , but create a different for each of your model users, like Alice and Bob in example above.

Of course web front-end UI of your production environment must be protected by https:// with proper authentication and authorization. All that is
out of scope of our wiki, please consult your organization security guidelines for it.

Also I am not describing here how to configure web-servers, how to create reverse proxy, install SSL certificates, etc. There are a lot of great
materials on those topics around, just please think about security in a first place.

Cloud examples here assume Debian or Ubuntu Linux servers setup, you can use it for RedHat Linux with minimal adjustment. OpenM++ do
support Microsoft Windows clusters, but configuring it is a more complex task and out of scope for that wiki.

Our simple cluster consist of from-end web-UI server with host name dm and multiple back-end computational servers: dc1, dc2,... .

Front-end server OS setup

Front-end dm server must have some web-server installed, Apache or nginx for example, static IP and DNS records for your domain.

Choose Debian-11, Ubuntu 22.04 or RedHat 9 (Rocky, AlmaLinux) as your base system and create dm cloud virtual machine, at least 4 cores
recommended. We will create two disks on dm : boot disk and fast SSD data disk where all users data and models are stored.

Linux cluster in cloud

Set timezone, install openMPI and (optional) SQLite:

sudo timedatectl set-timezone America/Toronto

sudo apt-get install openmpi-bin
sudo apt-get install sqlite3

check result:
mpirun hostname -A

Create and mount on /mirror SSD data disk to store all users data and models:

init new SSD, use lsblk to find which /dev it is
lsblk

sudo mkfs.ext4 -m 0 -E lazy_itable_init=0,lazy_journal_init=0,discard /dev/sda

sudo mkdir /mirror
sudo mount -o discard,defaults /dev/sda /mirror

check results:
ls -la /mirror

add new disk to fstab, mount by UUID:
sudo blkid /dev/sda
sudo nano /etc/fstab

add your UUID mount:
UUID=98765432-d09a-4936-b85f-a61da123456789 /mirror ext4 discard,defaults 0 2

Create NFS shares:

sudo mkdir -p /mirror/home
sudo mkdir -p /mirror/data

sudo apt install nfs-kernel-server

add shares into exports:
sudo nano /etc/exports

export user homes and data, data can be exported read-only, rw is not required
/mirror/home *(rw,sync,no_root_squash,no_subtree_check)
/mirror/data *(rw,sync,no_root_squash,no_subtree_check)

sudo systemctl restart nfs-kernel-server

check results:
/sbin/showmount -e dm

systemctl status nfs-kernel-server

Create 'oms' service account, login disabled. I am using 1108 as user id and group id, but it is an example only and 1108 have no special
meaning:

export OMS_UID=1108
export OMS_GID=1108

sudo addgroup --gid $OMS_GID oms
sudo adduser --home /mirror/home/oms --disabled-password --gecos "" --gid $OMS_GID -u $OMS_UID oms

sudo chown -R oms:oms /mirror/data

increase stack size for models to 65 MB = 65536

sudo -u oms nano /mirror/home/oms/.bashrc

~/.bashrc: executed by bash(1) for non-login shells.
openM++
some models require stack size:
#
ulimit -S -s 65536

#
end of openM++

Password-less ssh for oms service account:

sudo su -l oms
cd ~

mkdir .ssh

ssh-keygen -f .ssh/id_rsa -t rsa -N '' -C oms

create .ssh/config with content below:
nano .ssh/config

Host *
 StrictHostKeyChecking no
 UserKnownHostsFile /dev/null
 LogLevel ERROR

cp -p .ssh/id_rsa.pub .ssh/authorized_keys

chmod 700 .ssh
chmod 600 .ssh/id_rsa
chmod 644 .ssh/id_rsa.pub
chmod 644 .ssh/config
chmod 644 .ssh/authorized_keys

exit # logout from 'oms' user

check ssh for oms user, it should work without any prompts, without any Yes/No questions:

sudo -u oms ssh dm

Check openMPI under 'oms' service account:

sudo -u oms mpirun hostname
sudo -u oms mpirun -H dm hostname

Done with dm server OS setup, reboot it and start dc1, dc2,... creating back-end servers.

Back-end computational servers setup

I am describing it for dc1 , assuming you will create base image from it and use for all other back-end servers. On Azure it is make sense to
create virtual machine scale set instead of individual servers.

Choose Debian-11, Ubuntu 22.04 or RedHat 9 (Rocky, AlmaLinux) as your base system and create dc1 cloud virtual machine, at least 16 cores
recommended. It does not require a fast SSD, use regular small HDD because there are no model data stored in back-end, it is only OS boot
disk, nothing else. Back-end servers should not be visible from the internet, it should be visible only from front-end dm server.

Set timezone and install openMPI::

sudo timedatectl set-timezone America/Toronto

sudo apt-get install openmpi-bin

check result:
mpirun hostname -A

Mount NFS shares from dm server:

sudo mkdir -p /mirror/home
sudo mkdir -p /mirror/data

sudo apt install nfs-common

/sbin/showmount -e dm

sudo mount -t nfs dm:/mirror/home /mirror/home
sudo mount -t nfs dm:/mirror/data /mirror/data

systemctl status mirror-home.mount
systemctl status mirror-data.mount

if above OK then add nfs share mounts into fstab:

sudo nano /etc/fstab

fstab records:
dm:/mirror/home /mirror/home nfs defaults 0 0
dm:/mirror/data /mirror/data nfs defaults 0 0

(optional) reboot node and make sure shares are mounted:

systemctl status mirror-home.mount
systemctl status mirror-data.mount

Create 'oms' service account, login disabled. It must have exactly the same user id and group id as oms user on dm , I am using 1108 as an
example:

export OMS_UID=1108
export OMS_GID=1108

sudo /sbin/addgroup --gid $OMS_GID oms
sudo adduser --no-create-home --home /mirror/home/oms --disabled-password --gecos "" --gid $OMS_GID -u $OMS_UID oms

check 'oms' sevice account access to shared files:

sudo -u oms -- ls -la /mirror/home/oms/.ssh/

Optional: if you are using Azure virtual machine scale set then cloud.init config can be:

#cloud-config
#
runcmd:
 - addgroup --gid 1108 oms
 - adduser --no-create-home --home /mirror/home/oms --disabled-password --gecos "" --gid 1108 -u 1108 oms

Check openMPI under 'oms' service account:

sudo -u oms mpirun hostname
sudo -u oms mpirun -H dc1 hostname
sudo -u oms mpirun -H dm hostname

Done with dc1 OS setup, clone it for all other back-end servers. After you created all back-end servers check openMPI from entire cluster, for
example:

sudo -u oms mpirun -H dm,dc1,dc2,dc3,dc4,dc5,dc6,dc7,dc8,dc9,dc10 hostname

Now login back to your dm front-end and create standard openM++ directory structure at /mirror/data/ , copy models, create user directories as it is
described for "users" Alice and Bob above. Bob and Alice are your model users, they should not have OS login, user oms with disabled login is
used to run the models on behalf of Alice and Bob. I would also recommend to have at least one "user" for your own tests, to verify system status
and test and run the models when you publish it. For that I am usually creating "user" test .

/mirror/data/
 bin/
 oms -> oms web service executable
 dbcopy -> dbcopy utility executable
 html/ -> web-UI directory with HTML, js, css, images...
 etc/ -> config files directory, contain template(s) to run models
 log/ -> recommended log files directory
 alice/ -> user Alice "root" directory
 log/ -> recommended Alice's log files directory
 models/
 bin/ -> Alice's model.exe and model.sqlite directory
 log/ -> Alice's directory for models run log files
 doc/ -> models documentation directory
 home/ -> Alice's personal home directory
 io/download -> Alice's directory for download files
 io/upload -> Alice's directory to upload files
 bob/ -> user Bob "root" directory
 log/ -> recommended Bob's log files directory
 models/
 bin/ -> Bob's model.exe and model.sqlite directory
 log/ -> Bob's directory for models run log files
 doc/ -> models documentation directory
 home/ -> Bob's personal home directory
 io/download -> Bob's directory for download files
 io/upload -> Bob's directory to upload files
 job/ -> model run jobs control directory, it must be shared between all users
 job.ini -> (optional) job control settings
 disk.ini -> (optional) disk usage control settings to set storage quotas Bob and Alice
 active/ -> active model run state files
 history/ -> model run history files
 past/ -> (optional) shadow copy of history folder, invisible to the end user
 queue/ -> model run queue files
 state/ -> jobs state and computational servers state files
 oms/ -> oms init.d files, see examples on our GitHub
 oms.ini -> oms config, see content above
 test/ -> user test "root" directory, for admin internal use
 -> user test subdirectories here

Above there is also oms/ directory with init.d files to restart oms when front-end dm server is rebooted. You can find examples of it at our
GitHub↗.

https://github.com/openmpp/other

It is a convenient to use GNU R to prepare model parameters and analyze output values. There are two different R APIs which we can use for
openM++ models:

openMpp package: simple and convenient specially for desktop users, upstream and downstream analysis;

oms JSON web-service API: preferable choice to run models on computational clusters and in cloud.

There is also an excelent R package created by Matthew T. Warkentin available at: oncology-outcomes/openmpp.

Below is an example how to use oms JSON web-service to read output table values from multiple model runs and save it into CSV file. In that
example we are reading RiskPaths model output table T04_FertilityRatesByAgeGroup values from 3 model runs: "New 123,000 cases", "New 456,000 cases",

"New 789,000 cases" and saving it into T04_FertilityRatesByAgeGroup.csv .

#
Read table values from multiple model runs and save it as TableName.csv
#
If any of library below is not installed then do:
install.packages("jsonlite")
install.packages("httr")
#
library("jsonlite")
library("httr")

Include openM++ helper functions from your $HOME directory
#
source("~/omsCommon.R")

#
Model digest of RiskPaths version 3.0.0.0: "d90e1e9a49a06d972ecf1d50e684c62b"
We MUST use model digest if there are multiple versions of the model published.
We can use model name if only single version of the model is published.
#
md <- "d90e1e9a49a06d972ecf1d50e684c62b"

oms web-service URL from file: ~/oms_url.txt
#
apiUrl <- getOmsApiUrl()

model runs can be identified by digest, by run stamp or by run name
run digest is unique and it preferable way to identify model run
run names are user friendly may not be unique
#
runNames <- c(
 "New 123,000 cases",
 "New 456,000 cases",
 "New 789,000 cases"
)

combine all run results and write it into T04_FertilityRatesByAgeGroup.csv
#
tableName <- "T04_FertilityRatesByAgeGroup"

allCct <- NULL

nRuns <- length(runNames)

for (k in 1:nRuns)
{
 cct <- read.csv(paste0(
 apiUrl, "model/", md, "/run/", URLencode(runNames[k], reserved = TRUE), "/table/", tableName, "/expr/csv"
))
 cct$RunName <- runNames[k]

 allCct <- rbind(allCct, cct)
}

write.csv(allCct, paste0(tableName, ".csv"), row.names = FALSE)

Use R to save output table into CSV file
Use R to save output table into CSV file

R script

http://www.r-project.org/
https://github.com/oncology-outcomes/openmpp

It is a convenient to use GNU R to prepare model parameters and analyze output values. There are two different R APIs which we can use for
openM++ models:

openMpp package: simple and convenient specially for desktop users, upstream and downstream analysis;

oms JSON web-service API: preferable choice to run models on computational clusters and in cloud.

There is also an excelent R package created by Matthew T. Warkentin available at: oncology-outcomes/openmpp.

Below is an example how to use oms JSON web-service to read multiple output table values from multiple model runs and save it into XLSX file:

using RiskPaths demo model

reading model run names and output table names from input Excel file as on screenshots below

for each table retriving output values for all model runs

retrieving model runs metadata: run name, description, notes, date and time

retrieving output tables metadata: name, description and notes

saving each table output values as separate Excel workbook sheet

saving all model runs metadata and tables metadata as separate sheets

Input Excel workbook:

Output Excel workbook:

Use R to save output table into Excel
Use R to save output table into Excel

http://www.r-project.org/
https://github.com/oncology-outcomes/openmpp

R script

#
Read multiple tables from multiple model runs and save it as XLSX file
Also save model runs metadata and tables metadata (name, description, notes) into .csv files
Model run names and table names are coming from another input XLSX file
#
If any of library below is not installed then do:
install.packages("jsonlite")
install.packages("httr")
install.packages("readxl")
install.packages("writexl")
#
library("jsonlite")
library("httr")
library("readxl")
library("writexl")

Include openM++ helper functions from your $HOME directory
#
source("~/omsCommon.R")

#
Model digest of RiskPaths version 3.0.0.0: "d90e1e9a49a06d972ecf1d50e684c62b"
We MUST use model digest if there are multiple versions of the model published.
We can use model name if only single version of the model is published.
#
md <- "d90e1e9a49a06d972ecf1d50e684c62b"

oms web-service URL from file: ~/oms_url.txt
#
apiUrl <- getOmsApiUrl()

model runs can be identified by digest, by run stamp or by run name
run digest is unique and it preferable way to identify model run
run names are user friendly may not be unique
#
read model run names from some XLSX file,
it must have sheet name = "RunNames" with A column "RunNames"
#
rn <- read_xlsx(
 "model-runs-to-read-and-tables-to-read.xlsx",
 sheet = "RunNames",
 col_types = "text"
)

read table names from some XLSX file,
it must have sheet name = "TableNames" with A column "TableNames"
#
tn <- read_xlsx(
 "model-runs-to-read-and-tables-to-read.xlsx",
 sheet = "TableNames",
 col_types = "text"
)

get table information
#
rsp <- GET(paste0(
 apiUrl, "model/", md, "/text"
))
if (http_type(rsp) != 'application/json') {
 stop("Failed to get first model info")
}
jr <- content(rsp)
tTxt <- jr$TableTxt

tableInfo <- data.frame()

for (t in tTxt) {
 for (tbl in tn$TableNames)
 {
 if (t$Table$Name == tbl) {
 ti <- data.frame(
 TableName = tbl,
 TableDescription = t$TableDescr,
 TableNotes = t$TableNote
)
 tableInfo <- rbind(tableInfo, ti)
 break
 }
 }
}

get run information
#
runInfo <- data.frame()

for (run in rn$RunNames)
{

{
 rsp <- GET(paste0(
 apiUrl, "model/", md, "/run/", URLencode(run, reserved = TRUE), "/text"
))
 if (http_type(rsp) != 'application/json') {
 stop("Failed to get first run info of: ", run)
 }
 jr <- content(rsp)
 ri <- data.frame(
 ModelName = jr$ModelName,
 ModelVersion = jr$ModelVersion,
 RunName = jr$Name,
 SubCount = jr$SubCount,
 RunStarted = jr$CreateDateTime,
 RunCompleted = jr$UpdateDateTime,
 RunDescription = "",
 RunNotes = ""
)
 if (length(jr$Txt) > 0) {
 ri$RunDescription <- jr$Txt[[1]]$Descr
 ri$RunNotes <- jr$Txt[[1]]$Note
 }

 runInfo <- rbind(runInfo, ri)
}

for each table do:
combine all run results and write it into some .xlsx file
#

shts <- list(
 RunInfo = runInfo,
 TableInfo = tableInfo
)

for (tbl in tn$TableNames)
{

 allCct <- NULL
 isFirst <- TRUE

 for (run in rn$RunNames)
 {
 cct <- read.csv(paste0(
 apiUrl, "model/", md, "/run/", URLencode(run, reserved = TRUE), "/table/", tbl, "/expr/csv"
))

 # build a pivot table data frame:
 # use first run results to assign all dimensions and measure(s)
 # from all subsequent model run bind only expr_value column
 if (isFirst) {
 allCct <- rbind(allCct, cct)
 isFirst <- FALSE
 } else {
 cval <- data.frame(expr_value = cct$expr_value)
 allCct <- cbind(allCct, cval)
 }

 # use run name for expression values column name
 names(allCct)[names(allCct) == 'expr_value'] <- run
 }
 shts[[tbl]] <- allCct
}

write_xlsx(shts, paste0("output-tables-data.xlsx"))

It is a convenient to use GNU R to prepare model parameters and analyze output values. There are two different R APIs which we can use for
openM++ models:

openMpp package: simple and convenient specially for desktop users, upstream and downstream analysis;

oms JSON web-service API: preferable choice to run models on computational clusters and in cloud.

There is also an excelent R package created by Matthew T. Warkentin available at: oncology-outcomes/openmpp.

Below is an example how to run model in cloud and save results in CSV file using oms JSON web-service. There is a similar example how to run
model on desktop and do simple loop over parameter using openMpp R package.

Following R example is running very complex OncoSimX-lung model to change only LcScreenSmokingDurationCriteria parameter:

smokingDuration <- seq(from = 1, by = 2, length.out = 4)

To reduce model run time we are calculating only 2 output tables: Lung_Cancer_Rates_AgeStandard_Table and Lung_Cancer_Cases_Table and also using
only 6000 simulation cases. Also we do merge Lung_Cancer_Cases_Table rows from all model runs and saving it into Lung_Cancer_Cases_Table.csv

#
Use R to run OncoSimX-lung version 3.6.1.5
loop over LcScreenSmokingDurationCriteria parameter
to output tables: Lung_Cancer_Rates_AgeStandard_Table and Lung_Cancer_Cases_Table
#

If jsonlite or httr is not installed then do:
install.packages("jsonlite")
install.packages("httr")
#
library("jsonlite")

Run model from R: simple loop in cloud
OpenM++ integration with R: run model and save results in CSV file

R script

http://www.r-project.org/
https://github.com/oncology-outcomes/openmpp

library("httr")

Include openM++ helper functions from your $HOME directory
on Windows HOME directory is: "C:\Users\User Name Here\Documents"
#
if you don't have omsCommon.R then download it from https://github.com/openmpp/R/oms-R
if you have omsCommon.R in some other location then update path below
#
source("~/omsCommon.R")

#
Model digest of OncoSimX-lung version 3.6.1.5: "eeb246bd7d3bdb64d3e7aaefeaa828ea"
#
md <- "eeb246bd7d3bdb64d3e7aaefeaa828ea"

oms web-service URL from file: ~/oms_url.txt
#
apiUrl <- getOmsApiUrl()

Find first model run to use it as our base run
#
rsp <- GET(paste0(
 apiUrl, "model/", md, "/run/status/first"
))
if (http_type(rsp) != 'application/json') {
 stop("Failed to get first run status")
}
jr <- content(rsp)
firstRunDigest <- jr$RunDigest

Use openM++ oms web-service to run the model 4 times with 6000 simulation cases
and different values of LcScreenSmokingDurationCriteria parameter:
#
OncoSimX-lung_mpi -Parameter.SimulationCases 6000 -Parameter.LcScreenSmokingDurationCriteria 1
OncoSimX-lung_mpi -Parameter.SimulationCases 6000 -Parameter.LcScreenSmokingDurationCriteria 3
.... and 2 more Smoking Duration values
#
It is a sequential run, not parallel.
#
Running 4 OncoSimX-lung_mpi instances: "root" leader process and 3 computational processes
each computational process using modelling 4 threads
root process does only database operations and coordinate child workoload.
#
nRuns <- 4
smokingDuration <- seq(from = 1, by = 2, length.out = nRuns)

runDigests <- rep('', nRuns) # model run digests, unique
runNames <- rep('', nRuns) # model run names, may be not unique

for (k in 1:nRuns)
{
 print(c("Smoking Duration:", smokingDuration[k]))

 rn <- paste0("Smoking_Duration_", toString(smokingDuration[k]))
 runNames[k] <- rn
 # use explicit model run stamp to avoid compatibility issues between cloud model run queue and desktop MPI
 stamp <- sub('.' , '_', fixed = TRUE, format(Sys.time(),"%Y_%m_%d_%H_%M_%OS3"))

 # prepare model run options
 pd <- list(
 ModelDigest = md,
 Mpi = list(
 Np = 4, # MPI cluster: run 4 processes: 3 for model and rott process
 IsNotOnRoot = TRUE # MPI cluster: do not use root process for modelling
),
 Template = "mpi.OncoSimX.template.txt", # MPI cluster: model run template
 Opts = list(
 Parameter.LcScreenSmokingDurationCriteria = toString(smokingDuration[k]),
 Parameter.SimulationCases = "6000", # use only 6000 simulation cases for quick test
 OpenM.BaseRunDigest = firstRunDigest, # base run to get the rest of input parameters
 OpenM.SubValues = "12", # use 12 sub-values (sub-samples)
 OpenM.Threads = "4", # use 4 modeling threads
 OpenM.RunStamp = stamp, # use explicit run stamp
 # run name and description in English
 OpenM.RunName = rn,
 EN.RunDescription = paste("Smoking Duration", toString(smokingDuration[k]), "years")
),
 Tables = list("Lung_Cancer_Rates_AgeStandard_Table", "Lung_Cancer_Cases_Table")
)
 jv <- toJSON(pd, pretty = TRUE, auto_unbox = TRUE)

 # submit request to web-service to run the model
 rsp <- POST(paste0(
 apiUrl, "run"
),
 body = jv,
 content_type_json()
)

)
 if (http_type(rsp) != 'application/json') {
 stop("Failed to run the model")
 }
 jr <- content(rsp)
 submitStamp <- jr$SubmitStamp # model run submission stamp: not empty if model run submitted to run on cluster
 runStamp <- jr$RunStamp # model run stamp: not empty if model run started

 # wait until model run completed
 runDigests[k] <- waitForRunCompleted(stamp, apiUrl, md)
}

combine all run results into Lung_Cancer_Cases_Table.csv
#
print("All model runs completed, retrive output values...")

allCct <- NULL

for (k in 1:nRuns)
{
 cct <- read.csv(paste0(
 apiUrl, "model/", md, "/run/", runDigests[k], "/table/Lung_Cancer_Cases_Table/expr/csv"
))
 cct$RunName <- runNames[k]

 allCct <- rbind(allCct, cct)
}

write.csv(allCct, "Lung_Cancer_Cases_Table.csv", row.names = FALSE)

It is a convenient to use GNU R to prepare model parameters and analyze output values. There are two different R APIs which we can use for
openM++ models:

openMpp package: simple and convenient specially for desktop users, upstream and downstream analysis;

oms JSON web-service API: preferable choice to run models on computational clusters and in cloud.

There is also an excelent R package created by Matthew T. Warkentin available at: oncology-outcomes/openmpp.

Below is an example of oms JSON web-service usage to run RiskPaths model on cloud grid from RStudio in cloud. There is an identical example
to:

run RiskPaths model in cloud from local PC Rstudio

run RiskPaths model on desktop using openMpp package.

Following R example is running "RiskPaths" model to analyze childlessness by varying two parameters:

Age baseline for first union formation

Relative risks of union status on first pregnancy by following scale factor:

scaleValues <- seq(from = 0.44, to = 1.00, by = 0.08)

Please keep in mind, scaling above result in 64 runs of RiskPaths model, to reduce waiting time we are using only 1024 simulation cases in
script below.

#
R integration example using RiskPaths model
to analyze contribution of delayed union formations
versus decreased fertility on childlessness

Run RiskPaths model from R: advanced run in cloud
OpenM++ integration with R: run RiskPaths model on cloud grid

R script

http://www.r-project.org/
https://github.com/oncology-outcomes/openmpp

versus decreased fertility on childlessness
#
Prerequisite:
#
download openM++ release from https://github.com/openmpp/main/releases/latest
unpack it into any directory
start oms web-service:
Windows:
cd C:\my-openmpp-release
bin\ompp_ui.bat
Linux:
cd ~/my-openmpp-release
bin/oms
#
Script below is using openM++ web-service "oms"
to run the model, modify parameters and read output values.
#

If jsonlite or httr is not installed then do:
install.packages("jsonlite")
install.packages("httr")
#
library("jsonlite")
library("httr")

Include openM++ helper functions from your $HOME directory
on Windows HOME directory is: "C:\Users\User Name Here\Documents"
#
if you don't have omsCommon.R then download it from https://github.com/openmpp/R/oms-R
if you have omsCommon.R in some other location then update path below
#
source("~/omsCommon.R")

#
Using RiskPaths model
to analyze contribution of delayed union formations
versus decreased fertility on childlessness
#
Input parameters:
AgeBaselineForm1: age baseline for first union formation
UnionStatusPreg1: relative risks of union status on first pregnancy
Output value:
T05_CohortFertility: Cohort fertility, expression 1
#

Model name: RiskPaths
#
If you have multiple versions of the model with the same name
then instead of:
ModelName = "RiskPaths"
use model digest to identify specific model version, for example:
ModelDigest = "d90e1e9a49a06d972ecf1d50e684c62b"
#
md <- "RiskPaths"

oms web-service URL, it can be hard-coded, for example: "http://localhost:4040/api/"
#
apiUrl <- getOmsApiUrl()

Find first model run to use it as our base run
#
Parameters AgeBaselineForm1 and UnionStatusPreg1 are varied by this script
and the rest of parameters we are getting from base model run
#
rsp <- GET(paste0(
 apiUrl, "model/", md, "/run/status/first"
))
if (http_type(rsp) != 'application/json') {
 stop("Failed to get first run status")
}
jr <- content(rsp)
firstRunDigest <- jr$RunDigest

get initial values for AgeBaselineForm1 and UnionStatusPreg1 parameters
by reading it from first model run results
#
rsp <- GET(paste0(
 apiUrl, "model/", md, "/run/", firstRunDigest, "/parameter/AgeBaselineForm1/value/start/0/count/0"
))
if (http_type(rsp) != 'application/json') {
 stop("Failed to get parameter AgeBaselineForm1")
}
ageFirstUnion <- content(rsp)

rsp <- GET(paste0(
 apiUrl, "model/", md, "/run/", firstRunDigest, "/parameter/UnionStatusPreg1/value/start/0/count/0"
))
if (http_type(rsp) != 'application/json') {

 stop("Failed to get parameter UnionStatusPreg1")
}
unionStatusPreg <- content(rsp)

Create multiple input scenarios and save all of it as our modelling task:
apply scale in range from 0.44 to 1.0
to AgeBaselineForm1 and UnionStatusPreg1 parameters
#
scaleStep <- 0.08 # do 64 model runs
scaleStep <- 0.5 # use this for quick test
#
scaleStep <- 0.08
scaleValues <- seq(from = 0.44, to = 1.00, by = scaleStep)

nameLst <- c() # input scenario names, automatically generated

for (scaleAgeBy in scaleValues)
{
 print(c("Scale age: ", scaleAgeBy))

 ag <- ageFirstUnion
 for (k in 1:length(ag))
 {
 ag[[k]]$Value <- ageFirstUnion[[k]]$Value * scaleAgeBy
 }

 for (scaleUnionBy in scaleValues)
 {
 un <- unionStatusPreg
 un[[1]]$Value <- un[[1]]$Value * scaleUnionBy # change only first two values
 un[[2]]$Value <- un[[2]]$Value * scaleUnionBy # of UnionStatusPreg1 parameter

 # create new input scenario
 # automatically generate unique names for each input scenario
 #
 pd <- list(
 ModelName = md,
 Name = "",
 BaseRunDigest = firstRunDigest,
 IsReadonly = TRUE,
 Txt = list(
 list(LangCode = "EN", Descr = paste("Scale age:", scaleAgeBy, ", union status", scaleUnionBy)),
 list(LangCode = "FR", Descr = paste("Échelle d'âge:", scaleAgeBy, ", statut syndical", scaleUnionBy))
),
 Param = list(
 list(
 Name = "AgeBaselineForm1",
 SubCount = 1,
 Value = ag,
 Txt = list(
 list(LangCode = "FR", Note = paste("Mettre à l'échelle l'âge par:", scaleAgeBy))
)
),
 list(
 Name = "UnionStatusPreg1",
 SubCount = 1,
 Value = un,
 Txt = list(
 list(LangCode = "EN", Note = paste("Scale union status by:", scaleAgeBy))
)
)
)
)
 jv <- toJSON(pd, pretty = TRUE, auto_unbox = TRUE)

 # create input scenario by submitting request to oms web-service
 rsp <- PUT(paste0(
 apiUrl, "workset-create"
),
 body = jv,
 content_type_json()
)
 if (http_type(rsp) != 'application/json') {
 stop("Failed to create input set")
 }
 jr <- content(rsp)
 sn <- jr$Name # name of new input scenario generated by oms web-service

 if (is.na(sn) || sn == "") stop("Fail to create input set, scales:", scaleAgeBy, scaleUnionBy)

 nameLst <- c(nameLst, sn)
 }
}

Create modeling task from all input sets
automatically generate unique name for the task
#
inpLen <- length(nameLst)

inpLen <- length(nameLst)

print(paste("Create task from", inpLen, "input scenarios"))

pd <- list(
 ModelName = md,
 Name = "",
 Set = nameLst,
 Txt = list(
 list(
 LangCode = "EN",
 Descr = paste("Task to run RiskPaths", inpLen, "times"),
 Note = paste("Task scales AgeBaselineForm1 and UnionStatusPreg1 parameters from 0.44 to 1.00 with step", scaleStep)
)
)
)
jv <- toJSON(pd, pretty = TRUE, auto_unbox = TRUE)

create task by submitting request to oms web-service
rsp <- PUT(paste0(
 apiUrl, "task-new"
),
 body = jv,
 content_type_json()
)
if (http_type(rsp) != 'application/json') {
 stop("Failed to create modeling task")
}
jr <- content(rsp)
taskName <- jr$Name # name of new task generated by oms web-service

if (is.na(taskName) || taskName == "") stop("Fail to create modeling task")

#
Run RiskPaths with modeling task and wait until task is completed
It is a sequential run, not parallel.
#
Running 4 RiskPaths_mpi instances: "root" leader process and 3 computational processes
each computational process using modelling 4 threads
root process does only database operations and coordinate child workoload.
#
print(paste("Starting modeling task:", taskName))

use explicit model run stamp to avoid compatibility issues between cloud model run queue and desktop MPI
stamp <- sub('.' , '_', fixed = TRUE, format(Sys.time(),"%Y_%m_%d_%H_%M_%OS3"))

prepare model run options
pd <- list(
 ModelDigest = md,
 Mpi = list(
 Np = 5, # MPI cluster: run 5 processes: 4 for model and rott process
 IsNotOnRoot = TRUE # MPI cluster: do not use root process for modelling
),
 Template = "mpi.RiskPaths.template.txt", # MPI cluster: model run tempate
 Opts = list(
 OpenM.TaskName = taskName,
 OpenM.RunStamp = stamp, # use explicit run stamp
 Parameter.SimulationCases = "1024", # use 1024 simulation cases to get quick results
 OpenM.BaseRunDigest = firstRunDigest, # base run to get the rest of input parameters
 OpenM.SubValues = "16", # use 16 sub-values (sub-samples)
 OpenM.Threads = "4", # use 4 modeling threads
 OpenM.ProgressPercent = "100" # reduce amount of progress messages in the log file
)
)
jv <- toJSON(pd, pretty = TRUE, auto_unbox = TRUE)

run modeling task
rsp <- POST(paste0(
 apiUrl, "run"
),
 body = jv,
 content_type_json()
)
if (http_type(rsp) != 'application/json') {
 stop("Failed to run the model")
}
jr <- content(rsp)

submitStamp <- jr$SubmitStamp # model run submission stamp: not empty if model run submitted to run queue
runStamp <- jr$RunStamp # model run stamp: by default empty until model run not started

wait until task completed
runDigests <- waitForTaskCompleted(taskName, stamp, apiUrl, md)

#
get results of task run, cohort fertility: T05_CohortFertility.Expr1
#
pd <- list(

pd <- list(
 Name = "T05_CohortFertility",
 ValueName = "Expr1",
 Size = 0 # read all rows of T05_CohortFertility.Expr1
)
jv <- toJSON(pd, pretty = TRUE, auto_unbox = TRUE)

scaleLen <- length(scaleValues)
childlessnessMat <- matrix(data = NA, nrow = scaleLen, ncol = scaleLen, byrow = TRUE)

runIdx <- 1
for (k in 1:scaleLen)
{
 for (j in 1:scaleLen)
 {
 # for each run digest get T05_CohortFertility.Expr1 value
 #
 rsp <- POST(paste0(
 apiUrl, "model/", md, "/run/", runDigests[runIdx], "/table/value"
),
 body = jv,
 content_type_json()
)
 if (http_type(rsp) != 'application/json') {
 stop("Failed to get T05_CohortFertility.Expr1")
 }
 jt <- content(rsp, type = "text", encoding = "UTF-8")
 cf <- fromJSON(jt, flatten = TRUE)

 # value is not NULL then use it else keep default NA
 if (!cf$Page$IsNull)
 {
 childlessnessMat[k, j] = cf$Page$Value
 }
 runIdx <- runIdx + 1
 }
}

#
display the results
#
persp(
 x = scaleValues,
 y = scaleValues,
 z = childlessnessMat,
 zlim = range(childlessnessMat, na.rm = TRUE),
 xlab = "Decreased union formation",
 ylab = "Decreased fertility",
 zlab = "Childlessness",
 theta = 30, phi = 30, expand = 0.5, ticktype = "detailed",
 col = "lightgreen",
 cex.axis = 0.7
)

It is a convenient to use GNU R to prepare model parameters and analyze output values. There are two different R APIs which we can use for
openM++ models:

openMpp package: simple and convenient specially for desktop users, upstream and downstream analysis;

oms JSON web-service API: preferable choice to run models on computational clusters and in cloud.

There is also an excelent R package created by Matthew T. Warkentin available at: oncology-outcomes/openmpp.

Below is an example of oms JSON web-service usage to run RiskPaths model on cloud grid from your local PC RStudio. There is an identical
example to:

run RiskPaths model in cloud

run RiskPaths model on desktop using openMpp package.

Following R example is running "RiskPaths" model to analyze childlessness by varying two parameters:

Age baseline for first union formation

Relative risks of union status on first pregnancy by following scale factor:

scaleValues <- seq(from = 0.44, to = 1.00, by = 0.08)

Please keep in mind, scaling above result in 64 runs of RiskPaths model, to reduce waiting time we are using only 1024 simulation cases in
script below.

Prerequisite Following environmemnt variables are required:

OM_CLOUD_URL=https://your-user.cloud.org
OM_CLOUD_USER=your-login-name
OM_CLOUD_PWD=your-secret-password

If there are no any other options avaliable then you can store above values in .Renviron file in your HOME directory. On Windows HOME directory
is: "C:\Users\User Name Here\Documents". Important Security Warning: .Renviron file is NOT a safe place to strore login information. Contact
your IT security team for better solution.

Run RiskPaths model in cloud from local PC
OpenM++ integration with R: use local PC RStudio to run RiskPaths model on cloud grid

http://www.r-project.org/
https://github.com/oncology-outcomes/openmpp

Important: Clear console and clear history after checking your login name and password.

#
R integration example using RiskPaths model
to analyze contribution of delayed union formations
versus decreased fertility on childlessness
#
Cloud model run from local user PC
#
Prerequisite:
#
1.
Cloud user account:
Following environmemnt variables are required:
OM_CLOUD_URL - cloud URL, e.g.: https://model.openmpp.org
OM_CLOUD_USER - user login name, e.g.: demo
OM_CLOUD_PWD - login password, e.g.: my-secret-password
#
You can use .Renviron file to define it if there are no any other options avaliable.
!!! Security warning:
.Renviron file is not the safe place to store passwords
#
Script below is using openM++ web-service "oms" in cloud
to run the model, modify parameters and read output values.
#
2.
omsCommon.R file which contains helper functions.
#
Place it in your $HOME directory
on Windows HOME directory is: "C:\Users\User Name Here\Documents"
#
if you don't have omsCommon.R then download it from https://github.com/openmpp/R/oms-R
if you have omsCommon.R in some other location then update path below

If jsonlite or httr is not installed then do:
install.packages("jsonlite")
install.packages("httr")
#
library("jsonlite")
library("httr")

Include openM++ helper functions from your $HOME directory
#
source("~/omsCommon.R")

login to cloud workspace
#
lg <- loginToOpenmCloud()
apiUrl <- lg$apiUrl
loginToken <- lg$loginToken

#
Using RiskPaths model
to analyze contribution of delayed union formations
versus decreased fertility on childlessness
#
Input parameters:
AgeBaselineForm1: age baseline for first union formation
UnionStatusPreg1: relative risks of union status on first pregnancy
Output value:
T05_CohortFertility: Cohort fertility, expression 1
#

Model name: RiskPaths
#
If you have multiple versions of the model with the same name
then instead of:
ModelName = "RiskPaths"
use model digest to identify specific model version, for example:
ModelDigest = "d90e1e9a49a06d972ecf1d50e684c62b"

R script

ModelDigest = "d90e1e9a49a06d972ecf1d50e684c62b"
#
md <- "RiskPaths"

Find first model run to use it as our base run
#
Parameters AgeBaselineForm1 and UnionStatusPreg1 are varied by this script
and the rest of parameters we are getting from base model run
#
rsp <- GET(
 paste0(
 apiUrl, "model/", md, "/run/status/first"
),
 set_cookies(jwt_token = loginToken)
)
if (http_type(rsp) != 'application/json') {
 stop("Failed to get first run status")
}
jr <- content(rsp)
firstRunDigest <- jr$RunDigest

get initial values for AgeBaselineForm1 and UnionStatusPreg1 parameters
by reading it from first model run results
#
rsp <- GET(
 paste0(
 apiUrl, "model/", md, "/run/", firstRunDigest, "/parameter/AgeBaselineForm1/value/start/0/count/0"
),
 set_cookies(jwt_token = loginToken)
)
if (http_type(rsp) != 'application/json') {
 stop("Failed to get parameter AgeBaselineForm1")
}
ageFirstUnion <- content(rsp)

rsp <- GET(
 paste0(
 apiUrl, "model/", md, "/run/", firstRunDigest, "/parameter/UnionStatusPreg1/value/start/0/count/0"
),
 set_cookies(jwt_token = loginToken)
)
if (http_type(rsp) != 'application/json') {
 stop("Failed to get parameter UnionStatusPreg1")
}
unionStatusPreg <- content(rsp)

Create multiple input scenarios and save all of it as our modelling task:
apply scale in range from 0.44 to 1.0
to AgeBaselineForm1 and UnionStatusPreg1 parameters
#
scaleStep <- 0.08 # do 64 model runs
scaleStep <- 0.5 # use this for quick test
#
scaleStep <- 0.08
scaleValues <- seq(from = 0.44, to = 1.00, by = scaleStep)

nameLst <- c() # input scenario names, automatically generated

for (scaleAgeBy in scaleValues)
{
 print(c("Scale age: ", scaleAgeBy))

 ag <- ageFirstUnion
 for (k in 1:length(ag))
 {
 ag[[k]]$Value <- ageFirstUnion[[k]]$Value * scaleAgeBy
 }

 for (scaleUnionBy in scaleValues)
 {
 un <- unionStatusPreg
 un[[1]]$Value <- un[[1]]$Value * scaleUnionBy # change only first two values
 un[[2]]$Value <- un[[2]]$Value * scaleUnionBy # of UnionStatusPreg1 parameter

 # create new input scenario
 # automatically generate unique names for each input scenario
 #
 pd <- list(
 ModelName = md,
 Name = "",
 BaseRunDigest = firstRunDigest,
 IsReadonly = TRUE,
 Txt = list(
 list(LangCode = "EN", Descr = paste("Scale age:", scaleAgeBy, ", union status", scaleUnionBy)),
 list(LangCode = "FR", Descr = paste("Échelle d'âge:", scaleAgeBy, ", statut syndical", scaleUnionBy))
),
 Param = list(
 list(

 list(
 Name = "AgeBaselineForm1",
 SubCount = 1,
 Value = ag,
 Txt = list(
 list(LangCode = "FR", Note = paste("Mettre à l'échelle l'âge par:", scaleAgeBy))
)
),
 list(
 Name = "UnionStatusPreg1",
 SubCount = 1,
 Value = un,
 Txt = list(
 list(LangCode = "EN", Note = paste("Scale union status by:", scaleAgeBy))
)
)
)
)
 jv <- toJSON(pd, pretty = TRUE, auto_unbox = TRUE)

 # create input scenario by submitting request to oms web-service
 rsp <- PUT(
 paste0(
 apiUrl, "workset-create"
),
 body = jv,
 content_type_json(),
 set_cookies(jwt_token = loginToken)
)
 if (http_type(rsp) != 'application/json') {
 stop("Failed to create input set")
 }
 jr <- content(rsp)
 sn <- jr$Name # name of new input scenario generated by oms web-service

 if (is.na(sn) || sn == "") stop("Fail to create input set, scales:", scaleAgeBy, scaleUnionBy)

 nameLst <- c(nameLst, sn)
 }
}

Create modeling task from all input sets
automatically generate unique name for the task
#
inpLen <- length(nameLst)

print(paste("Create task from", inpLen, "input scenarios"))

pd <- list(
 ModelName = md,
 Name = "",
 Set = nameLst,
 Txt = list(
 list(
 LangCode = "EN",
 Descr = paste("Task to run RiskPaths", inpLen, "times"),
 Note = paste("Task scales AgeBaselineForm1 and UnionStatusPreg1 parameters from 0.44 to 1.00 with step", scaleStep)
)
)
)
jv <- toJSON(pd, pretty = TRUE, auto_unbox = TRUE)

create task by submitting request to oms web-service
rsp <- PUT(
 paste0(
 apiUrl, "task-new"
),
 body = jv,
 content_type_json(),
 set_cookies(jwt_token = loginToken)
)
if (http_type(rsp) != 'application/json') {
 stop("Failed to create modeling task")
}
jr <- content(rsp)
taskName <- jr$Name # name of new task generated by oms web-service

if (is.na(taskName) || taskName == "") stop("Fail to create modeling task")

#
Run RiskPaths with modeling task and wait until task is completed
It is a sequential run, not parallel.
#
Running 4 RiskPaths_mpi instances: "root" leader process and 3 computational processes
each computational process using modelling 4 threads
root process does only database operations and coordinate child workoload.
#

#
print(paste("Starting modeling task:", taskName))

use explicit model run stamp to avoid compatibility issues between cloud model run queue and desktop MPI
stamp <- sub('.' , '_', fixed = TRUE, format(Sys.time(),"%Y_%m_%d_%H_%M_%OS3"))

prepare model run options
pd <- list(
 ModelDigest = md,
 Mpi = list(
 Np = 5, # MPI cluster: run 5 processes: 4 for model and rott process
 IsNotOnRoot = TRUE # MPI cluster: do not use root process for modelling
),
 Template = "mpi.RiskPaths.template.txt", # MPI cluster: model run tempate
 Opts = list(
 OpenM.TaskName = taskName,
 OpenM.RunStamp = stamp, # use explicit run stamp
 Parameter.SimulationCases = "1024", # use 1024 simulation cases to get quick results
 OpenM.BaseRunDigest = firstRunDigest, # base run to get the rest of input parameters
 OpenM.SubValues = "16", # use 16 sub-values (sub-samples)
 OpenM.Threads = "4", # use 4 modeling threads
 OpenM.ProgressPercent = "100" # reduce amount of progress messages in the log file
)
)
jv <- toJSON(pd, pretty = TRUE, auto_unbox = TRUE)

run modeling task
rsp <- POST(
 paste0(
 apiUrl, "run"
),
 body = jv,
 content_type_json(),
 set_cookies(jwt_token = loginToken)
)
if (http_type(rsp) != 'application/json') {
 stop("Failed to run the model")
}
jr <- content(rsp)

submitStamp <- jr$SubmitStamp # model run submission stamp: not empty if model run submitted to run queue
runStamp <- jr$RunStamp # model run stamp: by default empty until model run not started

wait until task completed
runDigests <- waitForTaskCompleted(taskName, stamp, apiUrl, md, loginToken)

#
get results of task run, cohort fertility: T05_CohortFertility.Expr1
#
pd <- list(
 Name = "T05_CohortFertility",
 ValueName = "Expr1",
 Size = 0 # read all rows of T05_CohortFertility.Expr1
)
jv <- toJSON(pd, pretty = TRUE, auto_unbox = TRUE)

scaleLen <- length(scaleValues)
childlessnessMat <- matrix(data = NA, nrow = scaleLen, ncol = scaleLen, byrow = TRUE)

runIdx <- 1
for (k in 1:scaleLen)
{
 for (j in 1:scaleLen)
 {
 # for each run digest get T05_CohortFertility.Expr1 value
 #
 rsp <- POST(
 paste0(
 apiUrl, "model/", md, "/run/", runDigests[runIdx], "/table/value"
),
 body = jv,
 content_type_json(),
 set_cookies(jwt_token = loginToken)
)
 if (http_type(rsp) != 'application/json') {
 stop("Failed to get T05_CohortFertility.Expr1")
 }
 jt <- content(rsp, type = "text", encoding = "UTF-8")
 cf <- fromJSON(jt, flatten = TRUE)

 # value is not NULL then use it else keep default NA
 if (!cf$Page$IsNull)
 {
 childlessnessMat[k, j] = cf$Page$Value
 }
 runIdx <- runIdx + 1
 }
}

#
display the results
#
persp(
 x = scaleValues,
 y = scaleValues,
 z = childlessnessMat,
 zlim = range(childlessnessMat, na.rm = TRUE),
 xlab = "Decreased union formation",
 ylab = "Decreased fertility",
 zlab = "Childlessness",
 theta = 30, phi = 30, expand = 0.5, ticktype = "detailed",
 col = "lightgreen",
 cex.axis = 0.7
)

Cleanup:
delete modelling task
delete all input scenarios

print(paste("Delete", taskName))

rsp <- DELETE(
 paste0(
 apiUrl, "model/", md, "/task/", taskName
),
 set_cookies(jwt_token = loginToken)
)
stop_for_status(rsp, "delete modelling task")

for (sn in nameLst)
{
 print(paste("Delete", sn))

 rsp <- POST(
 paste0(
 apiUrl, "model/", md, "/workset/", sn, "/readonly/false"
),
 set_cookies(jwt_token = loginToken)
)
 stop_for_status(rsp, paste("update read-only status of input set", sn))

 rsp <- DELETE(
 paste0(
 apiUrl, "model/", md, "/workset/", sn
),
 set_cookies(jwt_token = loginToken)
)
 stop_for_status(rsp, paste("delete input set", sn))
}

It is a convenient to use GNU R to prepare model parameters and analyze output values. There are two different R APIs which we can use for
openM++ models:

openMpp package: simple and convenient specially for desktop users, upstream and downstream analysis;

oms JSON web-service API: preferable choice to run models on computational clusters and in cloud.

There is also an excelent R package created by Matthew T. Warkentin available at: oncology-outcomes/openmpp.

Below is an example of oms JSON web-service usage to run RiskPaths model on cloud grid from RStudio in cloud. There is an identical example
to:

run RiskPaths model in cloud from local PC Rstudio

run RiskPaths model on desktop using openMpp package.

Following R example is running "RiskPaths" model to analyze childlessness by varying two parameters:

Age baseline for first union formation

Relative risks of union status on first pregnancy by following scale factor:

scaleValues <- seq(from = 0.44, to = 1.00, by = 0.08)

Please keep in mind, scaling above result in 64 runs of RiskPaths model, to reduce waiting time we are using only 1024 simulation cases in
script below.

#
R integration example using RiskPaths model
to analyze contribution of delayed union formations
versus decreased fertility on childlessness

Run model from R and save results in CSV file
OpenM++ integration with R: run RiskPaths model on cloud grid

R script

http://www.r-project.org/
https://github.com/oncology-outcomes/openmpp

versus decreased fertility on childlessness
#
Prerequisite:
#
download openM++ release from https://github.com/openmpp/main/releases/latest
unpack it into any directory
start oms web-service:
Windows:
cd C:\my-openmpp-release
bin\ompp_ui.bat
Linux:
cd ~/my-openmpp-release
bin/oms
#
Script below is using openM++ web-service "oms"
to run the model, modify parameters and read output values.
#

If jsonlite or httr is not installed then do:
install.packages("jsonlite")
install.packages("httr")
#
library("jsonlite")
library("httr")

Include openM++ helper functions from your $HOME directory
on Windows HOME directory is: "C:\Users\User Name Here\Documents"
#
if you don't have omsCommon.R then download it from https://github.com/openmpp/R/oms-R
if you have omsCommon.R in some other location then update path below
#
source("~/omsCommon.R")

#
Using RiskPaths model
to analyze contribution of delayed union formations
versus decreased fertility on childlessness
#
Input parameters:
AgeBaselineForm1: age baseline for first union formation
UnionStatusPreg1: relative risks of union status on first pregnancy
Output value:
T05_CohortFertility: Cohort fertility, expression 1
#

Model name: RiskPaths
#
If you have multiple versions of the model with the same name
then instead of:
ModelName = "RiskPaths"
use model digest to identify specific model version, for example:
ModelDigest = "d90e1e9a49a06d972ecf1d50e684c62b"
#
md <- "RiskPaths"

oms web-service URL, it can be hard-coded, for example: "http://localhost:4040/api/"
#
apiUrl <- getOmsApiUrl()

Find first model run to use it as our base run
#
Parameters AgeBaselineForm1 and UnionStatusPreg1 are varied by this script
and the rest of parameters we are getting from base model run
#
rsp <- GET(paste0(
 apiUrl, "model/", md, "/run/status/first"
))
if (http_type(rsp) != 'application/json') {
 stop("Failed to get first run status")
}
jr <- content(rsp)
firstRunDigest <- jr$RunDigest

get initial values for AgeBaselineForm1 and UnionStatusPreg1 parameters
by reading it from first model run results
#
rsp <- GET(paste0(
 apiUrl, "model/", md, "/run/", firstRunDigest, "/parameter/AgeBaselineForm1/value/start/0/count/0"
))
if (http_type(rsp) != 'application/json') {
 stop("Failed to get parameter AgeBaselineForm1")
}
ageFirstUnion <- content(rsp)

rsp <- GET(paste0(
 apiUrl, "model/", md, "/run/", firstRunDigest, "/parameter/UnionStatusPreg1/value/start/0/count/0"
))
if (http_type(rsp) != 'application/json') {

 stop("Failed to get parameter UnionStatusPreg1")
}
unionStatusPreg <- content(rsp)

Create multiple input scenarios and save all of it as our modelling task:
apply scale in range from 0.44 to 1.0
to AgeBaselineForm1 and UnionStatusPreg1 parameters
#
scaleStep <- 0.08 # do 64 model runs
scaleStep <- 0.5 # use this for quick test
#
scaleStep <- 0.08
scaleValues <- seq(from = 0.44, to = 1.00, by = scaleStep)

nameLst <- c() # input scenario names, automatically generated

for (scaleAgeBy in scaleValues)
{
 print(c("Scale age: ", scaleAgeBy))

 ag <- ageFirstUnion
 for (k in 1:length(ag))
 {
 ag[[k]]$Value <- ageFirstUnion[[k]]$Value * scaleAgeBy
 }

 for (scaleUnionBy in scaleValues)
 {
 un <- unionStatusPreg
 un[[1]]$Value <- un[[1]]$Value * scaleUnionBy # change only first two values
 un[[2]]$Value <- un[[2]]$Value * scaleUnionBy # of UnionStatusPreg1 parameter

 # create new input scenario
 # automatically generate unique names for each input scenario
 #
 pd <- list(
 ModelName = md,
 Name = "",
 BaseRunDigest = firstRunDigest,
 IsReadonly = TRUE,
 Txt = list(
 list(LangCode = "EN", Descr = paste("Scale age:", scaleAgeBy, ", union status", scaleUnionBy)),
 list(LangCode = "FR", Descr = paste("Échelle d'âge:", scaleAgeBy, ", statut syndical", scaleUnionBy))
),
 Param = list(
 list(
 Name = "AgeBaselineForm1",
 SubCount = 1,
 Value = ag,
 Txt = list(
 list(LangCode = "FR", Note = paste("Mettre à l'échelle l'âge par:", scaleAgeBy))
)
),
 list(
 Name = "UnionStatusPreg1",
 SubCount = 1,
 Value = un,
 Txt = list(
 list(LangCode = "EN", Note = paste("Scale union status by:", scaleAgeBy))
)
)
)
)
 jv <- toJSON(pd, pretty = TRUE, auto_unbox = TRUE)

 # create input scenario by submitting request to oms web-service
 rsp <- PUT(paste0(
 apiUrl, "workset-create"
),
 body = jv,
 content_type_json()
)
 if (http_type(rsp) != 'application/json') {
 stop("Failed to create input set")
 }
 jr <- content(rsp)
 sn <- jr$Name # name of new input scenario generated by oms web-service

 if (is.na(sn) || sn == "") stop("Fail to create input set, scales:", scaleAgeBy, scaleUnionBy)

 nameLst <- c(nameLst, sn)
 }
}

Create modeling task from all input sets
automatically generate unique name for the task
#
inpLen <- length(nameLst)

inpLen <- length(nameLst)

print(paste("Create task from", inpLen, "input scenarios"))

pd <- list(
 ModelName = md,
 Name = "",
 Set = nameLst,
 Txt = list(
 list(
 LangCode = "EN",
 Descr = paste("Task to run RiskPaths", inpLen, "times"),
 Note = paste("Task scales AgeBaselineForm1 and UnionStatusPreg1 parameters from 0.44 to 1.00 with step", scaleStep)
)
)
)
jv <- toJSON(pd, pretty = TRUE, auto_unbox = TRUE)

create task by submitting request to oms web-service
rsp <- PUT(paste0(
 apiUrl, "task-new"
),
 body = jv,
 content_type_json()
)
if (http_type(rsp) != 'application/json') {
 stop("Failed to create modeling task")
}
jr <- content(rsp)
taskName <- jr$Name # name of new task generated by oms web-service

if (is.na(taskName) || taskName == "") stop("Fail to create modeling task")

#
Run RiskPaths with modeling task and wait until task is completed
It is a sequential run, not parallel.
#
Running 4 RiskPaths_mpi instances: "root" leader process and 3 computational processes
each computational process using modelling 4 threads
root process does only database operations and coordinate child workoload.
#
print(paste("Starting modeling task:", taskName))

use explicit model run stamp to avoid compatibility issues between cloud model run queue and desktop MPI
stamp <- sub('.' , '_', fixed = TRUE, format(Sys.time(),"%Y_%m_%d_%H_%M_%OS3"))

prepare model run options
pd <- list(
 ModelDigest = md,
 Mpi = list(
 Np = 5, # MPI cluster: run 5 processes: 4 for model and rott process
 IsNotOnRoot = TRUE # MPI cluster: do not use root process for modelling
),
 Template = "mpi.RiskPaths.template.txt", # MPI cluster: model run tempate
 Opts = list(
 OpenM.TaskName = taskName,
 OpenM.RunStamp = stamp, # use explicit run stamp
 Parameter.SimulationCases = "1024", # use 1024 simulation cases to get quick results
 OpenM.BaseRunDigest = firstRunDigest, # base run to get the rest of input parameters
 OpenM.SubValues = "16", # use 16 sub-values (sub-samples)
 OpenM.Threads = "4", # use 4 modeling threads
 OpenM.ProgressPercent = "100" # reduce amount of progress messages in the log file
)
)
jv <- toJSON(pd, pretty = TRUE, auto_unbox = TRUE)

run modeling task
rsp <- POST(paste0(
 apiUrl, "run"
),
 body = jv,
 content_type_json()
)
if (http_type(rsp) != 'application/json') {
 stop("Failed to run the model")
}
jr <- content(rsp)

submitStamp <- jr$SubmitStamp # model run submission stamp: not empty if model run submitted to run queue
runStamp <- jr$RunStamp # model run stamp: by default empty until model run not started

wait until task completed
runDigests <- waitForTaskCompleted(taskName, stamp, apiUrl, md)

#
get results of task run, cohort fertility: T05_CohortFertility.Expr1
#
pd <- list(

pd <- list(
 Name = "T05_CohortFertility",
 ValueName = "Expr1",
 Size = 0 # read all rows of T05_CohortFertility.Expr1
)
jv <- toJSON(pd, pretty = TRUE, auto_unbox = TRUE)

scaleLen <- length(scaleValues)
childlessnessMat <- matrix(data = NA, nrow = scaleLen, ncol = scaleLen, byrow = TRUE)

runIdx <- 1
for (k in 1:scaleLen)
{
 for (j in 1:scaleLen)
 {
 # for each run digest get T05_CohortFertility.Expr1 value
 #
 rsp <- POST(paste0(
 apiUrl, "model/", md, "/run/", runDigests[runIdx], "/table/value"
),
 body = jv,
 content_type_json()
)
 if (http_type(rsp) != 'application/json') {
 stop("Failed to get T05_CohortFertility.Expr1")
 }
 jt <- content(rsp, type = "text", encoding = "UTF-8")
 cf <- fromJSON(jt, flatten = TRUE)

 # value is not NULL then use it else keep default NA
 if (!cf$Page$IsNull)
 {
 childlessnessMat[k, j] = cf$Page$Value
 }
 runIdx <- runIdx + 1
 }
}

#
display the results
#
persp(
 x = scaleValues,
 y = scaleValues,
 z = childlessnessMat,
 zlim = range(childlessnessMat, na.rm = TRUE),
 xlab = "Decreased union formation",
 ylab = "Decreased fertility",
 zlab = "Childlessness",
 theta = 30, phi = 30, expand = 0.5, ticktype = "detailed",
 col = "lightgreen",
 cex.axis = 0.7
)

It is a convenient to use GNU R to prepare model parameters and analyze output values. There are two different R APIs which we can use for
openM++ models:

openMpp package: simple and convenient specially for desktop users, upstream and downstream analysis;

oms JSON web-service API: preferable choice to run models on computational clusters and in cloud.

Below is a simple loop example to run NewCaseBased model on desktop using openMpp R package. There is similar example how to run model
in cloud and save results in CSV file using oms JSON web-service.

OpenM++ provides R package openMpp to simplify access to openM++ database for R developers. To find out more about openMpp R package
please check:

openMpp package documentation

installation ReadMe and source code

There is also an excelent R package created by Matthew T. Warkentin available at: oncology-outcomes/openmpp.

Following R example is running openM++ "NewCaseBased" test model with 16 subsamples using mortality hazard data:

mortalityData <- data.frame(
 value = seq(from = 0.014, by = 0.005, length.out = 20)
)

As result Mortality Hazard increases about eight times in the range of [0.014, 0.109] and we can see eight time decrease of Duration of Life from
initial 72 years down to 9 years.

Run model from R: simple loop over model parameter
OpenM++ integration with R

http://www.r-project.org/
https://openmpp.org/r/html/00Index.html
https://github.com/openmpp/R
https://github.com/oncology-outcomes/openmpp

use openMpp library for openM++ database access
library(DBI)
library("openMpp")
library("RSQLite")

#
R integration example using NewCaseBased model
loop over MortalityHazard parameter
to analyze DurationOfLife
#

##
To run this example please uncomment and/or change values below
to match your hardware and file system environment:
#
model_exe <- path to the model executable, i.e.: "./NewCaseBased" or "NewCaseBased.exe"
model_sqlite <- path to the model.sqlite database: "NewCaseBased.sqlite"
model_args <- optional arguments to control model run, for example:
-OpenM.SubValues 16 <- number of simation members
-OpenM.Threads 4 <- number of computatinal threads
#
For running on a local machine using the working directory in R
#
For the following values to work, you must first set the R Working directory
to the directory containing the NewCaseBased executable and the SQLite database.
In RStudio Session > Set Working Directory > Choose Directory,
then navigate to location, e.g.: /OM_ROOT/models/NewCaseBased/ompp/bin
Alternatively, one may use setwd(), e.g.: setwd("/OM_ROOT/models/NewCaseBased/ompp/bin")
#
model_exe = "./NewCaseBased"

R script

model_exe = "./NewCaseBased"
model_sqlite = "NewCaseBased.sqlite"
model_args = " -OpenM.SubValues 16 -OpenM.Threads 4"
model_args = " " # default: 1 simulation member and 1 thread
#
For running on a local machine using explicit paths
#
model_exe = "/path/to/executable/model/NewCaseBased"
model_sqlite = "/path/to/SQLite/database/NewCaseBased.sqlite"
#
For running on cluster (change to match your cluster)
#
model_exe = "mpiexec"
model_sqlite = "/mirror/NewCaseBased.sqlite"
model_args = "-n 8 /mirror/NewCaseBased -OpenM.SubValues 16 -OpenM.Threads 2"
##

#
NewCaseBased model parameters:
Mortality hazard: double number
Simulation cases: number of simulation cases
Simulation seed: random seed
#
MortalityHazard <- list(

 name = "MortalityHazard", # model parameter name
 value = 0.014, # value of parameter

 txt = data.frame(
 lang = c("EN", "FR"),
 note = c("An arbitrarily selected value, chosen to produce a life expectancy of about 70 years", NA),
 stringsAsFactors = FALSE
)
)

SimulationCases <- list(name = "SimulationCases", value = 5000L)
SimulationSeed <- list(name = "SimulationSeed", value = 16807)

#
name, description and notes for this set of model parameters
#
inputSet <- data.frame(
 name = "LifeVsMortality",
 lang = c("EN", "FR"),
 descr = c("NewCaseBased working set of parameters", "(FR) NewCaseBased working set of parameters"),
 note = c(NA, NA),
 stringsAsFactors = FALSE
)

connect to database and find NewCaseBased model
#
theDb <- dbConnect(RSQLite::SQLite(), model_sqlite, synchronous = "full")
invisible(dbGetQuery(theDb, "PRAGMA busy_timeout = 86400")) # recommended

defRs <- getModel(theDb, "NewCaseBased") # find NewCaseBased model in database

create new working set of model parameters based on existing model run results
#
firstRunId <- getFirstRunId(theDb, defRs)

setId <- createWorksetBasedOnRun(
 theDb, defRs, firstRunId, inputSet,
 MortalityHazard, SimulationCases, SimulationSeed
)
if (setId <= 0L) stop("workset creation failed")

setReadonlyWorkset(theDb, defRs, TRUE, setId) # workset must be read-only to run the model

#
analyze NewCaseBased model varying mortality hazard values
#
mortalityData <- data.frame(
 value = seq(from = 0.014, by = 0.005, length.out = 20)
)

for (mortality in mortalityData$value)
{
 print(c("Mortality hazard: ", mortality))

 system2(
 model_exe,
 paste(
 model_args,
 " -Parameter.MortalityHazard ", mortality,
 " -OpenM.SetId ", setId,
 " -OpenM.LogToConsole false",
 " -OpenM.LogToFile true",

 " -OpenM.ProgressPercent 100",
 sep = ""
)
)
}

#
read final results from database
average duration of life: DurationOfLife.Expr3
#
runIdRs <- getWorksetRunIds(theDb, setId) # get result id's

lifeDurationData <- NULL
for (runId in runIdRs$run_id)
{
 lifeDurationData <- rbind(
 lifeDurationData,
 selectRunOutputValue(theDb, defRs, runId, "DurationOfLife", "Expr3")
)
}

dbDisconnect(theDb) # close database connection

#
display the results
#
plot(
 mortalityData$value,
 lifeDurationData$expr_value,
 type = "o",
 xlab = "Mortality Hazard",
 ylab = "Duration of Life",
 col = "red"
)

It is a convenient to use GNU R to prepare model parameters and analyze output values. There are two different R APIs which we can use for
openM++ models:

openMpp package: simple and convenient specially for desktop users, upstream and downstream analysis;

oms JSON web-service API: preferable choice to run models on computational clusters and in cloud.

Below is an example how to do advanced parameters analysis and run RiskPaths model on desktop using openMpp R package. There is an
identical example to:

run RiskPaths model in cloud

run RiskPaths model in cloud from local PC Rstudio

OpenM++ provides R package openMpp to simplify access to openM++ database for R developers. To find out more about openMpp R package
please check:

openMpp package documentation

installation ReadMe and source code

There is also an excelent R package created by Matthew T. Warkentin available at: oncology-outcomes/openmpp.

Following R example is running "RiskPaths" model to analyze childlessness by varying two parameters:

Age baseline for first union formation

Relative risks of union status on first pregnancy by following scale factor:

scaleValues <- seq(from = 0.44, to = 1.00, by = 0.02)

Please keep in mind, scaling above result in 841 runs of RiskPaths model and task may take long time to be completed. If you want to get
results faster scale values by 0.08 instead of 0.02.

Run RiskPaths model from R: advanced parameters scaling
OpenM++ integration with R: using RiskPaths model

http://www.r-project.org/
https://openmpp.org/r/html/00Index.html
https://github.com/openmpp/R
https://github.com/oncology-outcomes/openmpp

use openMpp library for openM++ database access
library(DBI)
library("openMpp")
library("RSQLite")

#
Using RiskPaths model
to analyze contribution of delayed union formations
versus decreased fertility on childlessness
#
Input parameters:
AgeBaselineForm1: age baseline for first union formation
UnionStatusPreg1: relative risks of union status on first pregnancy
Output value:
T05_CohortFertility: Cohort fertility, expression 1
#

##
To run this example please uncomment and/or change values below
to match your hardware and file system environment:
#
model_exe <- path to the model executable, i.e.: "./RiskPaths" or "RiskPaths.exe"
model_sqlite <- path to the model.sqlite database: "RiskPaths.sqlite"
model_args <- optional arguments to control model run, for example:
-OpenM.SubValues 8 <- number of simation members
-OpenM.Threads 4 <- number of computatinal threads
#
For running on a local machine using the working directory in R
#
For the following values to work, you must first set the R Working directory
to the directory containing the RiskPaths executable and the SQLite database.
In RStudio Session > Set Working Directory > Choose Directory,
then navigate to location, e.g.: /OM_ROOT/models/RiskPaths/ompp/bin

R script

then navigate to location, e.g.: /OM_ROOT/models/RiskPaths/ompp/bin
Alternatively, one may use setwd(), e.g.: setwd("/OM_ROOT/models/RiskPaths/ompp/bin")
#
model_exe = "./RiskPaths"
model_sqlite = "RiskPaths.sqlite"
model_args = " " # default: 1 simulation member and 1 thread
model_args = " -OpenM.SubValues 8 -OpenM.Threads 4"
#
For running on a local machine using explicit paths
#
model_exe = "/path/to/executable/model/RiskPaths"
model_sqlite = "/path/to/SQLite/database/RiskPaths.sqlite"
#
For running on cluster (change to match your cluster)
#
model_exe = "mpiexec"
model_sqlite = "/mirror/RiskPaths.sqlite"
model_args = "-n 8 /mirror/RiskPaths -OpenM.SubValues 16 -OpenM.Threads 2"
##

connect to database to model databes
#
theDb <- dbConnect(RSQLite::SQLite(), model_sqlite, synchronous = "full")
invisible(dbGetQuery(theDb, "PRAGMA busy_timeout = 86400")) # recommended

find RiskPaths model in database and get model dictionaries ("modelDic", "typeDic", etc...)
defRs <- getModel(theDb, "RiskPaths")

#
create a copy of default model parameters
#
baseRunId <- getFirstRunId(theDb, defRs)
if (baseRunId <= 0)
 stop("no run results found for the model ", defRs$modelDic$model_name, " ", defRs$modelDic$model_digest)

#
get default values for AgeBaselineForm1 and UnionStatusPreg1 parameters
by reading it from first model run results
assuming first run of the model done with default set of parameters
#
ageFirstUnionRs <- selectRunParameter(theDb, defRs, baseRunId, "AgeBaselineForm1")
unionStatusPregRs <- selectRunParameter(theDb, defRs, baseRunId, "UnionStatusPreg1")

#
create modeling task with
all input parameters same as model default except of
AgeBaselineForm1, UnionStatusPreg1 and SimulationCases parameters
#
casesParam <- list(name = "SimulationCases", value = 1000L) # number of simulation cases

taskTxt <- data.frame(# name (auto generated), description and notes for the task
 name = NA,
 lang = "EN",
 descr = "Analyzing childlessness",
 note = NA,
 stringsAsFactors = FALSE
)

taskId <- createTask(theDb, defRs, taskTxt)
if (taskId <= 0L) stop("task creation failed: ", defRs$modelDic$model_name, " ", defRs$modelDic$model_digest)

parameters scale
#
scaleValues <- seq(from = 0.50, to = 1.00, by = 0.50) # tiny set of runs for quick test
#
scaleValues <- seq(from = 0.44, to = 1.00, by = 0.02)

UnionStatusMultipler = rep(1, length(unionStatusPregRs$param_value)) # vector of 1's

for (scAgeBy in scaleValues)
{
 print(c("Scale age: ", scAgeBy))

 for (scUnionBy in scaleValues)
 {
 ageParam <- list(name = "AgeBaselineForm1", value = ageFirstUnionRs$param_value * scAgeBy)

 UnionStatusMultipler[1:2] = scUnionBy # scale first two values of parameter vector
 unionParam <- list(name = "UnionStatusPreg1", value = unionStatusPregRs$param_value * UnionStatusMultipler)

 # Append new working set of parameters into the task. A corresponding setId is generated.
 setId <- createWorksetBasedOnRun(theDb, defRs, baseRunId, NA, ageParam, unionParam, casesParam)
 setReadonlyWorkset(theDb, defRs, TRUE, setId)

 taskId <- updateTask(theDb, defRs, taskId, setIds = setId)
 }
}

#
run the model on cluster or local desktop
consult your cluster admin on how to use computational grid
print(paste("Run the model:", model_exe, "...please wait..."))

system2(
 model_exe,
 paste(
 model_args,
 " -OpenM.TaskId ", taskId,
 " -OpenM.LogToConsole false",
 " -OpenM.LogToFile true",
 " -OpenM.ProgressPercent 100",
 sep = ""
)
)

#
read results of task run from database
cohort fertility: T05_CohortFertility.Expr1
#
taskRunId <- getTaskLastRunId(theDb, taskId) # most recent task run id
taskRunRs <- selectTaskRun(theDb, taskRunId) # get result id's
#
taskRunId
[1] 111
taskRunRs$taskRunSet # Content for "tiny set of runs"
task_run_id run_id set_id task_id
1 108 109 104 103
2 108 110 105 103
3 108 111 106 103
4 108 112 107 103
Main scenario task_id 103 comes with 4 sets of parameters set_id 104, 105, 106, 107 (e.g. PSA)
The main scenario/task was run (task_run_id 108) which spins out 4 runs run_id 109, 110, 111, 112

scaleLen <- length(scaleValues)
childlessnessMat <- matrix(data = NA, nrow = scaleLen, ncol = scaleLen, byrow = TRUE)

runPos <- 1
for (k in 1:scaleLen)
{
 for (j in 1:scaleLen)
 {
 # cohort fertility: T05_CohortFertility.Expr1
 expr1Rs <- selectRunOutputValue(theDb, defRs, taskRunRs$taskRunSet$run_id[runPos], "T05_CohortFertility", "Expr1")
 childlessnessMat[k, j] = expr1Rs$expr_value
 runPos <- runPos + 1
 }
}

dbDisconnect(theDb) # close database connection

#
display the results
#
persp(
 x = scaleValues,
 y = scaleValues,
 z = childlessnessMat,
 xlab = "Decreased union formation",
 ylab = "Decreased fertility",
 zlab = "Childlessness",
 theta = 30, phi = 30, expand = 0.5, ticktype = "detailed",
 col = "lightgreen",
 cex.axis = 0.7
)

This example shows how Python can be used to automate modeling, using very general openM++ interfaces. These same interfaces can be used
by platforms and applications other than Python with equivalent functionality.

Following Python script is running openM++ "NewCaseBased" test model with 16 subsamples using mortality hazard data:

mortalityData = [0.014 + i * 0.005 for i in range(20)]

As result Mortality Hazard increases about eight times in the range of [0.014, 0.109] and we can see eight time decrease of Duration of Life from
initial 72 years down to 9 years.

Python example script is using openM++ web-service in order to run the model, modify parameters and read output values. OpenM++ web-
service does not require any installation, just download latest release of openM++, unpack it into any directory, start oms.exe and run the script:

Windows:

cd C:\my-openmpp-release
bin\ompp_ui.bat
py ompp-python\life_vs_mortality.py

Linux / MacOS:

cd ~/my-openmpp-release
bin/oms
python3 ompp-python/life_vs_mortality.py

As result oms web-service will start to listen incoming requests on http://localhost:4040 and Python script will do all actions using oms web-service
API.

You may also need to install mathplotlib to display the chart and requests to communicate with web-service:

pip install -U matplotlib
pip install requests

Important:

This is an example script and error handling intentionally omitted. It is highly recommended to use try ... except in production code.

Important:

This is an example script and for simplicity it starts 20 instances of the model simultaneously. Obviously this can work only if model relatively
simple. DO NOT USE this in production, please use modeling task instead.

Run model from Python: simple loop over model parameter
OpenM++ integration with Python

How to run the script

https://github.com/openmpp/main/releases/latest

#
Python integration example using NewCaseBased model:
loop over MortalityHazard parameter
to analyze DurationOfLife output value

Prerequisite:
#
download openM++ release from https://github.com/openmpp/main/releases/latest
unpack it into any directory
start oms web-service:
Windows:
cd C:\my-openmpp-release
bin\ompp_ui.bat
Linux:
cd ~/my-openmpp-release
bin/oms

Python script

#
Script below is using openM++ web-service "oms"
to run the model, modify parameters and read output values.

Important:
Script below starts 20 instances of the model simultaneously.
Obviously this can work only if model relatively simple.
#
DO NOT USE this in production, please use modeling task instead.
#
Also script below does not handle errors, please use try/except in production.

import time
import requests
import matplotlib.pyplot as plt

analyze NewCaseBased model varying mortality hazard values
#
mortalityData = [0.014 + i * 0.005 for i in range(20)]

Use openM++ oms web-service to run NewCaseBased model 20 times
with different values of MortalityHazard parameter:
#
NewCaseBased.exe -OpenM.ProgressPercent 100 -OpenM.SubValues 16 OpenM.Threads 4 -Parameter.MortalityHazard 0.014
NewCaseBased.exe -OpenM.ProgressPercent 100 -OpenM.SubValues 16 OpenM.Threads 4 -Parameter.MortalityHazard 0.019
.... and 18 more mortality hazard values
#
For each request to run the model web-service respond with JSON containing RunStamp
We can use this RunStamp to find model run status and results.
#
runStampLst = []

for m in mortalityData:
 runModelRq = {
 'ModelName': 'NewCaseBased',
 'Opts': {
 'Parameter.MortalityHazard': str(m),
 'OpenM.ProgressPercent': '100', # reduce amount of progress messages in the log file
 'OpenM.SubValues': '16', # use 16 sub-values (sub-samples)
 'OpenM.Threads': '4' # use 4 modeling threads
 }
 }
 #
 # submit request to web-service to run the model
 #
 rsp = requests.post('http://127.0.0.1:4040/api/run', json=runModelRq)
 rsp.raise_for_status()
 js = rsp.json()
 #
 runStamp = js['RunStamp']
 if runStamp is None or runStamp == '':
 raise Exception('Model fail to start, run stamp is empty')
 #
 runStampLst.append(runStamp)
 #
 print("MortalityHazard:", m, "model run stamp:", runStamp)

wait until all model runs completed
#
n = len(runStampLst)
runDigestLst = ['' for i in range(n)]
done = [False for i in range(n)]

while n > 0:
 print("Waiting for", n, "model runs to be completed...")
 n = 0
 #
 for i in range(len(runStampLst)):
 if done[i]:
 continue # run already completed
 #
 rsp = requests.get('http://127.0.0.1:4040/api/model/NewCaseBased/run/' + runStampLst[i] + '/status')
 rsp.raise_for_status()
 js = rsp.json()
 runDigestLst[i], status = js['RunDigest'], js['Status']
 #
 if runDigestLst[i] is None or runDigestLst[i] == '' or \
 status is None or status == '' or \
 status in 'i' 'p': # i = run not started yet, p = run in progress
 #
 n += 1
 continue
 #
 if status == 's': # success
 done[i] = True
 continue
 #
 raise Exception("Model run failed, run stamp:", runStampLst[i], "status:", status)

 raise Exception("Model run failed, run stamp:", runStampLst[i], "status:", status)
 #
 #
 if n > 0:
 time.sleep(1)

all model runs completed successfully
print("All model runs completed, retrive output values...")

for each run get output value
average duration of life: DurationOfLife.Expr3
#
lifeDurationData = []

for runDigest in runDigestLst:
 rsp = requests.get('http://127.0.0.1:4040/api/model/NewCaseBased/run/' + runDigest + '/table/DurationOfLife/expr')
 rsp.raise_for_status()
 js = rsp.json()
 lifeDurationData.append(js[3]['Value'])

display the results
#
plt.plot(mortalityData, lifeDurationData, 'ro', ls='-')
plt.xlabel('Mortality Hazard')
plt.ylabel('Duration of Life')
plt.show()

This example shows how Python can be used to automate modeling, using very general openM++ interfaces. These same interfaces can be used
by platforms and applications other than Python with equivalent functionality.

Following Python script is running "RiskPaths" model to analyze childlessness by varying two parameters:

Age baseline for first union formation

Relative risks of union status on first pregnancy by following scale factor:

scaleStep = 0.02
scaleValues = [0.44 + i * scaleStep for i in range(1 + round((1.00 - 0.44) / scaleStep))]

Please keep in mind, scaling above result in 841 runs of RiskPaths model and task may take long time to be completed. If you want to get
results faster scale values by 0.08 instead of 0.02.

Python example script is using openM++ web-service in order to run the model, modify parameters and read output values. OpenM++ web-
service does not require any installation, just download latest release of openM++, unpack it into any directory, start oms.exe and run the script:

Windows:

cd C:\my-openmpp-release
bin\oms
py ompp-python\riskpaths_childlessness.py

Linux / MacOS:

cd ~/my-openmpp-release
bin/oms
python3 ompp-python/riskpaths_childlessness.py

As result oms web-service will start to listen incoming requests on http://localhost:4040 and Python script will do all actions using oms web-service
API.

You may also need to install mathplotlib to display the chart and requests to communicate with web-service:

pip install -U matplotlib
pip install requests

Important:

This is an example script and error handling intentionally omitted. It is highly recommended to use try ... except in production code.

Run RiskPaths model from Python: advanced parameters scaling
OpenM++ integration with Python: using RiskPaths model

How to run the script

https://github.com/openmpp/main/releases/latest

#
Python integration example using RiskPaths model
to analyze contribution of delayed union formations
versus decreased fertility on childlessness
#
Input parameters:
AgeBaselineForm1: age baseline for first union formation
UnionStatusPreg1: relative risks of union status on first pregnancy
Output value:
T05_CohortFertility: Cohort fertility, expression 1
#

Prerequisite:
#
download openM++ release from https://github.com/openmpp/main/releases/latest
unpack it into any directory
start oms web-service:
Windows:
cd C:\my-openmpp-release
bin\ompp_ui.bat
Linux:

Python script

Linux:
cd ~/my-openmpp-release
bin/oms
#
Script below is using openM++ web-service "oms"
to run the model, modify parameters and read output values.

Important:
Script below does not handle errors, please use try/except in production.

import time
import requests
import numpy as np
import matplotlib.pyplot as plt

get default values for AgeBaselineForm1, UnionStatusPreg1 and SimulationCases parameters
by reading it from first model run results
assuming first run of the model done with default set of parameters
#
rsp = requests.get('http://127.0.0.1:4040/api/model/RiskPaths/run/status/first')
rsp.raise_for_status()
firstRunStatus = rsp.json()
firstRunDigest = rsp.json()['RunDigest']

rsp = requests.get('http://127.0.0.1:4040/api/model/RiskPaths/run/' + firstRunDigest + '/parameter/AgeBaselineForm1/value/start/0/count/0')
rsp.raise_for_status()
ageFirstUnion = rsp.json()

rsp = requests.get('http://127.0.0.1:4040/api/model/RiskPaths/run/' + firstRunDigest + '/parameter/UnionStatusPreg1/value/start/0/count/0')
rsp.raise_for_status()
unionStatusPreg = rsp.json()

rsp = requests.get('http://127.0.0.1:4040/api/model/RiskPaths/run/' + firstRunDigest + '/parameter/SimulationCases/value/start/0/count/0')
rsp.raise_for_status()
simulationCases = rsp.json()

create new input data for our modelling task
#

set number of simulation cases
simulationCases[0]['Value'] = 1000

for AgeBaselineForm1 and UnionStatusPreg1 parameter values
apply scale in range from 0.44 to 1.0
#
scaleStep = 0.02
scaleValues = [0.44 + i * scaleStep for i in range(1 + round((1.00 - 0.44) / scaleStep))]

ageValues = [x['Value'] for x in ageFirstUnion]
unionValues = [x['Value'] for x in unionStatusPreg]

inpSetLst = []
for scaleAgeBy in scaleValues:
 #
 print("Scale age by:", scaleAgeBy)
 for i in range(len(ageFirstUnion)):
 ageFirstUnion[i]['Value'] = ageValues[i] * scaleAgeBy

 for scaleUnionBy in scaleValues:
 #
 # scale first two values of unionStatusPreg vector
 unionStatusPreg[0]['Value'] = unionValues[0] * scaleUnionBy
 unionStatusPreg[1]['Value'] = unionValues[1] * scaleUnionBy
 #
 # create new set of input parameters
 # automatically generate unique names for each input set
 #
 inpSetRq = {
 'ModelName': 'RiskPaths',
 'Name': '',
 'BaseRunDigest': firstRunDigest,
 'IsReadonly': True,
 'Txt': [{
 'LangCode': 'EN',
 'Descr': 'Scale age: ' + str(scaleAgeBy) + ' union status: ' + str(scaleUnionBy)
 }],
 'Param': [
 {
 'Name': 'AgeBaselineForm1',
 'SubCount': 1,
 'Value': ageFirstUnion,
 'Txt': [{'LangCode': 'EN', 'Note': 'Age values scale by: ' + str(scaleAgeBy)}]
 },
 {
 'Name': 'UnionStatusPreg1',
 'SubCount': 1,
 'Value': unionStatusPreg,
 'Txt': [{'LangCode': 'EN', 'Note': 'Union Status values scale by: ' + str(scaleUnionBy)}]
 }

 }
],
 }
 #
 # create new input set of model parameters
 # automatically generate unique name for that input set
 #
 rsp = requests.put('http://127.0.0.1:4040/api/workset-create', json=inpSetRq)
 rsp.raise_for_status()
 js = rsp.json()
 #
 inpSetName = js['Name']
 if inpSetName is None or inpSetName == '':
 raise Exception("Fail to create input set, scales:", scaleAgeBy, scaleUnionBy)
 #
 inpSetLst.append(inpSetName)

create modeling task from all input sets
automatically generate unique name for the task
#
inpLen = len(inpSetLst)
print("Create task from", inpLen, "input sets of parameters")

taskRq = {
 'ModelName': 'RiskPaths',
 'Name': '',
 'Set': inpSetLst,
 'Txt': [{
 'LangCode': 'EN',
 'Descr': 'Task to run RiskPaths ' + str(inpLen) + ' times',
 'Note': 'Task scales AgeBaselineForm1 and UnionStatusPreg1 parameters from 0.44 to 1.00 with step ' + str(scaleStep)
 }]
}
rsp = requests.put('http://127.0.0.1:4040/api/task-new', json=taskRq)
rsp.raise_for_status()
js = rsp.json()

taskName = js['Name']
if taskName is None or taskName == '':
 raise Exception("Error at create modeling task")

#
submit request to web-service to run RiskPaths with modeling task
#
runModelRq = {
 'ModelName': 'RiskPaths',
 'Opts': {
 'OpenM.TaskName': taskName,
 'OpenM.ProgressPercent': '100'
 }
}
rsp = requests.post('http://127.0.0.1:4040/api/run', json=runModelRq)
rsp.raise_for_status()
js = rsp.json()
#
taskRunStamp = js['RunStamp']
if taskRunStamp is None or taskRunStamp == '':
 raise Exception('Model failed to start, task run stamp is empty')

print("Starting modeling task:", taskName)

wait until modeling task completed
and report the progress
#
task status returned by web-service can be one of:
i=initial p=in progress w=waiting s=success x=exit e=error(failed)
#
taskStatus = ''

while taskStatus in '' 'i' 'p' 'w':
 #
 time.sleep(1)
 #
 rsp = requests.get('http://127.0.0.1:4040/api/model/RiskPaths/task/' + taskName + '/run-status/run/' + taskRunStamp)
 rsp.raise_for_status()
 js = rsp.json()
 taskStatus = js['Status']
 #
 # if model not started to run the task yet check again after short sleep
 #
 if taskStatus in '' 'i':
 #
 print("Waiting for modeling task to start...")
 continue
 #
 # if task completed successfully then get pairs of {model run, inpur set name}
 #
 if taskStatus == 's':

 if taskStatus == 's':
 rsp = requests.get('http://127.0.0.1:4040/api/model/RiskPaths/task/' + taskName + '/runs')
 rsp.raise_for_status()
 js = rsp.json()
 taskRuns = js['TaskRun'][0]['TaskRunSet'] # use index=0 because this is first run of our task
 break
 #
 # if task still in progress then count completed model runs
 #
 if taskStatus in 'i' 'p' 'w':
 rsp = requests.get('http://127.0.0.1:4040/api/model/RiskPaths/run/' + taskRunStamp + '/status/list')
 rsp.raise_for_status()
 trs = rsp.json()
 #
 n = 0
 for r in trs:
 if r['Status'] == 's': n += 1
 #
 print("Completed", n, "model runs out of", inpLen)
 continue
 #
 # any other task run status considered as failure
 #
 raise Exception("Model run failed, task run stamp:", taskRunStamp, "status:", taskStatus)
 #

print("Modeling task completed, retriving results...")

for each age and union status retrive output:
childlessness value: T05_CohortFertility.Expr1
#
organize results into 2-dimensional array to plot 3d chart
#
childlessnessVals = np.zeros((len(scaleValues), len(scaleValues)))
runIdx = 0

for ageIdx in range(len(scaleValues)):
 for unionIdx in range(len(scaleValues)):
 #
 runDigest = taskRuns[runIdx]['Run']['RunDigest']
 #
 rsp = requests.get('http://127.0.0.1:4040/api/model/RiskPaths/run/' + runDigest + '/table/T05_CohortFertility/expr')
 rsp.raise_for_status()
 js = rsp.json()
 #
 childlessnessVals[ageIdx][unionIdx] = js[1]['Value']
 runIdx += 1

display the results
#
ageVals, unionVals = np.meshgrid(scaleValues, scaleValues)

fig = plt.figure()
ax = plt.axes(projection='3d')
ax.plot_wireframe(ageVals, unionVals, childlessnessVals, color='black')
ax.set_xlabel('Decreased union formation')
ax.set_ylabel('Decreased fertility')
ax.set_zlabel('Childlessness')
ax.view_init(elev=45)
plt.show()

There are multiple cases when you want to use Docker containers for openM++ development:

build your models with latest version of openM++

build cluster-ready (and cloud-ready) version of your model without installing MPI on your host computer

do test run of your model in cluster environment without installing and configuring MPI cluster on multiple machines

build latest version of openM++ from source code without installing and configuring all necessary development tools

All above build and run tasks can be done without Docker and our wiki describes all steps necessary to achieve this. However in that case you
will spend a few hours or even days with installing and configuring development and cluster environment. Use of Docker allow to skip
unnecessary steps and focus on model development. Also because containers are isolated from host environment there is nothing (except of
Docker itself) get installed on your host system and you keep it clean, no software versions conflicts.

In order to use containers Docker for Windows must be installed. It can be done on your host system or on virtual machine. There are short notes
about Docker installation at the bottom of that page.

You can download openM++ images from Docker Hub:

to run openM++ models pull: docker pull openmpp/openmpp-run:windows-20H2

Docker Hub description: openmpp/openmpp-run:windows-20H2

GitHub: source code and Dockerfile

to build latest version of openM++ and re-build your models: docker pull openmpp/openmpp-build:windows-20H2

Docker Hub description: openmpp/openmpp-build:windows-20H2

GitHub: source code and Dockerfile

To run openM++ model do:

docker run openmpp/openmpp-run:windows-20H2 MyModel.exe

For example, if your models are in C:\my\models\bin directory then:

docker run -v C:\my\models\bin:C:\ompp openmpp/openmpp-run:windows-20H2 MyModel.exe
docker run -v C:\my\models\bin:C:\ompp openmpp/openmpp-run:windows-20H2 mpiexec -n 2 MyModel_mpi.exe -OpenM.SubValues 16
docker run -v C:\my\models\bin:C:\ompp -e OM_ROOT=C:\ompp openmpp/openmpp-run:windows-20H2 MyModel.exe

also you can use -e OM_ROOT=C:\ompp to set environment variable for your model, if necessary.

To start command prompt do:

docker run -v C:\my\models\bin:C:\ompp -it openmpp/openmpp-run:windows-20H2

To build latest version of openM++ from source code and rebuild your models do:

docker run openmpp/openmpp-build:windows-20H2 build-all

For example, if your build in C:\my\build directory then:

Windows: Use Docker to get latest version of OpenM++
Why Docker?

Where to find openM++ Docker images

How to use openmpp/openmpp-run:windows-20H2 to run your models

How to use openmpp/openmpp-build:windows-20H2 to build openM++ and models

https://hub.docker.com/r/openmpp/openmpp-run
https://github.com/openmpp/docker
https://hub.docker.com/r/openmpp/openmpp-build
https://github.com/openmpp/docker

docker run -v C:\my\build:C:\build openmpp/openmpp-build:windows-20H2 build-all
docker run -v C:\my\build:C:\build -e OM_BUILD_PLATFORMS=x64 openmpp/openmpp-build:windows-20H2 build-all
docker run -v C:\my\build:C:\build -e MODEL_DIRS=RiskPaths openmpp/openmpp-build:windows-20H2 build-all

Following environment variables used to control openM++ build:

set OM_BUILD_CONFIGS=Release,Debug (default: Release)
set OM_BUILD_PLATFORMS=Win32,x64 (default: Win32)
set OM_MSG_USE=MPI (default: EMPTY)
set MODEL_DIRS=modelOne,NewCaseBased,NewTimeBased,NewCaseBased_bilingual,NewTimeBased_bilingual,IDMM,OzProj,OzProjGen,RiskPaths

To build only openM++ libraries and omc compiler do:

docker run openmpp/openmpp-build:windows-20H2 build-openm

Environment variables to control build-openm: OM_BUILD_CONFIGS, OM_BUILD_PLATFORMS, OM_MSG_USE

To build models do:

docker run openmpp/openmpp-build:windows-20H2 build-models

Environment variables to control build-models: OM_BUILD_CONFIGS, OM_BUILD_PLATFORMS, OM_MSG_USE, MODEL_DIRS

For example, if want to build your own model MyModel copy model code into C:\my\build\models\MyModel directory and do:

docker run -v C:\my\build:C:\build -e MODEL_DIRS=MyModel openmpp/openmpp-build:windows-20H2 build-models
docker run -v C:\my\build:C:\build -e MODEL_DIRS=MyModel -e OM_BUILD_PLATFORMS=x64 openmpp/openmpp-build:windows-20H2 build-models

To build openM++ tools do any of:

docker run openmpp/openmpp-build:windows-20H2 build-go # Go oms web-service and dbcopy utility
docker run openmpp/openmpp-build:windows-20H2 build-r # openMpp R package
docker run openmpp/openmpp-build:windows-20H2 build-perl # Perl utilities
docker run openmpp/openmpp-build:windows-20H2 build-ui # openM++ UI

To create openmpp_win_YYYYMMDD.zip deployment archive:

docker run openmpp/openmpp-build:windows-20H2 build-zip

Environment variables to control build-zip: OM_MSG_USE, MODEL_DIRS

To customize build you can change any of build scripts inside of $HOME/build directory:

C:\my\build\build-all.bat # rebuild entire openM++ and create openmpp_win_YYYYMMDD.tar.gz archive
C:\my\build\build-openm.bat # rebuild entire openM++ runtime libraries and compiler
C:\my\build\build-models.bat # rebuild openM++ models specified by MODEL_DIRS
C:\my\build\build-go.bat # rebuild Go oms web-service and dbcopy utility
C:\my\build\build-r.bat # rebuild openMpp R package
C:\my\build\build-ui.bat # rebuild openM++ UI
C:\my\build\build-zip.bat # create openmpp_win_YYYYMMDD.zip archive

To open cmd command prompt or Perl command prompt:

docker run -v C:\my\build:C:\build -it openmpp/openmpp-build:windows-20H2 cmd
docker run -v C:\my\build:C:\build -it openmpp/openmpp-build:windows-20H2 C:\perl\portableshell

Please follow official Microsoft documentation and Docker documentation to download and install Docker for Windows. There are few notes
below, which you may find useful.

Final result should be "Docker is running":

Docker for Windows installation

https://docs.microsoft.com/en-us/virtualization/windowscontainers/manage-docker/configure-docker-daemon
https://docs.docker.com/docker-for-windows/install/

You should do "Switch to Windows containers":

This menu can be accessed by right-clicking the Docker icon in the system tray, which is normally in the lower right corner of the display.

Docker installation require Hyper-V Windows feature "On":

If you installing Docker inside of VMware virtual machine then it may be necessary to turn on "Virtualize Intel VT-x/EPT or AMD-V/RVI" settings.
You can turn it off after setup completed:

There are multiple cases when you want to use Docker containers for openM++ development:

build your models with latest version of openM++

build cluster-ready (and cloud-ready) version of your model without installing MPI on your host computer

do test run of your model in cluster environment without installing and configuring MPI cluster on multiple machines

build latest version of openM++ from source code without installing and configuring all necessary development tools

All above build and run tasks can be done without Docker and our wiki describes all steps necessary to achieve this. However in that case you
will spend a few hours or even days with installing and configuring development and cluster environment. Use of Docker allow to skip
unnecessary steps and focus on model development. Also because containers are isolated from host environment there is nothing (except of
Docker itself) get installed on your host system and you keep it clean, no software versions conflicts.

To install Docker:

on Ubuntu do: sudo apt-get install docker

on Debian or MX Linux: su -c "apt-get install docker"

for RedHat 8 please follow RedHat 8: How to use Docker instructions.

You can download openM++ images from Docker Hub:

to run openM++ models pull: docker pull openmpp/openmpp-run:debian

Docker Hub description: openmpp/openmpp-run:debian

GitHub: source code and Dockerfile

to build latest version of openM++ and re-build your models: docker pull openmpp/openmpp-build:debian

Docker Hub description: openmpp/openmpp-build:debian

GitHub: source code and Dockerfile

If you want to use Ubuntu LTS (Ubuntu 20.04):

to run openM++ models pull: docker pull openmpp/openmpp-run:ubuntu

Docker Hub description: openmpp/openmpp-run:ubuntu

GitHub: source code and Dockerfile

to build latest version of openM++ and re-build your models: docker pull openmpp/openmpp-build:ubuntu

Docker Hub description: openmpp/openmpp-build:ubuntu

GitHub: source code and Dockerfile

Documentation below contains Debian examples and it is also applicable to Ubuntu. Only difference is ubuntu Docker image name and sudo to
run the docker command, for example:

sudo docker run openmpp/openmpp-run:ubuntu models/bin/MyModel

Both containers openmpp/openmpp-run:debian and openmpp/openmpp-build:debian created with for user and group ompp, UID=1999, GID=1999,

HOME=/home/ompp . To avoid permissions issues you may need to do one of:

create user ompp, UID=1999 , group ompp, UID=1999 and login as that user

Linux: Use Docker to get latest version of OpenM++
Why Docker?

Where to find openM++ Docker images

User name, user ID, group ID, home directory

https://hub.docker.com/r/openmpp/openmpp-run
https://github.com/openmpp/docker
https://hub.docker.com/r/openmpp/openmpp-build
https://github.com/openmpp/docker
https://hub.docker.com/r/openmpp/openmpp-run
https://github.com/openmpp/docker
https://hub.docker.com/r/openmpp/openmpp-build
https://github.com/openmpp/docker

or use OMPP_* environment variables as in examples below to map your current login to container

For example, let assume you logged into your system as user:group = Me:MyGroup UID:GID = 1234:1234 and want to run model in your home directory:
$HOME/models/bin/MyModel .

Simple attempt to run the model:

docker run openmpp/openmpp-run:debian models/bin/MyModel

will fail with error similar to: "models/bin/MyModel: No such file or directory" because container don't have an access to the files on your host system.

Let's bind your directory $HOME/models/bin/MyModel to the container default /home/ompp

docker run \
 -v $HOME/models/bin:/home/ompp \
 openmpp/openmpp-run:debian \
 ./MyModel

That will fail with error "Permission denied" because container default login user:group = ompp:ompp UID:GID = 1999:1999 don't have an access to your files
user:group = Me:MyGroup UID:GID = 1234:1234 .

You can create such login on your host system user:group = ompp:ompp UID:GID = 1999:1999 and use it to run the models

Or you can tell container to use your current user:group = Me:MyGroup UID:GID = 1234:1234 instead of default values:

docker run \
 -v $HOME/models/bin:/home/models \
 -e OMPP_USER=models -e OMPP_GROUP=models -e OMPP_UID=$UID -e OMPP_GID=`id -g` \
 openmpp/openmpp-run:debian \
 ./MyModel

To run openM++ model do:

docker run openmpp/openmpp-run:debian ./MyModel

For example, if your models are in $HOME/models/bin directory then:

docker run \
 -v $HOME/models/bin:/home/models \
 -e OMPP_USER=models -e OMPP_GROUP=models -e OMPP_UID=$UID -e OMPP_GID=`id -g` \
 openmpp/openmpp-run:debian \
 ./MyModel

docker run \
 -v $HOME/models/bin:/home/models \
 -e OMPP_USER=models -e OMPP_GROUP=models -e OMPP_UID=$UID -e OMPP_GID=`id -g` \
 openmpp/openmpp-run:debian \
 mpiexec -n 2 MyModel_mpi -OpenM.SubValues 16

also you can use -e OM_ROOT=/home/ompp to set environment variable for your model, if necessary.

To start shell inside of conatiner do:

docker run \
 -v $HOME:/home/${USER} \
 -e OMPP_USER=${USER} -e OMPP_GROUP=`id -gn` -e OMPP_UID=$UID -e OMPP_GID=`id -g` \
 -it openmpp/openmpp-run:debian
 bash

Following environment variables are used to map container user to your login:

OMPP_USER=ompp # default: ompp, container user name and HOME
OMPP_GROUP=ompp # default: ompp, container group name
OMPP_UID=1999 # default: 1999, container user ID
OMPP_GID=1999 # default: 1999, container group ID

How to use openmpp/openmpp-run:debian to run your models

To build latest version of openM++ from source code and rebuild your models do:

docker runoptions.... openmpp/openmpp-build:debian ./build-all

For example, if your build in $HOME/build directory then:

docker run \
 -v $HOME/build:/home/build \
 -e OMPP_USER=build -e OMPP_GROUP=build -e OMPP_UID=$UID -e OMPP_GID=`id -g` \
 openmpp/openmpp-build:debian \
 ./build-all

docker run \
 -v $HOME/build_mpi:/home/build_mpi \
 -e OMPP_USER=build_mpi -e OMPP_GROUP=build_mpi -e OMPP_UID=$UID -e OMPP_GID=`id -g` \
 -e OM_MSG_USE=MPI \
 openmpp/openmpp-build:debian \
 ./build-all

docker runuser, group, home.... -e MODEL_DIRS=RiskPaths,IDMM openmpp/openmpp-build:debian ./build-all
docker runuser, group, home.... -e OM_BUILD_CONFIGS=RELEASE,DEBUG openmpp/openmpp-build:debian ./build-all
docker runuser, group, home.... -e OM_MSG_USE=MPI openmpp/openmpp-build:debian ./build-all

Following environment variables used to control openM++ build:

OM_BUILD_CONFIGS=RELEASE,DEBUG # default: RELEASE,DEBUG for libraries and RELEASE for models
OM_MSG_USE=MPI # default: EMPTY
MODEL_DIRS=modelOne,NewCaseBased,NewTimeBased,NewCaseBased_bilingual,NewTimeBased_bilingual,IDMM,OzProj,OzProjGen,RiskPaths

Following environment variables are used to map container user to your login:

OMPP_USER=ompp # default: ompp, container user name and HOME
OMPP_GROUP=ompp # default: ompp, container group name
OMPP_UID=1999 # default: 1999, container user ID
OMPP_GID=1999 # default: 1999, container group ID

To build only openM++ libraries and omc compiler do:

docker runoptions.... openmpp/openmpp-build:debian ./build-openm

Environment variables to control build-openm: OM_BUILD_CONFIGS, OM_MSG_USE

To build only models do:

docker runoptions.... openmpp/openmpp-build:debian ./build-models

Environment variables to control build-models: OM_BUILD_CONFIGS, OM_MSG_USE, MODEL_DIRS

For example, if want to build your own model MyModel copy model code into $HOME/build/models/MyModel directory and do:

docker runuser, group, home.... -e MODEL_DIRS=MyModel openmpp/openmpp-build:debian ./build-models
docker runuser, group, home.... -e MODEL_DIRS=MyModel -e OM_BUILD_CONFIGS=RELEASE,DEBUG openmpp/openmpp-build:debian ./build-models

To build openM++ tools do any of:

docker run openmpp/openmpp-build:debian ./build-go # Go oms web-service and dbcopy utility
docker run openmpp/openmpp-build:debian ./build-r # openMpp R package
docker run openmpp/openmpp-build:debian ./build-ui # openM++ UI

To create openmpp_redhat_YYYYMMDD.tar.gz deployment archive:

docker run openmpp/openmpp-build:debian ./build-tar-gz

Environment variables to control build-tar-gz: OM_MSG_USE, MODEL_DIRS

How to use openmpp/openmpp-build:debian to build openM++ and models

To customize build you can change any of build scripts inside of $HOME/build directory:

$HOME/build/build-all # rebuild entire openM++ and create openmpp_redhat_YYYYMMDD.tar.gz archive
$HOME/build/build-openm # rebuild entire openM++ runtime libraries and compiler
$HOME/build/build-models # rebuild openM++ models specified by MODEL_DIRS
$HOME/build/build-go # rebuild Go oms web-service and dbcopy utility
$HOME/build/build-r # rebuild openMpp R package
$HOME/build/build-ui # rebuild openM++ UI
$HOME/build/build-tar-gz # create openmpp_redhat_YYYYMMDD.tar.gz archive

To start shell inside of container do:

docker run \
 -v $HOME:/home/${USER} \
 -e OMPP_USER=${USER} -e OMPP_GROUP=`id -gn` -e OMPP_UID=$UID -e OMPP_GID=`id -g` \
 -it openmpp/openmpp-build:debian \
 bash

To build latest version of openM++ documentation do:

docker runoptions.... openmpp/openmpp-build:debian ./make-doc

For example, if your want to make a documenation in $HOME/build_doc directory then:

docker run \
 -v $HOME/build_doc:/home/build_doc \
 -e OMPP_USER=build_doc -e OMPP_GROUP=build_doc -e OMPP_UID=$UID -e OMPP_GID=`id -g` \
 openmpp/openmpp-build:debian \
 ./make-doc

How to use openmpp/openmpp-build:debian to update openM++ documentation

There are multiple cases when you want to use Docker containers for openM++ development:

build your models with latest version of openM++

build cluster-ready (and cloud-ready) version of your model without installing MPI on your host computer

do test run of your model in cluster environment without installing and configuring MPI cluster on multiple machines

build latest version of openM++ from source code without installing and configuring all necessary development tools

All above build and run tasks can be done without Docker and our wiki describes all steps necessary to achieve this. However in that case you
will spend a few hours or even days with installing and configuring development and cluster environment. Use of Docker allow to skip
unnecessary steps and focus on model development. Also because containers are isolated from host environment there is nothing (except of
Docker itself) get installed on your host system and you keep it clean, no software versions conflicts.

To install Docker on RedHat do: dnf install podman

You can download openM++ images from Docker Hub:

to run openM++ models pull: podman pull openmpp/openmpp-run:redhat-8

Docker Hub description: openmpp/openmpp-run:redhat-8

GitHub: source code and Dockerfile

to build latest version of openM++ and re-build your models: podman pull openmpp/openmpp-build:redhat-8

Docker Hub description: openmpp/openmpp-build:redhat-8

GitHub: source code and Dockerfile

Both containers openmpp/openmpp-run:redhat-8 and openmpp/openmpp-build:redhat-8 created with for user ompp, HOME=/home/ompp . To avoid permissions
issues you may need to map that user to your host user namespace and use :z option if you want to mount host local directory, for example:

podman run -userns=host -v $HOME/build:/home/build:z -e OMPP_USER=build openmpp/openmpp-build:redhat-8 ./build-all

Above we are mapping container user build to our current host user and container user home directory /home/build to sub-folder $HOME/build .

Or if want to use container user models to run our models:

podman run -userns=host -v $HOME/models:/home/models:z -e OMPP_USER=models openmpp/openmpp-run:redhat-8 ./modelOne

To run openM++ model do:

podman run openmpp/openmpp-run:redhat-8 ./modelOne

For example, if your models are in $HOME/models/bin directory then:

RedHat 8: Use Docker to get latest version of OpenM++
Why Docker?

Where to find openM++ Docker images

User name and home directory

How to use openmpp/openmpp-run:redhat-8 to run your models

https://hub.docker.com/r/openmpp/openmpp-run
https://github.com/openmpp/docker
https://hub.docker.com/r/openmpp/openmpp-build
https://github.com/openmpp/docker

podman run \
 -userns=host \
 -v $HOME/models/bin:/home/models:z \
 -e OMPP_USER=models \
 openmpp/openmpp-run:redhat-8 \
 ./modelOne

podman run \
 -userns=host \
 -v $HOME/models/bin:/home/models:z \
 -e OMPP_USER=models \
 openmpp/openmpp-run:redhat-8 \
 mpiexec --allow-run-as-root -n 2 MyModel_mpi -OpenM.SubValues 16

Also you can use -e OM_ROOT=/home/models/my-openMpp-dir to set environment variable for your model, if necessary.

To start shell inside of conatiner do:

podman run -it openmpp/openmpp-run:redhat-8 bash

Following environment variable is used to map container user and home directory to you host directory:

OMPP_USER=ompp # default: ompp, container user name and HOME

To build latest version of openM++ from source code and rebuild your models do:

podman run openmpp/openmpp-build:redhat-8 ./build-all

For example, if your build in $HOME/build or in $HOME/build_mpi directory then:

podman run \
 -userns=host \
 -v $HOME/build:/home/build:z \
 -e OMPP_USER=build \
 openmpp/openmpp-build:redhat-8 \
 ./build-all

podman run \
 -userns=host \
 -v $HOME/build_mpi:/home/build_mpi:z \
 -e OMPP_USER=build_mpi \
 -e OM_MSG_USE=MPI \
 openmpp/openmpp-build:redhat-8 \
 ./build-all

podman run -e MODEL_DIRS=RiskPaths,IDMM openmpp/openmpp-build:redhat-8 ./build-all
podman run -e OM_BUILD_CONFIGS=RELEASE,DEBUG openmpp/openmpp-build:redhat-8 ./build-all
podman run -e OM_MSG_USE=MPI openmpp/openmpp-build:redhat-8 ./build-all

Following environment variables used to control openM++ build:

OM_BUILD_CONFIGS=RELEASE,DEBUG # default: RELEASE,DEBUG for libraries and RELEASE for models
OM_MSG_USE=MPI # default: EMPTY
MODEL_DIRS=modelOne,NewCaseBased,NewTimeBased,NewCaseBased_bilingual,NewTimeBased_bilingual,IDMM,OzProj,OzProjGen,RiskPaths

Following environment variable is used to map container user and home directory to you host directory:

OMPP_USER=ompp # default: ompp, container user name and HOME

To build only openM++ libraries and omc compiler do:

podman run openmpp/openmpp-build:redhat-8 ./build-openm

Environment variables to control build-openm: OM_BUILD_CONFIGS, OM_MSG_USE

To build only models do:

How to use openmpp/openmpp-build:redhat-8 to build openM++ and models

podman run openmpp/openmpp-build:redhat-8 ./build-models

Environment variables to control build-models: OM_BUILD_CONFIGS, OM_MSG_USE, MODEL_DIRS

For example, if want to build your own model MyModel copy model code into $HOME/build/models/MyModel directory and do:

podman run openmpp/openmpp-build:redhat-8 ./build-models
podman run -e MODEL_DIRS=MyModel openmpp/openmpp-build:redhat-8 ./build-models
podman run -e MODEL_DIRS=MyModel -e OM_BUILD_CONFIGS=RELEASE,DEBUG openmpp/openmpp-build:redhat-8 ./build-models

To build openM++ tools do any of:

podman run openmpp/openmpp-build:redhat-8 ./build-go # Go oms web-service and dbcopy utility
podman run openmpp/openmpp-build:redhat-8 ./build-r # openMpp R package
podman run openmpp/openmpp-build:redhat-8 ./build-ui # openM++ UI

To create openmpp_redhat_YYYYMMDD.tar.gz deployment archive:

podman run openmpp/openmpp-build:redhat-8 ./build-tar-gz

Environment variables to control build-tar-gz: OM_MSG_USE, MODEL_DIRS

To customize build you can change any of build scripts inside of $HOME/build directory:

$HOME/build/build-all # rebuild entire openM++ and create openmpp_redhat_YYYYMMDD.tar.gz archive
$HOME/build/build-openm # rebuild entire openM++ runtime libraries and compiler
$HOME/build/build-models # rebuild openM++ models specified by MODEL_DIRS
$HOME/build/build-go # rebuild Go oms web-service and dbcopy utility
$HOME/build/build-r # rebuild openMpp R package
$HOME/build/build-ui # rebuild openM++ UI
$HOME/build/build-tar-gz # create openmpp_redhat_YYYYMMDD.tar.gz archive

To start shell inside of container do:

podman run -it openmpp/openmpp-build:redhat-8 bash

Download: binary files and source code

Latest source code: openM++ git

(optional) Go source code: openM++ Go git

(optional) UI source code: openM++ Go git

Documentation: this wiki

Pre-requisits described at: Setup Development Environment.

It is recommended to start from desktop version of openM++, not a cluster (MPI) version.

You need to use cluster version of openM++ to run the model on multiple computers in your network, in cloud or HPC cluster environment.
OpenM++ is using MPI to run the models on multiple computers. Please check Model Run: How to Run the Model page for more details.

Tested platforms:

Debian stable (12) 11 and 10, MX Linux 23, 21 and 19, Ubuntu 22.04, RedHat 9+

g++ >= 8.3

(optional) MPI, i.e.: OpenMPI >= 3.1 or MPICH (other MPI implementations expected to work but not tested)

(optional) OpenMPI >= 4.0 on RedHat >= 8.3 (OpenMPI was broken on RedHat 8.1)

Note: It does work on most of latest Linux distributions, we just not testing regularly on every Linux version.

It is also occasionally tested on openSUSE, Mint, Manjaro, Solus and others.

It is not supported, but may also work on older versions, for example Ubuntu 20.04, Ubuntu 18.04 and RedHat 8.

Check your g++ --version :

g++ (Debian 8.3.0-6) 8.3.0 # Debian 10 and MX Linux 19
g++ (Debian 10.2.1-6) 10.2.1 20210110 # Debian 11 and MX Linux 21
g++ (Ubuntu 9.3.0-17ubuntu1~20.04) 9.3.0 # Ubuntu 20.04
g++ (GCC) 8.3.1 20191121 (Red Hat 8.3.1-5) # RedHat 8, Rocky Linux, AlmaLinux

Note: Above output does not include all possible Linux versions and may be outdated, openM++ supports almost any of modern Linux distribution.

To build debug version of openM++:

git clone https://github.com/openmpp/main.git master
cd master/openm/
make
cd ../models/
make

RedHat 8: If want to rebuild omc (OpenM++ compiler) then you will need bison version 3.3+ and flex 2.6+ installed, see details at: Setup
Development Environment. It is optional and you can avoid it by rebuilding only openM++ run-time libararies:

git clone https://github.com/openmpp/main.git master
cd master/openm/
make libopenm
cd ../models/
make

To build release version of openM++: make RELEASE=1

To build MPI version of openM++: make OM_MSG_USE=MPI

Quick Start for OpenM++ Developers
Where is OpenM++

Build on Linux

https://github.com/openmpp/main/releases/latest
https://github.com/openmpp/main/
https://github.com/openmpp/go
https://github.com/openmpp/UI
http://www.open-mpi.org/

Note: openM++ binary downloads build as: make RELEASE=1 OM_MSG_USE=MPI

RedHat 8: to build and run MPI version of openM++:

module load mpi/openmpi-x86_64

Of course, you can also use 32bit version of OpenMPI or MPICH.

Tested platforms:

Windows 11, 10, it may also work on Windows 7 (64 and 32 bits), 2016 (64 bit)

expected to work on any Windows 7 and above or 2008R2 and above, 32 and 64 bits, not regulary tested

Visual Studio 2022 or 2019 (VS 2017 not supported, but may work), including Community Edition

(optional) Microsoft MPI SDK Redistributable Package

To build debug version of openM++:

checkout from openM++ git using your favorite Git client into C:\SomeDir\ or use command line:

git clone https://github.com/openmpp/main.git SomeDir

download and unzip Windows version of bison and flex into C:\SomeDir\bin\ .

download and unzip sqlite3.exe into C:\SomeDir\bin\ .

use Visual Studio or MSBuild to build C:\SomeDir\openm\openm.sln solution.

to build test model(s), i.e.: NewCaseBased, use Visual Studio or MSBuild: C:\SomeDir\models\NewCaseBased\NewCaseBased-ompp.sln .

To build MPI version of openM++:

download and install Microsoft MPI SDK and MPI Redistributable.

use Notepad to open C:\SomeDir\openm\openm.build.props , find and edit the line:

<OM_MSG_USE>MPI</OM_MSG_USE>

build C:\SomeDir\openm\openm.sln solution.

rebuild the model and run it:
go to menu: Project -> Properties -> Configuration Properties -> OpenM++

change: Build Options -> Grid computing (MPI) -> MPI-enabled Executable (MPI)

change: Run Options -> Number of processes to launch ->2 or more (depends on your cluster configuration)...

change: Run Options -> Run the scenario after build -> Yes

Rebuild Model project

At bottom Output window of Visual Studio you will see something like:

Build on Windows

https://github.com/openmpp/main
https://github.com/lexxmark/winflexbison/releases/download/v2.5.24/win_flex_bison-2.5.24.zip
http://www.sqlite.org/download.html
https://docs.microsoft.com/en-us/message-passing-interface/microsoft-mpi

1>Model.vcxproj -> C:\SomeDir\models\RiskPaths\ompp\bin\RiskPaths_mpi.exe
1>2021-06-01 20:57:28.146 RiskPaths
1>2021-06-01 20:57:28.146 RiskPaths
1>2021-06-01 20:57:28.146 RiskPaths
1>2021-06-01 20:57:28.163 RiskPaths
........
1>2021-06-01 20:57:28.366 OpenM++ build : Windows 64 bit Release MPI
1>2021-06-01 20:57:28.367 Parallel run of 4 modeling processes, 1 thread(s) each
........
1>2021-06-01 20:57:28.859 member=3 Simulation progress=100% cases=2000
1>2021-06-01 20:57:28.867 member=3 Simulation summary: cases=2000, events/case=112.9, entities/case=1.0, elapsed=0.453989s
1>2021-06-01 20:57:28.868 member=3 Write output tables - start
1>2021-06-01 20:57:28.873 member=3 Write output tables - finish
1>2021-06-01 20:57:29.233 member=0 Write output tables - finish
1>2021-06-01 20:57:29.919 Writing into aggregated output tables, run: 102
1>2021-06-01 20:57:32.607 Done.
1>2021-06-01 20:57:32.607 Done.
1>2021-06-01 20:57:32.607 Done.
1>2021-06-01 20:57:32.607 Done.
1>Done building project "Model.vcxproj".
========== Rebuild All: 1 succeeded, 0 failed, 0 skipped ==========

Note: binary downloads build with Microsoft MPI SDK and MPI Redistributable.

Note: If you getting build error MSB8036:

C:\Program Files (x86)\Microsoft Visual Studio\2017\Community\Common7\IDE\VC\VCTargets\Platforms\Win32\PlatformToolsets\v141\Toolset.targets(34,5):
error MSB8036: The Windows SDK version 10.0.14393.0 was not found.
Install the required version of Windows SDK or change the SDK version in the project property pages or by right-clicking the solution and selecting "Retarget solution".

https://docs.microsoft.com/en-us/message-passing-interface/microsoft-mpi

then do one of the following:

"Retarget solution"

use Visual Studio 2019

start Visual Studio 2017 Installer (VS 2017 not supported but may work)
Modify

right column

check box Windows 8.1 SDK and UCRT SDK

Tested on MacOS latest, may work starting from Catalina 10.15 and 11.1+ Big Sur

Check your clang, make, bison, SQLite version:

clang --version
....
Apple clang version 11.0.0 (clang-1100.0.33.12)

make --version
....
GNU Make 3.81

bison --version
....
bison (GNU Bison) 3.8.2

sqlite3 --version
....
3.28.0 2019-04-15 14:49:49

To build debug version of openM++:

git clone https://github.com/openmpp/main.git ompp-main
cd ompp-main/openm/
make
cd ../models/
make

To build release version of openM++: make RELEASE=1

You can also use Xcode ~/ompp-main/openm/openm.xcworkspace .

In order to build omc complier you need to use menu and select Product -> Scheme -> omc

Known issue: Xcode UI does not update check mark on selected scheme To fix it go to Product -> Scheme -> Manage Schemes and use mouse
to drag any scheme to move it up or down.

Release version of omc is required in order to build any model other than modelOne.

In order to build and debug modelOne using Xcode please open ~/ompp-main/models/modelOne/modelOne.xcworkspace

clone from GitHub:

git clone https://github.com/openmpp/R.git ompp-r

Windows:

cd C:>C:\ompp-r
"C:\Program Files\R\R-3.4.0\bin\R.exe" CMD build openMpp

Linux and MacOS:

Build on MacOS

Build R package

cd ompp-r
R CMD build openMpp

Expected output:

* checking for file ‘openMpp/DESCRIPTION’ ... OK
* preparing ‘openMpp’:
* checking DESCRIPTION meta-information ... OK
* checking for LF line-endings in source and make files and shell scripts
* checking for empty or unneeded directories
* building ‘openMpp_0.8.3.tar.gz’

setup Go envirnment as described at: Setup Development Environment.

initial checkout:

mkdir $HOME/go-ompp
cd $HOME/go-ompp
export GOPATH=$HOME/go-ompp
git clone https://github.com/openmpp/go ompp-go

build Go utilities:

cd $HOME/go-ompp/ompp-go
go install -tags sqlite_math_functions,sqlite_omit_load_extension ./dbcopy
go install -tags sqlite_math_functions,sqlite_omit_load_extension ./oms

After initial checkout first go install command can take ~30 seconds because go needs to get all dependencies.

By default only SQLite model databases supported by dbcopy and oms . If you want to use other databases vendors please compile dbcopy with
ODBC enabled:

go install -tags odbc,sqlite_math_functions,sqlite_omit_load_extension ./dbcopy

Currently supported database vendors are: SQLite (default), Microsoft SQL Server, MySql, PostgreSQL, IBM DB2, Oracle. You can use dbcopy
utility to copy model data between any of vendors above, for example copy from MySQL to MSSQL or from PostgeSQL to SQLite.

Instructions below assuming Windows environment and it is very much identical for Linux and MacOS, except of course, back slashes in directory
paths.

setup node.js environment as described at: Setup Development Environment.

checkout and build UI:

cd my-openm-plus-plus-dir
git clone https://github.com/openmpp/UI.git ompp-ui
cd ompp-ui
npm install

make sure you have models\bin populated with *.sqlite db files and model executables.

it is recommended to have my-openm-plus-plus-dir\etc folder which can be found at openM++ release archive

start oms web-service by invoking:
ompp_ui.bat on Windows

ompp_ui.sh on Linux

ompp_ui.command on MacOS

or do it in command line:

cd my-openmn-plus-plus-dir
bin\oms -oms.HomeDir models -oms.LogRequest

Build Go utilities

Build UI

start UI in debug mode:

cd my-openm-plus-plus-dir\ompp-ui
npm run dev

open your favorite browser at http://localhost:8080

to build UI for production:

cd my-openm-plus-plus-dir\ompp-ui
npm run build

copy HTML results folder my-openm-plus-plus-dir\dist\spa* into my-openm-plus-plus-dir\html\

open your favorite browser at http://localhost:4040 and refresh (clear browser cache if required)

Note: UI is beta version and you need to stop oms web-service in order to update, add or remove model .sqlite db files.*

Your development and runtime environment must meet following:

OS: 64 or 32 bits version of:
Linux (tested): Debian stable (12) 11 and 10, MX Linux 23, 21 and 19, Ubuntu 22.04, RedHat 9+, (Ubuntu 20.04 and RedHat 8 may also
work but not tested regualry)

Windows (tested): 11, 10, may work on 7

tested on MacOS latest, may work starting from Catalina 10.15 and Big Sur 11.1+, including new Apple Arm64 CPU (a.k.a. M1)

Note: It does work on most of latest Linux'es, any Windows 7+ or 2008R2+, 32 and 64 bits. We just not testing it regularly on every possible
Windows / Linux version.

Support of c++17:
g++ >= 8.3+

Visual Studio 2022, including Community Edition, Visual Studio 2019 also works, but not tested regularly

Xcode 11.2+

(optional) if want to build omc (openM++ compiler) from sources:
bison 3.3+ and flex 2.6+

(optional) it is recommended to have MPI installed on your local machine or in your HPC cluster:
Linux (tested): OpenMPI 1.6+

Windows (tested): Microsoft MPI v8+, expected to work starting from HPC Pack 2012 R2 MS-MPI Redistributable Package

expected to work: MPICH (MS-MPI is in fact MPICH redistributed by Microsoft)

Optional development tools:

R 3.5+

Go 1.19+, on Windows required MinGw for g++ compiler

node.js LTS version

Linux: To check g++ version type: g++ --version , expected output:

g++ (Debian 8.3.0-6) 8.3.0 # Debian 10 and MX Linux 19
g++ (Debian 10.2.1-6) 10.2.1 20210110 # Debian 11 and MX Linux 21
g++ (Ubuntu 9.3.0-17ubuntu1~20.04) 9.3.0 # Ubuntu 20.04
g++ (GCC) 8.3.1 20191121 (Red Hat 8.3.1-5) # RedHat 8, Rocky Linux, AlmaLinux

Note: Above output does not include all possible Linux versions and may be outdated, openM++ supports latest Linux distributions.

MacOS: To check c++ version type: clang --version or g++ --version , expected output:

Apple clang version 11.0.0 (clang-1100.0.33.12)

MacOS: install command line developer tools, if not installed already by Xcode: xcode-select --install

Windows: Make sure you have Visual Studio 2022 or 2019 installed with latest update (VS 2017 is not supported but may work).

If you are using different c++ vendor, i.e. Intel c++ then compile and run following test:

Setup Development Environment
OpenM++ Requirements

Check c++17 capabilities

#include <iostream>
#include <map>
#include <string>
#include <iostream>

using namespace std;

int main(int argc, char** argv)
{
 const map<string, string> capitals {
 { "Poland", "Warsaw"},
 { "France", "Paris"},
 { "UK", "London"},
 { "Germany", "Berlin"}
 };

 // print Country: Capital
 for (const auto & [k,v] : capitals)
 {
 cout << k << ": " << v << "\n";
 }
 return 0;
}

Save above code as h17.cpp , compile and run it:

g++ -std=c++17 -o h17 h17.cpp
./h17

Expected output:

France: Paris
Germany: Berlin
Poland: Warsaw
UK: London

Optional: If you want to recompile omc (OpenM++ compiler) then you need bison version >= 3.3 and flex 2.6+ installed.

To check bison and flex version type following commands:

bison --version
flex --version

Expected output:

bison (GNU Bison) 3.3.2 # Debian 10 and MX Linux 19
bison (GNU Bison) 3.5.1 # Ubuntu 20.04
bison (GNU Bison) 3.7.5 # Debian 11 and MX Linux 21
bison (GNU Bison) 3.0.4 # RedHat 8: this version is too OLD
flex 2.6.4

RedHat 8

You need a newer version of bison if you want to rebuild openM++ compiler (omc). One way of doing it is to rebuild bison from sources:

curl -o bison-src.tar.gz https://ftp.gnu.org/gnu/bison/bison-3.7.5.tar.gz
tar -xzf bison-src.tar.gz
cd bison-3.7.5
./configure --prefix=${HOME}/bison
make
make install

In order to use a newer version of bison export it to your environment:

export PATH=${HOME}/bison/bin:${PATH}
export LDFLAGS="-L${HOME}/bison/lib ${LDFLAGS}"

To verify result do bison --version , expected output:

Bison and Flex

bison (GNU Bison) 3.7.5

Potential issue: If make fail with error about missing makeinfo then you may need to install it from official RedaHat PowerTools repository:

dnf install dnf-plugins-core
dnf install https://dl.fedoraproject.org/pub/epel/epel-release-latest-8.noarch.rpm
dnf config-manager --set-enabled powertools
dnf install texinfo

Windows:

download Windows version of bison and flex

if your OpenM++ checkout folder is: C:\SomeDir\ then unzip win_flex_bison-2.5.24.zip into C:\SomeDir\bin\

To check bison and flex version type following commands with current directory C:\SomeDir\bin\ :

win_bison --version
win_flex --version

Expected output:

bison (GNU Bison) 3.7.4
flex 2.6.4

MacOS Bison:

Bison version included in MacOS bison (GNU Bison) 2.3 released in 2006 and too old for openM++. You can install bison 3.8 from HomeBrew or
from (MacPorts)[https://www.macports.org/]

MacOS Bison from HomeBrew:

install HomeBrew from GUI terminal:

/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install.sh)"

install bison 3.8 using HomeBrew:

brew install bison@3.8

export bison, you may also want to add it into your .zprofile: if MacOS on Intel CPU:

export PATH="/usr/local/opt/bison/bin:$PATH"
export LDFLAGS="-L/usr/local/opt/bison/lib ${LDFLAGS}"

if MacOS on Apple Arm64 CPU (a.k.a. M1):

export PATH="/opt/homebrew/opt/bison/bin:${PATH}"
export LDFLAGS="-L/opt/homebrew/opt/bison/lib ${LDFLAGS}"

verify bison version

bison --version
....
bison (GNU Bison) 3.8.2

OpenM++ is using MPI to run the models on multiple computers in your network, in cloud or HPC cluster environment.

Linux: To check your MPI version:

[user@host ~]$ mpirun --version
mpirun (Open MPI) 1.10.7

You may need to load MPI module in your environment on RedHat:

Install MPI

https://github.com/lexxmark/winflexbison/releases/download/v2.5.24/win_flex_bison-2.5.24.zip
https://brew.sh/
https://www.macports.org/%5D

module load mpi/openmpi-x86_64
mpirun --version

Windows: To check your MPI version:

C:\> mpiexec /?
Microsoft MPI Startup Program [Version 10.0.12498.5]
........

Windows: download and install Microsoft MPI SDK and MPI Redistributable.

You can test your MPI environment with following code:

#include <mpi.h>
#include <iostream>
using namespace std;

int main(int argc, char **argv)
{
 int mpiCommSize;
 int mpiRank;
 int procNameLen;
 char procName[MPI_MAX_PROCESSOR_NAME];

 MPI_Init(&argc, &argv);

 MPI_Comm_size(MPI_COMM_WORLD, &mpiCommSize);
 MPI_Comm_rank(MPI_COMM_WORLD, &mpiRank);
 MPI_Get_processor_name(procName, &procNameLen);

 cout << "Process: " << mpiRank << " of " << mpiCommSize << " name: " << procName << endl;

 MPI_Finalize();
 return 0;
}

Save this code as mhp.cpp , compile and run it:

mpiCC -o mhp mhp.cpp
mpirun -n 4 mhp

Expected output is similar to:

Process: 0 of 4 name: omm.beyond2020.com
Process: 2 of 4 name: omm.beyond2020.com
Process: 1 of 4 name: omm.beyond2020.com
Process: 3 of 4 name: omm.beyond2020.com

Windows: To build MPI tests in Visual Studio:

create C++ command-line project

adjust following in project properties:
VC Directories -> Include Directories -> C:\Program Files\Microsoft MPI\Inc

VC Directories -> Library Directories -> C:\Program Files\Microsoft MPI\Lib\i386

Linker -> Input -> Additional Dependencies -> msmpi.lib

build it and run under Visual Studio debugger

Please use amd64 version of MS MPI libraries if you want to build 64bit version.

To run MPI test on Windows type following in your command-line prompt:

mpiexec -n 4 mhp.exe

Expected output is similar to:

Test MPI

https://docs.microsoft.com/en-us/message-passing-interface/microsoft-mpi

Process: 3 of 4 name: anatolyw7-om.beyond2020.local
Process: 2 of 4 name: anatolyw7-om.beyond2020.local
Process: 0 of 4 name: anatolyw7-om.beyond2020.local
Process: 1 of 4 name: anatolyw7-om.beyond2020.local

Download and install R version 3.5+ (v4+ not tested):

Windows: https://cran.r-project.org/bin/macosx/R-3.6.3.nn.pkg

on Linux use your package manager, e.g.: sudo yum install R

MacOS on Intel CPU: https://cran.r-project.org/bin/macosx/R-3.6.3.nn.pkg

It is recommended to use RStudio or RStudio Server for development.

Windows:

download Go from https://golang.org/ and install into any directory, e.g.: C:\Program Files\go

download MinGw from your preferable distribution, ex: https://nuwen.net/mingw.html and unpack into any directory: C:\MinGW\

create your Go working directory, e.g.: C:\go_workspace\

set your environment variables:

set GOPATH=C:\go_workspace
set PATH=%GOPATH%\bin;%PATH%
cd %GOPATH%
C:\MinGW\set_distro_paths.bat

It is recommended to use Visual Studio Code for development.

MacOS on Intel CPU: download and install fresh Go version, for example: https://golang.org/dl/go1.16.3.darwin-amd64.pkg

MacOS on Arm64 CPU: download and install fresh Go version, for example: https://golang.org/dl/go1.16.3.darwin-arm64.pkg

MacOS Go also can be installed from go1.16.3.linux-amd64.tar.gz or go1.16.3.linux-arm64.tar.gz archive, similar to Linux

MacOS: include into your .zprofile PATH to Go, for example:

export GOROOT=$HOME/go
export PATH=$GOROOT/bin:${PATH}

Note: above version number 1.16.3 is only an example, please most recent stable version.

Linux:

download Go, for example version 1.16.3 from: https://golang.org/dl/go1.16.3.linux-amd64.tar.gz

unpack into any directory, e.g.: ~/go

set your environment variables (in .profile or .bash_profile or .bashrc, etc.):

export GOROOT=$HOME/go
export PATH=$GOROOT/bin:${PATH}

If you want to copy models database content from SQLite to other vendors then you may also need to install unixODBC development package:

su -c "yum install unixODBC unixODBC-devel"

Currently supported database vendors are: SQLite (default), Microsoft SQL Server, MySql, PostgreSQL, IBM DB2, Oracle. You can use dbcopy
utility to copy model data between any of vendors above, for example copy from MySQL to MSSQL or from PostgeSQL to SQLite.

Install R

Install Go

Install node.js

https://cran.r-project.org/bin/macosx/R-3.6.3.nn.pkg
https://cran.r-project.org/bin/macosx/R-3.6.3.nn.pkg
https://www.rstudio.com/products/rstudio/download/
https://www.rstudio.com/products/rstudio/download-server/
https://golang.org/
https://nuwen.net/mingw.html
https://code.visualstudio.com/
https://golang.org/dl/go1.16.3.darwin-amd64.pkg
https://golang.org/dl/go1.16.3.darwin-arm64.pkg
https://golang.org/dl/go1.16.3.linux-amd64.tar.gz

You need node.js in order to build and develop openM++ UI. Please download and install stable version from Node.js.

Windows

Use any of:
MSI installer: https://nodejs.org/dist/v14.16.1/node-v14.16.1-x64.msi

Zip archive: https://nodejs.org/dist/v14.16.1/node-v14.16.1-win-x64.zip

if you are using archive then unpack it into C:\node directory and to start development open command prompt and type:

C:\node\nodevars.bat
cd C:\my-openm-plus-plus-dir\ompp-ui
npm install

Linux

Use your favorite package manager

Or directly download archive from Node.js and unpack into $HOME/node :

curl https://nodejs.org/dist/v14.16.1/node-v14.16.1-linux-x64.tar.xz -o node.tar.xz
mkdir $HOME/node
tar -xJf node.tar.xz -C node --strip-components=1

add PATH to Node into your .bash_profile (or .profile or .bashrc, etc): export PATH=$HOME/node/bin/:${PATH}

checkout and build UI:

cd my-openm-plus-plus-dir
git clone https://github.com/openmpp/UI.git ompp-ui
cd ompp-ui
npm install
npm run build

MacOS on Intel CPU

Use any of:
Installer: https://nodejs.org/dist/v14.16.1/node-v14.16.1.pkg

Archive: https://nodejs.org/dist/v14.16.1/node-v14.16.1-darwin-x64.tar.gz

if you are using archive then unpack it into $HOME/node and try checkout and build UI:

mkdir $HOME/node
tar -xzf node-v14.16.1-darwin-x64.tar.gz -C node --strip-components=1

add PATH to Node into your .zprofile: export PATH=$HOME/node/bin/:${PATH}

checkout and build UI as described in Linux section above

MacOS on Arm64 CPU

install HomeBrew from GUI terminal:

/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install.sh)"

install Node.js LTS version using HomeBrew:

brew install node@14

add PATH to Node into your .zprofile: export PATH=/opt/homebrew/opt/node@14/bin:${PATH}

checkout and build UI as described in Linux section above

Note: In examples above node-v14.16.1 is an example of current LTS (long term support) version. Please check Node.js site to download latest
LTS version.

https://nodejs.org
https://nodejs.org/dist/v14.16.1/node-v14.16.1-x64.msi
https://nodejs.org/dist/v14.16.1/node-v14.16.1-win-x64.zip
https://nodejs.org
https://nodejs.org/dist/v14.16.1/node-v14.16.1.pkg
https://nodejs.org/dist/v14.16.1/node-v14.16.1-darwin-x64.tar.gz
https://nodejs.org

HPC cluster Test Lab not available after October 2018. Instructions below outdated but may be useful as example of development test
lab on Linux.

Download: binary files

Source code: openM++ git

Documentation: this wiki

HPC cluster (test lab): ssh -p 4022 USER@omm.some-where.com

OpenM++ HPC cluster test lab consists of:

master node and 2 quad cores computational nodes.

all nodes running 64bit Centos 7 and Open MPI.

computational node names are: om1.some-where.com, om2.some-where.com

shared directory to put executatbles: /mirror

special user to run the tests on cluster: mpi

script to run on cluster: /mirror/omrun

cluster hosts description: /mirror/mpihosts

Please read Quick Start for OpenM++ Developers first. Additional information can be found in Linux section of Setup Development Environment.

To login on OpenM++ test lab cluster:

ssh -p 4022 USER@omm.some-where.com

If you are on Windows and using putty, please put following setting here:

server name: omm.some-where.com
port: 4022
Window -> Translation -> Remote Charter Set: UTF-8

To verify OpenMPI is working:

 module load mpi/openmpi-x86_64
 mpirun -H omm,om1,om2 uname -n

expected output:

 omm.some-where.com
 om1.some-where.com
 om2.some-where.com

To verify c++ and OpenMPI development environment compile MPI Hello, World:

2018, June: OpenM++ HPC cluster: Test Lab
Obsolete

Where is OpenM++ and HPC cluster Test Lab

Login to OpenM++ HPC cluster

Check your Environment

https://github.com/openmpp/main/releases/latest
https://github.com/openmpp/main/
http://www.open-mpi.org/

#include <iostream>
#include <mpi.h>

using namespace std;

int main(int argc, char ** argv)
{
 int mpiCommSize;
 int mpiRank;
 int procNameLen;
 char procName[MPI_MAX_PROCESSOR_NAME];

 MPI_Init(&argc, &argv);

 MPI_Comm_size(MPI_COMM_WORLD, &mpiCommSize);
 MPI_Comm_rank(MPI_COMM_WORLD, &mpiRank);
 MPI_Get_processor_name(procName, &procNameLen);

 cout << "Process: " << mpiRank << " of " << mpiCommSize << " name: " << procName << endl;

 MPI_Finalize();
 return 0;
}

 mpiCC -o /mirror/mhw mhw.cpp
 cd /mirror
 mpirun -H omm,om1,om2 mhw

It is convenient to customize .bashrc to setup your environment:

.bashrc
#
....something already here....
#

enable MPI
#
source /usr/share/Modules/init/bash
module load mpi/openmpi-x86_64

Tip: If you want to have full Linux GUI on master node then freeNX client can be a good choice and Eclipse or Netbeans are excellent IDE for
c++ development.

Check out and compile OpenM++:

git clone https://github.com/openmpp/main.git master
cd master/openm/
make OM_MSG_USE=MPI
cd ../models/
make OM_MSG_USE=MPI all publish run

Copy build results to /mirror shared directory:

cp bin/* /mirror

Run the models on cluster with different number of subsamples:

 cd /mirror
 mpirun -H omm,om1,om2 -n 4 modelOne -General.Subsamples 4

you will be prompted for mpi user password, expected output is similar to:

Setup Your Environment

Build and Run OpenM++

http://www.nomachine.com/download-client-windows.php

2013-10-24 12:38:41.0360 Model: modelOne
2013-10-24 12:38:41.0359 Model: modelOne
2013-10-24 12:38:41.0360 Model: modelOne
2013-10-24 12:38:41.0363 Model: modelOne
2013-10-24 12:38:42.0518 Subsample 1
2013-10-24 12:38:42.0518 Subsample 2
2013-10-24 12:38:42.0520 Subsample 3
2013-10-24 12:38:43.0035 Subsample 0
2013-10-24 12:38:43.0062 Reading Parameters
2013-10-24 12:38:43.0062 Reading Parameters
2013-10-24 12:38:43.0062 Reading Parameters
2013-10-24 12:38:43.0063 Reading Parameters
2013-10-24 12:38:43.0066 Running Simulation
2013-10-24 12:38:43.0066 Writing Output Tables
2013-10-24 12:38:43.0066 Running Simulation
2013-10-24 12:38:43.0066 Writing Output Tables
2013-10-24 12:38:43.0066 Running Simulation
2013-10-24 12:38:43.0066 Writing Output Tables
2013-10-24 12:38:43.0066 Running Simulation
2013-10-24 12:38:43.0066 Writing Output Tables
2013-10-24 12:38:44.0198 Done.
2013-10-24 12:38:44.0198 Done.
2013-10-24 12:38:44.0198 Done.
2013-10-24 12:38:44.0200 Done.

This page contains various notes only for OpenM++ developers . There is no useful information on that page for anyone else. It is a notes, they
are not in any specific order and may not true. OK, you have been warned.

OpenM++ consists of 6 source code repositories published at GitHub / openmpp. Core portion of openM++ located at GitHub / openmpp / main
and has following structure:

bin - used for OpenM++ compiled binaries and third party tools

include - includes for public interfaces of compiler and libraries
libopenm - model runtime library public interface

omc - model compiler public interface

licenses - third party lincences

models - test models, for example:
NewCaseBased - simple test model

NewTimeBased - simple test model

modelOne - test model for runtime library, does not use OpenM++ compiler

openm - OpenM++ core source code
libopenm - model runtime library (libopenm) and compiler library (libopenm_omc_db)

common - common helper routines, for example: log

db - data access classes

include - includes for libopenm and libopenm_omc_db

model - model base classes

msg - message passing library

main.cpp - models main() entry point

libsqlite - SQLite with extension functions such as SQRT()

omc - OpenM++ compiler

Perl - perl scripts

props - VC++ project includes to build the models

R - openMpp R library: integration between OpenM++ and R

sql - sql scripts to create openM++ database
db2 - DB2 version of openM++ database scripts

mssql - Microsoft SQL Server version of openM++ database scripts

mysql - MySql version of openM++ database scripts

postgresql - PostgreSql version of openM++ database scripts

sqlite - SQLite version of openM++ database scripts

As it is now model executable output log messages into three streams:

standard output (console)

Development Notes: Defines, UTF-8, Databases, etc.
OpenM++ development notes

Git layout of main repository

OpenM++ logs and trace

https://github.com/openmpp
https://github.com/openmpp/main

"last" log file: /current/working/dir/modelExeName.log

"stamped" log file: /current/working/dir/modelExeName.date_time.pid.log

Model trace output is similar to log output but works much faster. Trace output is buffered and may be lost if something goes wrong and model
crushed.

You can adjust output log and trace output inside of main() by changing: theLog->init(...); parameters. It is also be controlled by .ini options file.

You may need to change defines to build OpenM++ from source code:

OM_DB_SQLITE: use SQLite as database provider (only one supported at the moment)

OM_MSG_MPI: use MPI as for message passing library (see below)

OM_MSG_EMPTY: use empty version message passing library (default value)

OM_UCVT_MSSTL: use c++11 STL to convert strings to UTF-8 (default on Windows)

OM_UCVT_ICONV: use glibc iconv to convert strings and file content to UTF-8 (default on Linux)

Please note:

OM_MSG_MPI and OM_MSG_EMPTY mutually exclusive

to set defines properly change openm.build.props (on Windows) or use make OM_MSG_USE=MPI (on Linux)

OM_UCVT_MSSTL and OM_UCVT_ICONV mutually exclusive

OM_UCVT_MSSTL tested on Windows with VC++2012 and account for Microsoft-specific implementation of STL codecvt classes.

Defines to compile libsqlite library with extension functions: SQLITE_ENABLE_COLUMN_METADATA; SQLITE_OMIT_LOAD_EXTENSION;
HAVE_ACOSH; HAVE_ASINH; HAVE_ATANH;

To avoid innumerous compatibility errors and warnings following must be defined: _CRT_SECURE_NO_WARNINGS and
_CRT_NONSTDC_NO_WARNINGS.

IDbExec interface is db-connection wrapper and only the place where real SQL operations executed. All other classes are to wrap OpenM++
database tables and implement "business logic".

Data library is NOT thread-safe by design, do not pass it objects between model threads without proper guards.

Difference between OpenM++ database schema and Modgen schema:

support multiple models and multiple versions of the same model

support multiple run results of each model

tends to be more "relational", i.e.:
language-specific rows moved to separate tables

sub-samples are in rows not in columns

Database schema "read-only" compatible with Modgen database. For each Modgen table corresponding view created which allow to read from
OpenM++ database as from Modgen database. If OpenM++ database contains multiple models (or versions) then it not be exposed to Modgen
compatibility views.

If database connection string is not specified then model try to open SQLite database with name ModelName.sqlite (i.e.: modelOne.sqlite) in
current working directory. Other word, default database connection strig is:

Defines for OpenM++

Defines and other changes for VC++

OpenM++ data library notes

OpenM++ database notes

Database=ModelName.sqlite; Timeout=86400; OpenMode=ReadWrite;

Database can be created by following commands:

cd
sqlite3 ModelName.sqlite < ../sql/sqlite/create_db_sqlite.sql
sqlite3 ModelName.sqlite < ModelName_create_model.sql
sqlite3 ModelName.sqlite < ModelName_insert_parameters.sql

On Linux slite3 executable most likely in your PATH. On Windows you must download sqlite3.exe from SQLite web-site.

Following parameters allowed for SQLite database connection:

Database - (required) database file name or URI, file name can be empty

Timeout - (optional) table lock "busy" timeout in seconds, default=0

OpenMode - (optional) database file open mode: ReadOnly, ReadWrite, Create, default=ReadOnly

DeleteExisting - (optional) if true then delete existing database file, default: false

If OpenMode=Create specified then database file created if not exist, which is default SQLite behavior.

Note: minimal connection string syntax for SQLite provider is: "Database=" and in that case SQLite will open temporary database. That kind of
connection string does not really make sense for OpenM++ models because temporary database will be deleted after model exit.

Message passing library (a.k.a. execute library) used for:

broadcast metadata and input parameters from root process to slave modeling processes

gather output modeling results from all modeling processes into root process

That library has two versions:

define OM_MSG_MPI: MPI-based version which does the job as described above (MPI component must be installed)

define OM_MSG_EMPTY: empty version of library, which does nothing and don't required anything installed

When empty version of library can useful?

To develop and debug your model without having MPI installed and without complexity of multi-process debugging. Obviously, some technique
must be used to debug modeling logic inside of single process.

IMsgExec interface is main class for message passing library. All processes involved in the modeling must can be identified by integer process
rank. Root process rank is zero.

Messaging library is NOT thread-safe, at least for now, do not pass it objects between model threads without proper guards. It may change in the
future versions.

All strings inside of openM++ source code expected to be are UTF-8 encoded. If you need to pass string to openM++ API, please convert it to
UTF-8 first. There is helper function which return file content converted as UTF-8 string:

string fileContent = fileToUtf8("someFile.txt");

Following rules applied to detect file encoding:

if byte order mark (BOM) present in the file then it converted according to BOM

if first 2048000 bytes of file are UTF-8 then file considered as UTF-8 and not converted

if code page (encoding name) specified, i.e.: "English_US.1252" then it used for conversion

OpenM++ data library notes: SQLite

OpenM++ message passing library notes

OpenM++ and UTF-8 strings

http://www.sqlite.org/download.html

default user code page (encoding name) used to convert file content to UTF-8

You can use optional parameter to explicitly specify code page (encoding name):

string fileContent = fileToUtf8("someFile.txt", "English_Canada.1252"); // Windows: CP-1252
string fileContent = fileToUtf8("someFile.txt", "WINDOWS-1252"); // Linux: CP-1252

Encoding name is OS-specific and conversion would fail if name is invalid.

Note: conversion from UTF-32 to UTF-8 not supported on Windows.

OpenM++ is using MD5 digest to compare and find models, parameters, output tables and types in database. There are two digests calculated for
model run:

model run values digest which based on
values in model run output tables

values of model run input parameters

model run metadata digest which is unique key of model run Model run values digest calculated only after run is completed. It can be empty
if run failed.

Model run results do include output table values and all input parameter values. Model runs are stored in database as single copy only. For
example, if digest of (parameter A value of model run 101) == digest of (parameter A value of model run 123) then only value from run 101
actually stored in database and run 123 is a link to run 101 value.

Following rules are used to calculate digests:

Model digest:

model name, model type, model version
for all model types:
 type digest
for all model parameters:
 parameter digest
for all model output tables:
 table digest

Parameter digest:

parameter name, rank, type digest
for all dimensions:
 id, name, size, type digest

Output table digest:

table name, rank
for all dimensions:
 id, name, size (including "total" item), type digest
for all accumulators:
 acc id, name, source
 examples:
 id: 1
 name: acc1
 source: accumulator 1: sum(delta(interval(duration(smoking_status, NON_SMOKER))))
 id: 9
 name: Expr4
 source: 1.0E2 * (acc4 / acc0)
for all expressions (a.k.a. measures):
 id, name, source
 examples:
 id: 0
 name: Expr0
 source: (OM_AVG(acc0) / (OM_AVG(acc1) - OM_AVG(acc2)))
 id: 8
 name: E8
 source: OM_AVG(acc8)

Type digest:

type name, dictionary id (e.g.: 3=range), "total" enum id
for all enums:
 id, enum name

Import digest for parameter or output table:
--

Model digest, parameter digest, output table digest, etc.

--
rank, type digest
for all dimensions:
 id, name, size, type digest

Model run metadata digest:

model digest, run name, sub-values count, create date-time, run stamp

Model run value digest:

sub-values count, completed sub-values count, run status

for all parameters:
 parameter value digest

for all output tables:
 output table value digest

Value digest for parameters:

parameter_name, parameter_digest
sub_id, dimension names, param_value as comma separated header
 example (2 dimensions):
 sub_id,dim0,dim1,param_value
for all value rows:
 select sub_id, dimensions id, param_value
 convert sub_id, dimensions id into strings
 convert param_value to string
 if type is float then format as %.15g
 if type is boolean then "true" or "false"
 example (2 dimensions boolean):
 2,11,22,true

Value digest for output table:

table_name, table_digest

for all accumulators:
 accumulators value digest

for all expressions:
 expressions value digest

Value digest for output table accumulators:

comma separated header: acc_id, sub_id, dimension names, acc_value
 example (2 dimensions):
 acc_id,sub_id,dim0,dim1,acc_value

for all value rows:
 select acc_id, sub_id, dimensions id, acc_value
 convert acc_id, sub_id, dimensions id into strings
 format acc_value as %.15g
 example (2 dimensions):
 2,15,11,22,0.1234

Value digest for output table expressions:
--
comma separated header: expr_id, dimension names, expr_value
 example (4 dimensions):
 expr_id,dim0,dim1,dim2,dim3,expr_value

for all value rows:
 select expr_id, sub_id, dimensions id, expr_value
 convert expr_id, sub_id, dimensions id into strings
 format expr_value as %.15g
 example (4 dimensions):
 1,11,22,33,44,0.789

This roadmap and architecture document presented from "model developer" point of view, which imply C++ development process, user aspects
of OpenM++ are deliberately excluded. Please refer to OpenM++ user guide pages for additional details.

OpenM++ is an open source implementation of the Modgen microsimulation tool created at Statistics Canada. It is not a copy of the Modgen, but
a new, functionally equal implementation of publically available Modgen specifications. OpenM++ also has its own important distinct features like
portability, scalability and open source, which Modgen does not. Extensive information on Modgen is available on the Statistics Canada web site
at http://www.statcan.gc.ca/microsimulation/modgen/modgen-eng.htm.

Common OpenM++ design principles:

portability: it must work on Windows and Linux, 32 and 64 bit versions

scalability: work on single PC, in cluster or in cloud environment

open source: it is open source product

OpenM++ is portable and scalable:

OpenM++ designed, developed and tested to work on Windows and Linux, in 32 and 64 bits. As result same model can be created and tested on
model developer Windows PC and later run on Linux (or Windows) HPC cluster with thousands CPUs.

OpenM++ models are essentially highly parallelizable computational applications and fits very well in HPC cluster environment.

Specific version of cluster environment is to be established during first development phase. However, for the purpose of this design document,
we can make a safe assumption cluster environment mean MPI cluster since many of existing HPC clusters, including CopmuteCanada cluster,
are MPI-based.

OpenM++ is web-ready and cloud-ready:

It is important to understand, OpenM++ is targeted to provide “software-as-a-service” cloud models for research community. To simplify this
roadmap cloud and web details of OpenM++ omitted here. However, OpenM++ cloud capabilities are essential and all control layer, algorithms
and data layer components must be designed, developed and tested as cloud-ready.

2012, December: OpenM++ Design
About this document

What is OpenM++

OpenM++ Design Basics

OpenM++ Architecture

http://www.statcan.gc.ca/microsimulation/modgen/modgen-eng.htm

OpenM++ consists of 3 software layers:

layer 1: presentation

layer 2: control

layer 3: algorithms and data and must accommodate to 3 model life-cycle stages:

model design and development stage

model run stage

modeling results analysis stage

Note: Components described below in the order of OpenM++ layers and not in the order of development. For each component priority of the
features specified as (pri1), (pri2) and (pri3); that value does NOT correspond to OpenM++ development phases.

OpenM++ IDE is desktop GUI application to:

(pri1) edit model parameters

(pri1) view model output results

Layer 1: OpenM++ presentation layer

Component 1.1: OpenM++ IDE

(pri1) compare parameters of two models (see note below)

(pri2) edit model source file(s) with (p3) syntax highlighting for OpenM++ language (.ompp)

(pri2) compile from .ompp into c++ by invoking OpenM++ compiler, capture error s and warnings

(pri2) compile and debug c++ model code by using GCC or Microsoft c++

(pri2) debug c++ model executable

(pri2) run model on single PC or (p3) submit it to HPC cluster

(pri3) support source control system(s) integration (svn and/or git)

(pri2) provide unit testing functionality

Note1: As an alternative OpenM++ GUI can be split into multiple independent applications with desktop or web UI. In any case it must provide
and parameter editing capabilities.

Note2: Model comparison initially implemented as simple tool to compare parameters of two models. It can be later extended to support output
results comparison with sophisticated analysis, however, most likely it going to be done as part of described below OpenM++ model analysis
tools and OpenM++ web solutions.

OpenM++ presentation layer should be extendable and must support development of 3rd-party tools to view and analyze model output results.
Following viewers to be implemented first:

(pri1) Excel workbook and /or sample module(s)

(pri2) import/export into R

(pri2) basic web UI sample pages for ASP.NET

(pri3) basic web UI sample pages for PHP

(pri3) basic web UI sample pages for Java

(pri3) Excel OpenM++ add-on

Basic web UI sample pages with necessary server-side components provided as reference point for web development and should allow view/edit
parameters, view output results and run model executable.

OpenM++ must be cloud-ready and support “software-as-a-service” usage of the model(s). These capabilities are out of current document scope.
Mentioned above OpenM++ basic web UI sample pages provide starting point for web-developers. As next step web-solutions to use OpenM++
models on the web are going to be developed:

(pri1) OpenM++ ASP.NET web solution (comparable to ModgenWeb)

(pri2) OpenM++ PHP web solution

(pri3) OpenM++ Java web solution

Those web-solutions (as every other portion of OpenM++) must be scalable and portable and ready to be deployed in private or public cloud
platform, for example, Microsoft Azure for OpenM++ ASP.NET web solution (specific cloud platforms to be established). Based on that OpenM++
cloud software service capabilities can be created to provide ability for researches to work with their own models, including collaborative
modeling, by using thin clients (i.e. web-browsers).

Note: Full C++ model development cycle is not supported by web solutions, however it may be considered as OpneM++ cloud the feature.

That layer should provide set of command-line utilities, scripts and components to:

compile, debug and run OpenM++ models on single PC or in cluster environment

import, export and convert model data

Component 1.2: OpenM++ output result viewers and model analysis tools

Component 1.3: OpenM++ cloud and web capabilities

Layer 2: OpenM++ controller layer

(pri1) The OpenM++ compiler produces C++ code from .ompp source code for a specific model. The .ompp source code is written by a model
developer and contains declarative and procedural elements. Declarative elements include types, parameters, agents, variables, inter-agent
links, agent collections, events, and cross-tabulations. Procedural elements include code to implement events and (optionally) to prepare
secondary inputs and outputs. The OpenM++ compiler also produces a database of meta information on the model which is used by other
OpenM++ components.

OpenM++ models should run in not only on single PC but also in HPC cluster. OpenM++ cluster controller is a command-line utility, script or set
of scripts to support most commonly used HPC cluster environments. For the purpose of this document MPI-compatible environment is assumed,
however, other options can be considered as well. Following steps required in order to implement this:

(pri1) organize test OpenMPI or MPICH2 cluster for CentOS 64bit

(pri1) establish development environment for Windows 32bit and 64bit

(pri1) create OpenM++ controller(s) for each cluster environment

(pri2) establish automated test procedures for OpenM++ models in cluster

(pri3) organize test OpenMPI or MPICH2 cluster for Debian or Ubuntu 64bit

(pri3) organize test MS HPC cluster for Windows 64bit

These are a command-line utilities to convert existing Modgen models into OpenM++ format:

(pri1) parameters .dat file(s)

(pri2) source model code .mpp file(s)

This is a command-line utility(s) to load data from OpenM++ model data storage into well-known SQL Server databases:

(pri1) loader for MS SQL Server

(pri1) loader for MySQL / MariaDB

(pri2) generic SQL99 loader

(pri3) loader for Oracle

(pri3) loader for PostgreSQL

(pri3) loader for IBM DB2

(pri3) loader for Apache Derby, H2 or HSQL

(pri3) loader for LucidDB, InfiniDB or MonetDB

Note: As an alternative solution all or some above functionality can be moved into OpenM++ data library. It also possible to supply few different
versions of OpenM++ data library targeted to the different SQL Server database.

This is a command-line utility(s) to convert from OpenM++ model data storage into well-known formats:

(pri1) .csv convertor for parameters and output results

(pri2) .xml convertor for model data or user-defined subset of model data

(pri3) SDMX convertor for model data

(pri3) convertor into Statistics Canada Biobrowser database

Component 2.1: OpenM++ compiler

Component 2.2: OpenM++ controller for MPI cluster

Component 2.3: Modgen compatibility convertors

Component 2.4: OpenM++ SQL loaders

Component 2.5: OpenM++ output convertors

This layer consists of OpenM++ common libraries and model data storage (model database).

The modeling library provides core functionality for the model life cycle, including agent creation / destruction, event queue management, on-the-
fly cross-tabulation, and pre- and post-simulation processing. It may use OpenM++ data and execute libraries to organize model execution and
result aggregation (especially in cluster environment), read model parameters, save model tracks and aggregate cross-tabulation results.

OpenM++ data storage design should provide an ability to store model parameters and output results inside of SQL database and support model
tracking functionality, which may be done through a different database, text or XML file (subject for research during phase 1). OpenM++ data
storage can be implemented in following ways:

(pri1) inside of single embedded (file-based) SQL database

(pri2) as above plus extra database for model tracking

(pri3) model parameters and metadata inside of file-based SQL database and output results as .csv files

(pri3) inside of SQL server database chosen by model developer (i.e. MSSQL, Oracle, etc.)

In any case model data storage should support basic OpenM++ design principles:

portability between Linux, Windows, 64 and 32bit OS’s

scalability from single PC up to HPC cluster environment

Data library(s) is a C++ library to support model data read/write operations and hide low-level implementation details to simplify model code and
modeling library. As (priority 1) it should support single embedded (file-based) SQL database in portable way. However, in a future (priority 3) it
can consist of different implementations of data libraries for different target model storage (for example, to directly write into Oracle).

(priority 2) Second part of OpenM++ data libraries should provide an access to model data from Java and .NET to allow develop model analyzing
tools and OpenM++ web solutions.

(pri1) Execution is relatively thin C++ layer to simplify modeling library scalable coding, or other words, to avoid low-level details inside of
modeling library for handling the difference between single PC and cluster execution. Depending on design decisions and target cluster
environment it may not be used directly from modeling library but rather called from OpenM++ cluster controllers (see 2.2). In any case it should:

(pri1) provide necessary information for model initialization (i.e. number of CPUs)

(pri1) synchronize parallel model execution (i.e. wait for completion)

(pri2) support data exchange between models or model and controller (i.e. progress report)

(pri2) simplify tracking data exchange

(pri1) organize transparent communication for output result aggregation

For the purpose of this document MPI cluster environment assumed, however other options can be considered as well.

(pri1) It is important to understand the modeling library may be designed in “single-threaded” way and then execution library must organize
additional thread(s) for the purpose of model cluster communication, progress reporting, tracking, etc. Multithreading must be done in portable
way and following solution should be considered for research during phase 1 of development:

STL and C++11 standard features for threading and synchronization (i.e.: future)

glib

boost::thread and synchronization libraries

APR (Apache portable runtime)

Layer 3: OpenM++ algorithms and data layer

Component 3.1: OpenM++ modeling library

Component 3.2: OpenM++ model data storage (model database)

Component 3.3: OpenM++ data library

Component 3.4: OpenM++ execution library

OpenMP

(pri1, pri2, pri3) Presentation libraries together with data library allow developing applications to view and analyze OpenM++ model output results.
Priority and functionality of presentation libraries development completely defined by priority of OpenM++ viewers, and OpenM++ web solutions,
described in 1.2 and 1.3 above. As (pri1) priority .NET presentation library(s) for Excel viewer and ASP.NET basic UI should be implemented.

Component 3.5: OpenM++ presentation library(s)

This roadmap and architecture document presented from "model developer" point of view, which imply C++ development process, user aspects
of OpenM++ are deliberately excluded. Please refer to OpenM++ user guide pages for additional details.

OpenM++ by design is portable and scalable environment which allow researchers to run same model on single Windows PC and on Linux (or
Windows) HPC cluster by simply re-compiling model C++ code for target platform. For example, model developer can use Visual Studio on his
own Windows PC to write, test and debug the model and later send model .cpp code to other researcher who can build and run that model on
Linux HPC cluster with hundreds CPUs.

There are four main groups of openM++ model users:

developer: using C++ IDE with openM++ installed to develop and run models mostly on their local PC

researcher: uses openM++ models created by developer executable to run simulation on local workstation and/or on HPC cluster

institutional user: member of research organization with advanced IT infrastructure who mostly running openM++ models in resource-shared
environment (i.e. over the web)

public user: member of the general public using simplified interface over the web.

Those user groups do have distinctive hardware / software environments and different requirements to model architecture:

developer:
mostly local Windows or Linux PC with GUI

run the model hundred times to debug it

have full admin privileges on his local machine

eventually need to pack model executable and data files and send it to researcher

researcher:
HPC cluster (large or small) or local Windows, Linux without GUI

run the model multiple times and collect the results

run the model 100's or 1000's of times for Probabilitistic Sensitivity Analysis or for model estimation.

do not have admin privileges, especially on cluster

often need to pack model data files to publish it, move from local PC to HPC cluster or share with other researchers

institutional user:
uses web UI to run the model in cloud, on HPC cluster or other powerful server environment

have absolutely no access to actual server environment

at any time can use IT department to deploy openM++ models in cloud, create modeling web-sites, manage model database on SQL
server, etc.

public user:
runs a version of a model via the web written and compiled in openM++ with a limited set of parameters and limited set of output
screens, possibly in parallel with hundreds of other general public users.

very limited if any capacity at all to save results between sessions.

It is typical for openM++ users to not have advanced IT management skill as they are highly regarded professionals in their own area of interest.
It may also not always possible for openM++ user to install additional software in their environment (i.e. in public HPC cluster). From that point
easiest way of model deployment and model data export-import can be done through simple file operations (file copy). It is obviously not suitable
for institutional users, however they can: (a) rely on dedicated IT department resources if necessary and (b) do have installed and supported web-
servers, SQL databases servers and other resources where openM++ cloud components can be deployed.

2012, December: OpenM++ Model Architecture, December 2012
About this document

OpenM++ model use cases

Based on those use cases openM++ model architecture assumes following preferences:

model, input parameters and output results available as set of files

user may not want to (or can’t install) database client-server software to store model data

Note: To simplify description of model architecture below it is done from developer or researcher user point of view and web cloud aspects are
deliberately excluded.

OpenM++ model run cycle

Because openM++ models can scale from single PC to HPC cluster model execution (model run-cycle) depends on environment.

Simple (single PC) case (italic indicates optional):

start of model executable (model.exe)

read model settings from database (read execution scenario)

read model input data from database

run modeling loop:
execute user model code

report on model progress if required

do model results aggregation if required

write results into database output tables

finally report execution statistics and exit

If model runs in cluster environment then openM++ can transparently create multiple copies of model executable process and distribute it on
cluster nodes.

Model run-cycle on cluster (italic indicates optional):

start of master model executable (model.exe)

read model settings from database (read execution scenario)

detect run-time environment

spawn model.exe processes on computational nodes

read model input data from database

distribute input data between all computational nodes

run modeling loop:
execute user model code

report on model progress if required

collect model tracking information to debug the model

wait until all modeling completed on all computational nodes

collect model results from each node

do results aggregation if required

write results into database output tables

finally report execution statistics and exit

Note: It is important to understand the diagram on that page represent schematic picture and real openM++ code may be significantly more
complex. For example, report modeling progress call exchangeProgress() may not actually do anything but place a data in the buffer and
separate thread would do actual master-slave communication and progress report.

The modeling library provides core functionality for the model run-cycle as it is described above. It contains main() entry point, it does agent
creation / destruction, event queue management, on-the-fly cross-tabulation, and pre- and post-simulation processing.

It uses OpenM++ data and execute libraries to organize model execution (especially in cluster environment), read model input parameters, save
model tracks and aggregate cross-tabulation results:

for each input parameter model library by known data type, shape and other necessary information (memory address if required) to

OpenM++ modeling library

instantiate class object and populate it with values by calling data library

for each output table result model library call data library to save results in model data storage (model database)

OpenM++ data storage should provide an ability to store model parameters and output results. It consist of model data storage (model
database), data library and, optionally, can use execute library to organize communication between computational nodes.

It can be implemented in following ways:

option 0. flat files: directly read-write into flat text (XML, CSV, etc.) files

option a. flat files + buffering (or MPI-IO): use memory buffering (or MPI-IO) to organize large size chunks and reduce data exchange in
cluster environment

option b. client-server database: use MySQL or other open source SQL server database

option c. file-based (embedded) SQL database: use file-based database (i.e. SQLite) inside of master process and write custom code to
emulate client-server for computational nodes

Evaluating those options from point of view openM++ use cases described above:

Option 0: direct write to flat files may not be realistic approach in cluster environment because:

computational nodes most likely don’t have locale file system

global shared file system may have very high or prohibitive cost for small write operations. For example, if 100 model executables from 100
computational nodes want write to 100 bytes it may be, in worst case, 100 times slower than if master node writes 100*100 bytes. Of course,
MPI-IO can solve that problem.

Option a: flat files + buffering (or MPI-IO)

pros:
most human readable format

no additional tools required to create or modify model data, it can be done by any text editor

minimal development efforts

cons:
real model data input typically bigger than user can type-in and maintain without additional tools

to analyze the data in any other software (i.e. Excel, R, SAS) custom data converter(s) must be developed

Option b: client-server

pros:
relatively easy to implement

good performance is almost guaranteed

hundreds tools to read, compare and manipulate the data

cons:
require to install and administer SQL server database which many openM++ users, such as model developers and independent
researchers may have no right to do or may not want to do

Option c: file-based database (i.e. SQLite)

pros:
hundreds tools to read and manipulate the data (i.e. Firefox SQLite manager add-on)

relatively easy to transfer to any database or exchange the data between researchers

cons:
development time to create client-server code for cluster environment much higher than any other options

OpenM++ model data storage (model database)

it is less convenient as flat text files

OpenM++ data storage roadmap:

OpenM++ data storage can be implemented in following order of priorities:

(pri1) inside of single embedded (file-based) SQL database

(pri2) as above plus extra database for model tracking

(pri3) model parameters and metadata inside of file-based SQL database and output results as .csv files

(pri3) inside of SQL server database chosen by model developer (i.e. MSSQL, Oracle, etc.)

Data library(s) is a C++ library to support model data read/write operations and hide low-level implementation details to simplify model code and
modeling library. It is important to understand there is no "one size fit all solution" and openM++ must provide multiple versions of data library for
different target model storage. For example, for model developer SQLite data library may be most convenient, however when openM++ installed
as part of web solution then MySQL data library suites more.

Following priority order of data libraries implementation planned:

(pri1) SQLite as embedded (file-based) database

(pri2) generic ODBC tested with MySQL (MariaDB), PostgreSQL, MS SQL, Oracle and IBM DB2

(pri3) flat text files version of data library (using MPI-IO)

(pri3) MySQL (MariaDB) native client (non-ODBC)

(pri3) PostgreSQL native client (non-ODBC)

List above is not final and can be changed anytime. Many other options also considered for development of specialized data library version. For
example, libmysqld, Firebird, MS Access reviewed as potential candidates for embedded (file-based) database. Also MPI-IO, HDF5, NetCDF
considered as foundation for flat text files data library version. And in the future releases it is very much possible to have native client (not ODBC-
based) version of data library for MS SQL, Oracle and IBM DB2.

Keep in mind data library is part of the model run-time and not be ideal choice for other purpose. Most easy way to integrate openM++ with
existing products is to use SQL loaders or output convertors. It allows to import or export data from openM++ data storage into other well-known
SQL servers, i.e. from SQLite into MS SQL or dump it into flat text files (i.e. CSV, XML).

OpenM++ data library

OpenM++ design details, components and priorities are defined on OpenM++ design page. Due to research nature of the project OpenM++
components, specific technologies and sequence of development must be periodically reviewed and can be changed.

Following results expected to be delivered at the end of the phase1 project (enumeration corresponds to OpenM++ design):

OpenM++ compiler (2.1 priority1)

OpenM++ controller for MPI cluster (2.2 priority1)

OpenM++ modelling library (3.1 priority1)

OpenM++ model data storage design (3.2 priority1)

OpenM++data library (3.3. priority1)

OpenM++ execute library (3.4 priority1)

Items above should allow to:

create simple OpenM++ model

compile model

run model on (3.4 priority1) platforms (Windows and Linux, 32 and 64 bit, single PC and cluster)

read parameters from and write results into OpenM++ model data storage

If time and resources permits following items also going to be delivered as result of the project:

OpenM++ result viewers for Excel (1.2 priority1)

OpenM++ basic web UI sample pages for ASP.NET (1.2 priority2)

OpenM++ presenation libraries for .NET (3.5 priority1)

compatibility convertor for Modgen parameters .dat files (2.3 priority1)

compatibility convertor for Modgen source model code .mpp files (2.3 priority2)

Results of OpenM++ phase1 project effectively would cover:

most existing Modgen desktop functionality, except of GUI

ModgenWeb functionality on a prototype level (optional result)

1. Requirements and infrastructure stage (see step 1 below). Time: one calendar month

2. Compiler and runtime prototype stage (steps 2 and 3). Time: 2-3 months

3. Compiler and runtime alpha version stage (steps 4 and 5). Time: 4-6 months

4. Optional OpenM++ phase1 components (steps 8-11). Time: 6-16 weeks

5. OpenM++ public beta release stage (step 12). Time: 6-8 weeks

Total Time: one year, excluding optional steps

1. Requirements, risks and technologies evaluation, tools, platforms and infrastructure setup

Time: one calendar month

Result: publically available design documents and development infrastructure

2012, December: Roadmap, Phase 1
OpenM++ Roadmap (phase1)

Overall phase1 steps

Detailed phase1 roadmap

Establish OpenM++ roadmap, licensing terms, evaluate targeted platforms (i.e. versions of Linux, cluster environments, etc.)

Create OpenM++ controller for MPI cluster (2.2 priority1)

Evaluate open source project hosting service and development tools required

Create OpenM++ project by publishing roadmap and licence(s)

2. OpenM++ data storage design and libraries prototyping

Time: 2-3 months (must be done together with step 3 below)

Result: Prototype of OpenM++ compiler and runtime libraries

Prototype of OpenM++ modelling library (3.1 priority1) to be used by step 3

OpenM++ model data storage design (3.2 priority1)

Initial version of OpenM++data library (3.3. priority1)

Initial version of OpenM++execute library (3.4. priority1)

3. Initial version of OpenM++ modeling library

Time: 2-3 months (must be done together with step 2 above)

Result: Prototype of OpenM++ compiler and runtime libraries

Initial version of OpenM++ modelling library (3.1 priority1)

Initial version of OpenM++ compiler (2.1 priority1)

4. OpenM++ compiler and modeling library

Time: 4-6 months?? (must be done together with step 5 below)

Result: Alpha version of OpenM++ compiler and runtime libraries

First release of OpenM++ compiler (2.1 priority1), sufficient to compile simplest model

First release of OpenM++ modelling library (3.1 priority1)

5. OpenM++ execute and data libraries

Time: 4-6 months?? (must be done together with step 4 above)

Result: Alpha version of OpenM++ compiler and runtime libraries

First release of OpenM++ execute library (3.4. priority1)

First release of OpenM++data library (3.3. priority1)

First release of OpenM++ model data storage design (3.2 priority1)

First release of OpenM++ cluster controllers (2.2 priority1)

6. Results review, roadmap adjustment

Time: one calendar week

Result: Updated roadmap document and adjusted project plan

7. (optional) Initial version of OpenM++ presentation library(s) for .NET (3.5 priority1)

Time: 2-4 weeks

Result: Alpha version of OpenM++ presenation libarary for .NET

8. (optional, depends on step 7) OpenM++ for Excel (1.2 priority1)

Time: 2-4 weeks

Result: Beta version of OpenM++ for Excel

First release of OpenM++ result viewers for Excel (1.2 priority1)

First release of OpenM++ presentation library for .NET (3.5 priority1) (it may be Excel-specific library)

OpenM++ compiler and runtime libraries bug fixes discovered during development

9. (optional, depends on step 7) OpenM++ basic web UI sample pages for ASP.NET (1.2 priority2)

Time: 2-4 weeks

Result: Beta version of OpenM++ web UI primer for ASP.NET

First release of OpenM++ basic web UI sample pages for ASP.NET (1.2 priority2)

First release of OpenM++ presentation library(s) for .NET (3.5 priority1) (this is may be ASP.NET specific)

OpenM++ compiler and runtime libraries bug fixes discovered during development

10. (optional, depends on step 7) First release of compatibility convertor for Modgen parameters .dat files (2.3 priority1)

Time: 2-4 weeks

Result: Beta version of OpenM++ convertor for Modgen parameters .dat files

11. (optional) First release of compatibility convertor for Modgen source model code .mpp files (2.3 priority2)

Time: 2-4 weeks

Result: Beta version of OpenM++ convertor for Modgen source code .mpp files

12. First public release

Time: 6-8 weeks

Result: Public beta version of OpenM++

Project documentation

Final testing and bug fixes

Project review and roadmap adjustment

First public release

Initial openM++ prototype released on May 2013. It includes:

openM++ compiler (initial prototype)

runtime library (combined model, data and execute libs)

two models, compiled, build and running on all target platforms

Important results are:

openM++ is portable and highly scalable and can run single PC to supercomputing clusters

openM++ model produce identical results for all platforms and matching existing Modgen results

Below screenshots captured from openM++ WizardCaseBased model running on:

Windows 64bit, 8 subsamples

Windows 32bit, 8 subsamples

Linux 64bit MPI cluster, 8 subsamples

Linux 32bit non-clustered and without MPI, 1 subsample

Linux 64bit HPC cluster at ComuputeCanada, 512 subsamples

2013, May: Prototype version
OpenM++ Prototype Version: May 2013

OpenM++ alpha version released on September 2013. It includes:

openM++ compiler (alpha version)

runtime library (combined model, data and execute libs)

three models, compiled, build and running on all target platforms

Important results are:

openM++ models are highly portable, zero efforts required to run same model on different platforms

openM++ model produce identical results for all platforms and matching existing Modgen results

Below screenshots captured from openM++ Alpha1 model running on:

Windows 64bit, 8 subsamples

Windows 32bit, 8 subsamples

Linux 64bit MPI cluster, 8 subsamples

Linux 32bit non-clustered and without MPI, 1 subsample

Linux 64bit HPC cluster at ComuputeCanada, 512 subsamples

2013, September: Alpha version
OpenM++ Alpha version: September 2013

OpenM++ phase 1 completed in March 2014 with following results (enumeration corresponds to OpenM++ design document, which also
describes tasks):

OpenM++ compiler (2.1 priority1): alpha version, working beta version with 60% functionality coverage
types (classifications, ranges, partitions)

parameters (exogeneous)

agents

variables (25% complete)

inter-agent links

events

cross tabulation (except margins)

meta-information (except labels & groups)

OpenM++ controller for MPI cluster (2.2 priority1): beta version

OpenM++ modelling library (3.1 priority1): beta version
case-based and time-based models

agent & event lifecycle

event queue

on-the-fly cross-tabulation updating

Modgen-equivalent random number generators for exact output comparability

OpenM++ model data storage design (3.2 priority1): beta version

OpenM++ data library (3.3. priority1): beta version

OpenM++ execute library (3.4 priority1): beta version

On top of essential phase 1 Roadmap tasks following items completed:

compatibility layer for Modgen source model code .mpp files (2.3 priority2): alpha version

OpenM++ output result viewers and model analysis tools, import/export into R (1.2 priority2): beta version

Deferred items mentioned in phase 1 Roadmap:

all optional items (except two listed above) due to limited resources

compatibility converter for Modgen parameters .dat files (2.3 priority1) postponed after extensive design discussions.

components of OpenM++ compiler (2.1 priority1) due to limited resources
agent collections

parameters (endogenous)

variables (75% remaining)

cross-tabulation (margins)

meta-information (labels & groups)

derived tables

other miscellaneous functionality

2014, March: Project Status, Phase 1 completed
Current Project Status

Overall results of OpenM++ phase 1 cover most of existing Modgen desktop functionality (excluding GUI).

OpenM++ foundation created as result of phase 1 project and it is opens up following four streams for subsequent development:

model stream: ongoing work to move existing Modgen models onto OpenM++ platform

cloud stream: build openM++ cloud PaaS and/or SaaS stack, emphasizing on scalability. Time: 11 months

tools stream: creating openM++ desktop GUI based on Visual Studio, Eclipse or similar for model developers and users. Time: 9 months

core stream: enhance openM++ core functionality, for example, modelling results post-processing and analysis.

Tools and cloud stream partially described in OpenM++ Design and Model Architecture documents.

Core stream task list is very flexible because it is generally include OpenM++ small core enhancements required for other development streams.

For example, as it is today, beta version of OpenM++ supports only SQLite as model database storage and cloud version of OpenM++ most
likely require at least one of MySQL, PostgreSQL, Oracle, MSSQL or DB2 support. Due to flexible nature of core stream development it can be
done incrementally as long as resources available, however it is very important strictly follow OpenM++ Design documents to make sure we are
proceeding to the right direction and avoid common "creeping featurism" mistake.

Following tasks are required to be completed before or during OpenM++ cloud or desktop GUI development (enumeration corresponds to
OpenM++ design):

OpenM++ output converters:
2.5 priority 1: export into .csv for parameters and output results. Time: 10 days

2.5 priority 2: export into .xml for model data or user-defined subset of model data. Time: 16 days

OpenM++ SQL loaders. Time: 4 weeks + 10 days for each db-vendor

2.4 priority 1: MS SQL, MySQL / MariaDB

2.4 priority 2: generic SQL99

2.4 priority 3: PostgreSQL, Oracle, DB2, Apache Derby, H2 or HSQL

extend data library to support MySQL, PostgreSQL, Oracle, MSSQL or DB2 (3.3 priority3). Time: 3-4 weeks for each db-vendor

completion of OpenM++ core support for i18n / L10n in runtime library. Time: 3 weeks

Modgen .dat files compatibility converter (2.3 priority 1): required design decision. Time: from 10 days to 6 weeks.

exploratory subsamples suite for OpenM++ models (see below). Time: between 5-9 weeks

Their is no fixed order in the list above, it can be implemented as required by other project or OpenM++ users.

This is high priority component which defined in OpenM++ design document (2.3 priority 1) as command-line utility to convert existing Modgen
models data into OpenM++ format. It was originally planned for phase 1 development, but deferred due to unresolved design dependency with
other parts of OpenM++, i.e. cloud model publusher or SQL loaders mentioned above.

There are two important aspects of .dat-convertor design:

language complexity of .dat file syntax, which is in fact c++ initializers syntax with Modgen extensions

environmental complexity of .dat-convertor use cases

Environmental complexity actually means variety of .dat-convertor use case scenarios in not yet well defined runtime environment. Please look at
explanation on OpenM++ model use cases in Model Architecture document for more details.

Some examples may include:

developer:

What Next

Current List of small tasks

Task: Modgen .dat files compatibility converter

uses local Windows or Linux PC with GUI

often recreate SQLite database and load input data hundred times to debug the model

eventually need to pack model executable and data files and send it to researcher

researcher:

HPC cluster (large or small) or local Windows, Linux workstation without GUI

run the model thousand times loading wide variety of input data from prepared .dat files

do not have admin privileges, especially on cluster, as result, can not install or adjust runtime environmemnt

often need to pack model .dat files to publish it, move from local PC to HPC cluster or share with other researchers

institutional user:

uses web UI to run the model in cloud, on HPC cluster or other powerful server environment

have absolutely no access to actual server environment

receives initial set of input .dat files from developer or researcher and want to upload it into cloud database

cloud database most likely one of: MySQL, Oracle, MSSQL, PostgreSQL, DB2

From examples above you can see following requirements to model input data tools:

it must be portable and can not assume specific OS or database

user may have no access to actual model database (i.e. model developer have no access to cloud instance)

Possible solutions for .dat-files converter in context of above requirements:

due to language complexity of .dat files it is nice to use OpenM++ compiler (omc) to parse it

omc read .dat files and saves as:
c++ values compiled into model executable, which in turn, saves it into target database during first run

pro: everything in one file, ideal for consistency and transfer

cons: model executable is huge, which increase compilation and execution time

pro/cons: it is not possible to change model input data without re-compilation

SQLite database
pro: compact storage

pro: ideal for model developer (or even researcher) as no any other steps required to run the model

pro: there are many standard utilities to browse or edit the data

cons: extra tool required to import from SQLite into actual database in cloud environment

sql script files
pro: portable and human-readable format

pro: no any other tools required to transfer data from one environment into another

cons: least compact storage, size of input data files are largest of all

some other text format, i.e.: .csv or .xml files
pro: portable and human-readable format

cons: some custom tools required to load the data from such files into model database

We must keep in mind when choosing .dat-converter solution couple of other items from OpenM++ design document:

OpenM++ must have SQL-loader utilities to facilitate data export into different model databases

OpenM++ must have utilities to export input (and output) data into other formats, i.e.: text .csv and .xml files

That means we can relay on presence such OpenM++ utilities in foreseeable future.

Current OpenM++ model subsamples design is Modegn-compatible. It was done on purpose to provide Modgen model developers and users
familiar concepts and even ability to reuse existing tools within OpenM++. However, there is fundamental limitation in that design, which became
obvious when OpenM++ model runs in HPC cluster environment.

For example, if we have 16,000 CPUs cluster then it may be make sense to prepare 1000 different sets of input parameters, submit model job
with those 1000 inputs * 16 subsamples each to use all 16,000 CPUs and analyse results to find optimal set of model parameters. It is possible to
do in OpenM++ now by specifying working set of input parameters for and run the model 1000 times by submitting 1000 jobs to the cluster.
However it would be nice to have such capability incorporated in OpenM++ runtime to allow simply submit single job with 1000 different sets of
parameters and 16 subsamples each.

To implement such feature following changes in OpenM++ required:

execution library: organize model MPI groups to effectively broadcast input parameters to slave modelling processes

model database schema: allow multiple sets of input parameters for each model run (Modgen allow only single)

model database schema: store relationship between input set and output results inside of single modelling job

data library: redesign output results aggregation to do it over related output values (now it is done across all subsamples)

That feature should significantly increase model users productivity and allow more effective HPC cluster resource usage. It is recommended to
have it for OpenM++ cloud version.

Task: Exploratory subsamples suite for OpenM++ models

Their is no fixed order in the list below, it can be implemented as required by other project or OpenM++ users.

Currently any model exception is a hard failure and result in model shutdown. It may be right things to do in most situations but can be soften for
some simulation errors. If special SimulationException thrown by model it should only abort current model run (or even current subsample only) and
allow to proceed with next run from modeling task (or next subsample).

Currently fixed (or model generated or derived) model parameters not saved in database and completely hidden from model user. It is a good
feature of openM++ in terms of data security, but may not be always necessary. It would be nice to have special openM++ language clause which
model developer can use to control when fixed (or model generated or derived) parameter completely hidden or written in database as "output
read-only parameter".

Currently all output tables written in database as result of model run, which may be unnecessary if user doing parameter estimation and
interested only in one or small subset of output tables. It would be nice to have an ability to specify which output tables needs to be written in
database.

2016, December: Task List

Soft simulation failure

Write fixed model parameters in database

Write only selected output tables in database

Task is completed, notes below we do keep just in case.

This is design notes, it is sketchy and may be incorrect, feel free to change it.

Currently we have one special model parameter: subsample number (a.k.a. member or replica). It is created by runtime as integer [0,N] where N
is number of subsamples specified as run option:

model.exe -General.Subsamples 16

Subsample number plays fundamental role in calculation of model Output Expressions. It is only parameter which used to calculate average (CV,
SE, SD and all others) output values. For example if model runs with 16 subsamples then it will produce 16 values for each output accumulator
and output expression value is an average of 16 accumulators across subsamples.

It may not be always necessary to have subsample number as special parameter; it can be any other model parameter or set of parameters
which varies between model runs. And output expression(s) can be calculated as average (CV, SD, etc.) across any parameter values. However
such "demote of subsample number" is quite significant change in model runtime.

Currently model run cycle looks like (extremely simplified):

start model.exe and connect to database

read all model parameters

create modeling threads for each model subsample

run modeling threads: do simulation

write output accumulators for each subsample in database

wait until all subsamples done (wait for exit from all modeling threads)

calculate output expression values as average (CV,SE,SD,etc.) of accumulators across subsamples

report on simulation success and exit from model main

If we decide to "demote subsample" or call it as "generalize parameters" then modeling cycle can look like:

use some external utility to create modeling task and prepare set of input parameter (see Model Run: How to Run the Model)

(optional) specify runtime expression to vary some model parameters, e.g. subsample number parameter

run model until modeling task completed (until all input processed) and write all accumulators into database

use some external utility to calculate output expressions as average (CV,SE,SD,etc.) across any parameter(s)

Questions and problems:

1. How to specify model parameters generators (how to calculate model parameters at runtime). Now we have ompp code translated into c++
by omc compiler to do all derived (model-generated) parameters. It is not dynamic enough - we don't want and should not re-compile model
to specify parameter(s) generator. We also have primitive subsample number parameter generator as [0,N]. Such primitive for-loop
generators may be good in many situations but not enough.

Is it enough to have an ability in model runtime specify for-loop parameter(s) generator(s) and rely on external utilities (i.e. use our R package) to
create more complex modeling tasks?

2. Output expressions calculations. Now we use SQL to calculate averages and, in fact, that SQL allow to have almost arbitrary calculation, but
it does aggregation across subsample number.

How to generalize SQL to aggregate across any parameter values, not only subsample number? Do we need to replace SQL with c++ code in

2017, January: Design Notes. Subsample As Parameter problem.
Completed
Status: completed

Problem Scope

model runtime? Do we need to create other "db_aggregator" utility instead of using model?

3. How to specify parameter generators and output expressions to make it powerful enough and avoid re-inventing of R (Octave, Matlab,
SPSS, SAS)?

Let's assume some hypothetical model with following input parameters:

population by age and sex

taxation level

election outcome

workforce strike longevity

random generator seed And model output value is household income.

Model input parameters can be divided in following categories:

"constant": where parameter values are known and does not changed during modeling
population current and projected values assumed to be well known and fixed for our model

"variable": parameter(s) which user want to change to study effect on modeling output results
taxation level varies from 1% to 80% with 0.1% step

"uncertainty": parameters where values are random
election outcome parameter: Bernoulli distribution (binary) with mean = 0.6

workforce strike: Poisson distribution with rate = 4

random number generator seed

In order to study taxation level effect user run the model 800 times with different tax percent input value and calculate 800 average household
income output values. Each output income value is an average of 32 "accumulator" values. Each "accumulator" value is a household income
value produced by the model for specific combination of "uncertainty" parameters:

// create 32 input tuples of uncertainty parameters
//
int setId = database.CreateWorkset(); // input set of uncertainty parameters
bool isBluePartyWin = false; // election results: win of "blue" or "red" party
double strikeDays = 7.5; // number of strike days per year
int randomSeed = 12345; // random number generator seed

for (int k = 0; k < 32; k++) {
 isBluePartyWin = Bernoulli(0.6);
 strikeDays = SumOf_Poisson(4.0);
 seed++;
 // write "uncertainty" parameters into database input set: tuple number = k
 database.WriteParameters(setId, k, isBluePartyWin, strikeDays, randomSeed);
}

// run the model
//
for (double tax = 1; tax < 82; tax += 0.1) {
 model.exe -Parameter.Taxation tax -UncertaintyParameters setId
}
//
// plot output household income depending on taxation level
//

Pseudo code above can be implemented in Perl, R or using shell script. Also openM++ already support Modeling Task which allow to submit
multiple inputs to the model and vary parameter(s) values similar to example above.

OpenM++ already have most of components required for our solution, please take a look at:

Modeling Task

Input parameters sets (workset)

Example of the problem

Solution overview

Results aggregation: Model Output Expressions

Following can be done to solve a problem from example above:

1. Use existing: R API to create Modeling Task with 800 values of taxation level parameter.

2. Add new: Create tools to generate uncertainty parameters. It can be command-line utilities, GUI tool(s) or part of model runtime. Last option
would allow us to reuse existing c++ code.

3. Add new: Change database schema in order to store tuples of uncertainty parameters as part of model run input. Currently model is using
only single input set of parameters (workset) with single value of each parameter. We need to change database schema and model run
initialization (input parameters search in database) in order to supply all 32 tuples of uncertainty parameters for every model run.

4. Add new: Change parameters memory management in order to provide unique value of each uncertainty parameter to each modeling
thread. Now all parameters have only one copy of values and it is shared between all subsamples (threads and processes); only subsample
number is unique and not shared between threads (see model run on single computer). And with new runtime we need to make sure only
"constant" and "variable" parameters (like population and taxation level above) are shared and "uncertainty" parameters (election outcome,
strike, random seed) are unique for each thread.

5. Add new: In case if model run on MPI cluster, when there are multiple modeling processes, we need to correctly supply unique values of all
uncertainty parameters to each process. Now only subsample number is unique.

6. Add new: Change database schema similar to (3) above for model run parameters. Model run contains full copy of input parameters. Today
it is only one value for each parameter and we need to change it in order to store all 32 tuples of uncertainty parameters in model run
results.

7. Use existing: Model Output Expressions for output results aggregation. No changes required. We not yet have capabilities to compare
model run results similar to what ModgenWeb does, but this is out of problem scope.

We can split implementation into two steps:

First do all necessary run time changes (items 3, 4, 5 and 6 above). That would allow us to run the model with uncertainty parameters
created by external tools, for example by R.

Second is to implement "parameters generators" (item 2 above) to make it convenient to model user.

During that two steps process it is also necessary to implement some compatibility logic to supply parameter "Subsample" in order to keep
existing models working.

Note: We should also solve ambiguity of "subsample" term, inherited from Modgen. It can be a model integer parameter with name "Subsample"
and in that case it same as any other model parameter, no any kind of special meaning or treatment required. It is also can be used as
"uncertainty tuple number" and may not be necessary exposed to modeling code, it can be internal to model runtime and visible in database
schema as sub_id to order accumulator values and make it comparable between model runs.

OpenM++ web-service (oms) is a JSON web-service written in Go and used from openM++ UI JavaScript. Today most of popular development
platforms (.NET, Java, Python, Perl, R, JavaScript, etc.) with only few lines of code allow to create HTTP client and send-receive JSON data.
That makes integration with openM++ very easy.

OpenM++ web-service does not required any installation. It can be run with default settings from command-line prompt.

To start openM++ web-service on Windows:

download and unzip openM++ https://github.com/openmpp/main/releases/latest binaries into C:\SomeDir\

run oms from command-line:

C:
cd \SomeDir\openmpp_win_20190508\
bin\oms.exe

2022-09-14 15:51:30.477 Models directory: models\bin
2022-09-14 15:51:30.565 HTML UI directory: html
2022-09-14 15:51:30.567 Etc directory: etc
2022-09-14 15:51:30.567 Oms instance name: localhost_4040
2022-09-14 15:51:30.574 Listen at localhost:4040
2022-09-14 15:51:30.574 To start open in your browser: http://localhost:4040
2022-09-14 15:51:30.574 To finish press Ctrl+C

OpenM++ UI is a client of oms web-service, after above command you can open UI in browser at http://localhost:4040

To start openM++ web-service on Linux:

download and unpack openM++, i.e.:

wget https://github.com/openmpp/main/releases/download/v1.2.0/openmpp_debian_20190508.tar.gz
tar xzf openmpp_debian_20190508.tar.gz

run oms executable:

cd openmpp_debian_20190508/
bin/oms

2022-09-14 15:51:30.477 Models directory: models/bin
2022-09-14 15:51:30.565 HTML UI directory: html
2022-09-14 15:51:30.567 Etc directory: etc
2022-09-14 15:51:30.567 Oms instance name: localhost_4040
2022-09-14 15:51:30.574 Listen at localhost:4040
2022-09-14 15:51:30.574 To start open in your browser: http://localhost:4040
2022-09-14 15:51:30.574 To finish press Ctrl+C

Note: We recommend to use normal Windows command line cmd.exe. If you are using Windows PowerShell then it may be necessary to put
"quotes" around command line options, e.g:

oms.exe "-oms.ApiOnly"

By default oms.exe started in "full" web-UI mode. That means it handles web-service requests and web-UI content from ./html sub-directory. If
you want only "pure" web-service mode without UI then use:

oms -oms.ApiOnly

Following arguments most often used in web-service methods:

Oms: openM++ web-service
What is openM++ web-service

How to start openM++ web-service

Oms as "pure" web-service vs "full" web-UI

How to use oms: arguments of web-service methods

https://github.com/openmpp/main/releases/latest
http://localhost:4040

Example of method:

GET /api/model/:model

Call example:

http://localhost:4040/api/model/f5024ac32c4e8abfc696a0f925141c95
http://localhost:4040/api/model/modelOne

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

Example of method:

GET /api/model/:model/run/:run/status
GET /api/model/:model/task/:task/run-status/run/:run

Call example:

http://localhost:4040/api/model/modelOne/run/modelOne_first_run/status
http://localhost:4040/api/model/modelOne/run/d06f4a0a45a9514c22593025e489f933/status
http://localhost:4040/api/model/modelOne/task/taskOne/run-status/run/First Task Run

This argument is used to identify model run or modeling task run.

Modeling task run can be identified by task run stamp or task run name.

Model run can be identified by run digest, run stamp or run name. It is recommended to use run digest because it is uniquely identifies model run.
Run stamp can be explicitly specified as command line option when you run the model. If run stamp not specified then it is automatically
generated as timestamp string, ex.: 2016_08_17_21_07_55_123. It is also possible to use run name, which is more human readable than digest,
but if there are multiple runs with same name in database than result is undefined.

Example of method:

GET /api/model/:model/text/lang/:lang

Call example:

http://localhost:4040/api/model/modelOne/text/lang/EN
http://localhost:4040/api/model/modelOne/text/lang/en_US

Language code can be a model language (ex.: EN, FR) or any MIME language (see BCP47 or RFC3282). If no language explicitly specified then
Accept-Language header is used (supplied by browser).

Result returned in best matched language supported by model. For example for en_US result is model language EN, if model supported EN
language. If no such language then result is in default model language or can be empty.

Method examples:

GET /api/model/:model/workset/:set/status
POST /api/model/:model/workset/:set/readonly/:val

Call examples:

:model - model digest or model name

:run - model run or model task run

:lang - language code

:set - set of input data (a.k.a. workset)

https://tools.ietf.org/html/bcp47
https://tools.ietf.org/html/rfc3282

http://localhost:4040/api/model/modelOne/workset/modelOne_set/status
curl -v -X POST http://localhost:4040/api/model/modelOne/workset/modelOne_set/readonly/1

Workset is a set of model input parameters (a.k.a. "scenario" input) and it used to run the model Each model workset uniquely identified by
name.

Method examples:

GET /api/model/:model/task/:task/text/lang=FR

Call examples:

http://localhost:4040/api/model/modelOne/task/taskOne/text
curl -v http://localhost:4040/api/model/modelOne/task/taskOne/text/lang=fr_CA

Modelling task consists of multiple input data sets (a.k.a. worksets or scenarios in Modgen). Task can be used to run the model in batch mode.

Method examples:

GET /api/model/:model/profile/:profile
POST /api/model/:model/profile/:profile/key/:key/value/:value

Call examples:

http://localhost:4040/api/model/modelOne/profile/modelOne
curl -v -X POST http://localhost:4040/api/model/modelOne/profile/m1/key/Parameter.StartingSeed/value/4095

Profile is a set of key-value options and it used to run the model. Each profile uniquely identified by profile name. Each profile can include multiple
key-value options.

Model run status and task run status may contain one of the following values:

 i = initial state, not running yet
 p = run in progress
 w = task wait for additional input
 s = completed successfully
 x = completed by exit (reserved fro internal use)
 e = completed with error

Important: if model run failed with exception (e.g. database write exception) then status may not be updated and still p=in progress .

Oms default configuration options can be overwritten by command-line arguments or ini-file. For example:

listen from any host on port 7070:

oms -l :7070

serve only API calls and not html for openM++ UI:

oms -oms.ApiOnly

listen from localhost port 4044 only and read more oms run options from oms.ini file:

oms -l localhost:4044 -ini oms.ini

:task - modelling task

:profile - set of key-value options

Results of web-service methods

Run status

Oms web-service configuration

models directory relative path is: ../some/dir

oms -oms.ModelDir ../some/dir

typical log settings for remote server:
log user request

log into the file instead of cosole by default

log files rotation: create new log file every day

oms -l localhost:4044 -oms.LogRequest -OpenM.LogToConsole false -OpenM.LogToFile -OpenM.LogUseDailyStamp

typical settings for model user in cloud:
allow user home directory with downloads and uploads

use model run jobs to manage back-end computational servers resources

oms -l localhost:4044 -oms.HomeDir models/home -oms.AllowDownload -oms.AllowUpload -oms.JobDir job

It is recommended to use oms.ini file to avoid long command lines, especially for cloud environment where you may want to combine
log options and user options from two examples above.

Clients of oms web-service can retrieve configuration by calling GET web-service configuration or simply by open
http://localhost:4040/api/service/config in the browser. Response to that call may also contain client environment variables which names started
from OM_CFG_ prefix (oms web-service does not use any of OM_CFG_ environment variables, it only passes it to clients) .

For example openM++ UI uses following server variables:

OM_CFG_LOGIN_URL=/public/login_required.html
OM_CFG_LOGOUT_URL=/login?logout=true
OM_CFG_DEFAULT_RUN_TMPL=run.Win32.Debug.template.txt
OM_CFG_INI_ALLOW=true
OM_CFG_INI_ANY_KEY=true

OpenM++ UI is using above variables as follow:

OM_CFG_LOGIN_URL : display user login button linked to the URL

OM_CFG_LOGOUT_URL : display user logout button linked to the URL

OM_CFG_DEFAULT_RUN_TMPL : use this template to run the model, e.g.: to debug from IDE

OM_CFG_INI_ALLOW : allow user to run the model with ini-file, e.g.: RiskPaths.ini

OM_CFG_INI_ANY_KEY : allow to use model development options from ini-file

Note: Model ini-files and model development options described at: Model Run Options and ini file.

Following options supported by oms:

Get and use oms web-service configuration

Oms run options

http://localhost:4040/api/service/config

-oms.Listen: address to listen, default: localhost:4040
-l: address to listen (short form of -oms.Listen)
-OpenM.IniFile: path to ini-file
-ini ini-file: path to ini-file (short of OpenM.IniFile)
-oms.ApiOnly: if true then API only web-service, no web UI
-oms.RootDir: oms root directory, default: current directory
-oms.ModelDir: models directory, if relative then must be relative to oms root directory, default: models/bin
-oms.ModelLogDir: models log directory, if relative then must be relative to oms root directory: default: "models/log
-oms.ModelDocDir: models documentation directory, if relative then must be relative to oms root directory: default: "models/doc
-oms.HomeDir: user personal home directory, if relative then must be relative to oms root directory
-oms.AllowDownload: if true then allow download from user home/io/download directory
-oms.AllowUpload: if true then allow upload to user home/io/upload directory
-oms.AllowMicrodata: if true then allow model run microdata
-oms.HtmlDi: front-end UI directory, if relative then must be relative to oms root directory, default: html
-oms.EtcDir: configuration files directory, if relative then must be relative to oms root directory, default: etc
-oms.JobDir: model run jobs directory, if relative then must be relative to oms root directory
-oms.Name: oms instance name, used model run by jobs, automatically generated if empty
-oms.UrlSaveTo: file path to save oms URL in form of: http://localhost:4040, if relative then must be relative to oms root directory
-oms.Languages: comma-separated list of supported languages, default: en
-oms.CodePage: code page to convert source file into utf-8, e.g.: windows-1252
-oms.DoubleFormat: format to convert float or double value to string, default: %.15g
-oms.AdminAll if true then allow global administrative routes: /admin-all/
-oms.NoAdmin if true then disable loca administrative routes: /admin/
-oms.NoShutdown if true then disable shutdown route: /shutdown/

-OpenM.LogToConsole: if true then log to standard output (default true)
-v: if true then log to standard output (short of OpenM.LogToConsole)
-OpenM.LogToFile: if true then log to file
-OpenM.LogFilePath: path to log file, default = current/dir/oms.log
-OpenM.LogUseDailyStamp: if true then use daily-stamp in log file name
-OpenM.LogUsePidStamp: if true then use process id stamp in log file name
-OpenM.LogUseTimeStamp: if true then use time-stamp in log file name
-OpenM.LogSql: if true then log sql statements into log file
-oms.LogRequest: if true then log HTTP requests

There are many common options, e.g.: -OpenM.LogToFile which can be used with any openM++ executable: models, compiler, dbcopy and oms.

It is highly recomended to put model documentation in doc/ subdirectory, e.g.: C:\any-dir\doc or /home/me/any/path/doc . UI expect model
documentation URL similar to: https://your-domain-name.here/doc/ModelName.doc.FR.html .

Example of oms.ini

; This is a comment
This is also a comment

; Ini file can be supplied to oms.exe as command line option "-ini" or "-OpenM.IniFile"
; "-ini" is a short form of "-OpenM.IniFile", command lines below are equal:
;
oms.exe -ini path/to/oms.ini
oms.exe -OpenM.IniFile path/to/oms.ini

; "-l" is a short form of "-oms.Listen", command lines below are equal:
;
oms.exe -l localhost:4040
oms.exe -oms.Listen localhost:4040

; boolean options can be "true" or "false" or empty value
; boolean empty value is the same as "true"
; for example both command lines below are equal:
;
oms -oms.ApiOnly
oms -oms.ApiOnly true

[oms]
;
; Listen = localhost:4040 # address to listen, default: localhost:4040
; RootDir = # oms "root" directory, expected to have log subfolder
; ModelDir = models/bin # models executable and model.sqlite directory, if relative then must be relative to oms root directory
; ModelLogDir = models/log # models log directory, if relative then must be relative to oms root directory
; ModelDocDir = models/doc # models documentation directory, default: models/doc, if relative then must be relative to oms root directory
; HomeDir = models/home # user personal home directory, if relative then must be relative to oms root directory
; AllowDownload = false # if true then allow download from user home sub-directory: home/io/download
; AllowUpload = false # if true then allow upload to user home sub-directory: home/io/upload
; AllowMicrodata = false # if true then allow model run microdata
; UrlSaveTo = # file path to save oms URL, if relative then must be relative to oms root directory
; LogRequest = false # if true then log HTTP requests
; ApiOnly = false # if true then API only web-service, no web UI
; HtmlDir = html # front-end web UI directory, if relative then must be relative to oms root directory
; EtcDir = etc # configuration files directory, if relative then must be relative to oms root directory
; JobDir = # jobs control directory, if empty then jobs control disabled
; Name = # instance name, used for job control
; Languages = en # comma-separated list of supported languages
; CodePage = # code page to convert source file into utf-8, e.g.: windows-1252
; DoubleFormat = %.15g # format to convert float or double value to string, e.g. %.15g
; Admin = false # if true then allow global administrative routes: /admin-all/

[OpenM]
;
; LogToConsole = true # if true then log to standard output
; LogToFile = false # if true then log to file
; LogFilePath = oms.log # log file path, default = current/dir/exeName.log
; LogUseTimeStamp = false # if true then use time-stamp in log file name
; LogUsePidStamp = false # if true then use pid-stamp in log file name
; LogUseDailyStamp = false # if true then use daily-stamp in log file name
; LogSql = false # if true then log sql statements into log file

; "-v" is a short form of "-OpenM.LogToConsole"

; log settings:
; log can be enabled/disabled for 3 independent streams:
; console - standard output
; "current" log file - log file with specified name, overwritten on every model run
; "stamped" log file - log file with unique name, created for every model run
;
; "stamped" name produced from "current" name by adding time-stamp and/or pid-stamp, i.e.:
; oms.log => oms.2012_08_17_16_04_59_148.123456.log
#
; LogUseDailyStamp creates new log file every day
; by default LogUseDailyStamp:
; = false if log file disabled (default)
; = false if "stamped" log file enabled
; = true if log file enabled and "stamped" log file disabled

Following directory structure expected by default:

./ -> oms "root" directory, by default it is current directory
 html/ -> web-UI directory with HTML, js, css, images...
 etc/ -> config files directory, contain template(s) to run models
 log/ -> recommended log files directory
 models/
 bin/ -> default model.exe and model.sqlite directory
 log/ -> default directory for models run log files
 doc/ -> models documentation directory

Oms directory structure: user home and jobs directories

If you don't don't want web-UI or don't have html directory then start oms as:

oms -oms.ApiOnly

You can explicitly specify oms log files location, models and models log directory, e.g.:

oms -oms.ModelDir /my-models -oms.ModelLogDir /my-models-log -oms.ModelDocDir /my-models/doc

If you want to use log file and no console messages:

oms -OpenM.LogToConsole=false -OpenM.LogToFile
oms -OpenM.LogToConsole=false -OpenM.LogFilePath log/oms.log

If you want to use "daily" log files:

oms -OpenM.LogUseDailyStamp -OpenM.LogToFile
oms -OpenM.LogUseDailyStamp -OpenM.LogFilePath log/oms.log

You can enable user home directory to store home directory for user personal settings, downloads of model model run results or upload input
scenarios:

oms -oms.HomeDir models/home -oms.AllowDownload -oms.AllowUpload

Above command assume directory structure with home , download and upload sub-folders of models :

./ -> oms "root" directory, by default it is current directory
 html/ -> web-UI directory with HTML, js, css, images...
 etc/ -> config files directory, contain template(s) to run models
 log/ -> recommended log files directory
 models/
 bin/ -> default model.exe and model.sqlite directory
 log/ -> default directory for models run log files
 doc/ -> models documentation directory
 home/ -> user personal home directory
 io/download -> user directory for download files
 io/upload -> user directory to upload files

Note: openM++ dbcopy utility is required for download and upload, it must be located in the same directory where oms executable is.

If you want to have model runs queue, or using openM++ in cloud and want automatically scale up and down cloud resources, e.g. start and stop
virtual machines for model runs then start oms with job control option:

oms -oms.JobDir job

Following directory structure expected:

User home directory

Model run jobs directory structure

./ -> oms "root" directory, by default it is current directory
 html/ -> web-UI directory with HTML, js, css, images...
 etc/ -> config files directory, contain template(s) to run models
 log/ -> recommended log files directory
 models/
 bin/ -> default model.exe and model.sqlite directory
 log/ -> default directory for models run log files
 doc/ -> models documentation directory
 home/ -> user personal home directory
 io/download -> user directory for download files
 io/upload -> user directory to upload files
 job/ -> model run jobs control directory
 job.ini -> (optional) job control settings to restrict storage size
 disk.ini -> (optional) disk usage control settings to set storage quotas
 active/ -> active model run state files
 history/ -> model run history files
 past/ -> (optional) shadow copy of history folder, invisible to the end user
 queue/ -> model run queue files
 state/ -> jobs state and computational servers state files
 jobs.queue.paused -> if such file exists then jobs queue is paused
 jobs.queue.all.paused -> if such file exists then all jobs in all queues are paused

Please visit following page to find out how to use oms in cloud and manage model runs queue.

:model - model digest or model name
:lang - language code
:run - model run digest, run stamp or run name, modeling task run stamp or task run name
:set - name of workset (input set of model parameters)
:profile - profile name
:task - modeling task

See more details at: Arguments of web-service methods.

GET /api/model-list

GET /api/model-list/text
GET /api/model-list/text/lang/:lang

GET /api/model/:model
GET /api/model/:model/pack

GET /api/model/:model/text
GET /api/model/:model/text/lang/:lang
GET /api/model/:model/pack/text
GET /api/model/:model/pack/text/lang/:lang

GET /api/model/:model/text-all

GET /api/model/:model/lang-list

GET /api/model/:model/word-list
GET /api/model/:model/word-list/lang/:lang

GET /api/model/:model/profile/:profile

GET /api/model/:model/profile-list

Oms: openM++ web-service API
Web-service methods arguments

GET Model Metadata

GET model list

GET model list including text (description and notes)

GET model definition metadata

GET model metadata including text (description and notes)

GET model metadata including text in all languages

GET Model Extras

GET model languages

GET model language-specific strings

GET model profile

GET list of profiles

GET Model Run results metadata

GET list of model runs

GET /api/model/:model/run-list

GET /api/model/:model/run-list/text
GET /api/model/:model/run-list/text/lang/:lang

GET /api/model/:model/run/:run/status

GET /api/model/:model/run/:run/status/list

GET /api/model/:model/run/status/first

GET /api/model/:model/run/status/last

GET /api/model/:model/run/status/last-completed

GET /api/model/:model/run/:run

GET /api/model/:model/run/:run/text
GET /api/model/:model/run/:run/text/lang/:lang

GET /api/model/:model/run/:run/text-all

GET /api/model/:model/workset-list

GET /api/model/:model/workset-list/text
GET /api/model/:model/workset-list/text/lang/:lang

GET /api/model/:model/workset/:set/status
GET /api/model/:model/workset/:set

GET list of model runs including text (description and notes)

GET status of model run

GET status of model run list

GET status of first model run

GET status of last model run

GET status of last completed model run

GET model run metadata and status

GET model run including text (description and notes)

GET model run including text in all languages

GET Model Workset metadata: set of input parameters

GET list of model worksets

GET list of model worksets including text (description and notes)

GET workset status

GET model default workset status

GET /api/model/:model/workset/status/default

GET /api/model/:model/workset/:set/text
GET /api/model/:model/workset/:set/text/lang/:lang

GET /api/model/:model/workset/:set/text-all

POST /api/model/:model/workset/:set/parameter/value

POST /api/model/:model/workset/:set/parameter/value-id

POST /api/model/:model/run/:run/parameter/value

POST /api/model/:model/run/:run/parameter/value-id

POST /api/model/:model/run/:run/table/value

POST /api/model/:model/run/:run/table/value-id

POST /api/model/:model/run/:run/table/calc

POST /api/model/:model/run/:run/table/calc-id

POST /api/model/:model/run/:run/table/compare

POST /api/model/:model/run/:run/table/compare-id

POST /api/model/:model/run/:run/microdata/value

GET workset including text (description and notes)

GET workset including text in all languages

Read Parameters, Output Tables or Microdata values

Read parameter values from workset

Read parameter values from workset (enum id's)

Read parameter values from model run

Read parameter values from model run (enum id's)

Read output table values from model run

Read output table values from model run (enum id's)

Read output table calculated values from model run

Read output table calculated values from model run (enum id's)

Read output table values and compare model runs

Read output table values and compare model runs (enun id's)

Read microdata values from model run

Read microdata values from model run (enum id's)

POST /api/model/:model/run/:run/microdata/value-id

POST /api/model/:model/run/:run/microdata/calc

POST /api/model/:model/run/:run/microdata/calc-id

POST /api/model/:model/run/:run/microdata/compare

POST /api/model/:model/run/:run/microdata/compare-id

GET /api/model/:model/workset/:set/parameter/:name/value
GET /api/model/:model/workset/:set/parameter/:name/value/start/:start
GET /api/model/:model/workset/:set/parameter/:name/value/start/:start/count/:count

GET /api/model/:model/run/:run/parameter/:name/value
GET /api/model/:model/run/:run/parameter/:name/value/start/:start
GET /api/model/:model/run/:run/parameter/:name/value/start/:start/count/:count

GET /api/model/:model/run/:run/table/:name/expr
GET /api/model/:model/run/:run/table/:name/expr/start/:start
GET /api/model/:model/run/:run/table/:name/expr/start/:start/count/:count

GET /api/model/:model/run/:run/table/:name/calc/:calc
GET /api/model/:model/run/:run/table/:name/calc/:calc/start/:start
GET /api/model/:model/run/:run/table/:name/calc/:calc/start/:start/count/:count

GET /api/model/:model/run/:run/table/:name/compare/:compare/variant/:variant
GET /api/model/:model/run/:run/table/:name/compare/:compare/variant/:variant/start/:start
GET /api/model/:model/run/:run/table/:name/compare/:compare/variant/:variant/start/:start/count/:count

GET /api/model/:model/run/:run/table/:name/acc
GET /api/model/:model/run/:run/table/:name/acc/start/:start
GET /api/model/:model/run/:run/table/:name/acc/start/:start/count/:count

GET /api/model/:model/run/:run/table/:name/all-acc
GET /api/model/:model/run/:run/table/:name/all-acc/start/:start
GET /api/model/:model/run/:run/table/:name/all-acc/start/:start/count/:count

Read aggregated microdata from model run

Read aggregated microdata from model run (enum id's)

Read microdata run comparison

Read microdata run comparison (enum id's)

GET Parameters, Output Tables or Microdata values

GET parameter values from workset

GET parameter values from model run

GET output table expression(s) from model run

GET output table calculated expression(s) from model run

GET output table values and compare model runs

GET output table accumulator(s) from model run

GET output table all accumulators from model run

GET /api/model/:model/run/:run/microdata/:name/value
GET /api/model/:model/run/:run/microdata/:name/value/start/:start
GET /api/model/:model/run/:run/microdata/:name/value/start/:start/count/:count

GET /api/model/:model/run/:run/microdata/:name/group-by/:group-by/calc/:calc
GET /api/model/:model/run/:run/microdata/:name/group-by/:group-by/calc/:calc/start/:start
GET /api/model/:model/run/:run/microdata/:name/group-by/:group-by/calc/:calc/start/:start/count/:count

GET /api/model/:model/run/:run/microdata/:name/group-by/:group-by/compare/:compare/variant/:variant
GET /api/model/:model/run/:run/microdata/:name/group-by/:group-by/compare/:compare/variant/:variant/start/:start
GET /api/model/:model/run/:run/microdata/:name/group-by/:group-by/compare/:compare/variant/:variant/start/:start/count/:count

GET /api/model/:model/workset/:set/parameter/:name/csv
GET /api/model/:model/workset/:set/parameter/:name/csv-bom

GET /api/model/:model/workset/:set/parameter/:name/csv-id
GET /api/model/:model/workset/:set/parameter/:name/csv-id-bom

GET /api/model/:model/run/:run/parameter/:name/csv
GET /api/model/:model/run/:run/parameter/:name/csv-bom

GET /api/model/:model/run/:run/parameter/:name/csv-id
GET /api/model/:model/run/:run/parameter/:name/csv-id-bom

GET /api/model/:model/run/:run/table/:name/expr/csv
GET /api/model/:model/run/:run/table/:name/expr/csv-bom

GET /api/model/:model/run/:run/table/:name/expr/csv-id
GET /api/model/:model/run/:run/table/:name/expr/csv-id-bom

GET /api/model/:model/run/:run/table/:name/calc/:calc/csv
GET /api/model/:model/run/:run/table/:name/calc/:calc/csv-bom

GET /api/model/:model/run/:run/table/:name/calc/:calc/csv-id
GET /api/model/:model/run/:run/table/:name/calc/:calc/csv-id-bom

GET microdata values from model run

GET aggregated microdata from model run

GET microdata run comparison

GET Parameters, Output Tables or Microdata values as CSV

GET csv parameter values from workset

GET csv parameter values from workset (enum id's)

GET csv parameter values from model run

GET csv parameter values from model run (enum id's)

GET csv output table expressions from model run

GET csv output table expressions from model run (enum id's)

GET csv calculated table expressions from model run

GET csv calculated table expressions from model run (enum id's)

GET csv model runs comparison table expressions

GET /api/model/:model/run/:run/table/:name/compare/:compare/variant/:variant/csv
GET /api/model/:model/run/:run/table/:name/compare/:compare/variant/:variant/csv-bom

GET /api/model/:model/run/:run/table/:name/compare/:compare/variant/:variant/csv-id
GET /api/model/:model/run/:run/table/:name/compare/:compare/variant/:variant/csv-id-bom

GET /api/model/:model/run/:run/table/:name/acc/csv
GET /api/model/:model/run/:run/table/:name/acc/csv-bom

GET /api/model/:model/run/:run/table/:name/acc/csv-id
GET /api/model/:model/run/:run/table/:name/acc/csv-id-bom

GET /api/model/:model/run/:run/table/:name/all-acc/csv
GET /api/model/:model/run/:run/table/:name/all-acc/csv-bom

GET /api/model/:model/run/:run/table/:name/all-acc/csv-id
GET /api/model/:model/run/:run/table/:name/all-acc/csv-id-bom

GET /api/model/:model/run/:run/microdata/:name/csv
GET /api/model/:model/run/:run/microdata/:name/csv-bom

GET /api/model/:model/run/:run/microdata/:name/csv-id
GET /api/model/:model/run/:run/microdata/:name/csv-id-bom

GET /api/model/:model/run/:run/microdata/:name/group-by/:group-by/calc/:calc/csv
GET /api/model/:model/run/:run/microdata/:name/group-by/:group-by/calc/:calc/csv-bom

GET /api/model/:model/run/:run/microdata/:name/group-by/:group-by/calc/:calc/csv-id
GET /api/model/:model/run/:run/microdata/:name/group-by/:group-by/calc/:calc/csv-id-bom

GET /api/model/:model/run/:run/microdata/:name/group-by/:group-by/compare/:compare/variant/:variant/csv
GET /api/model/:model/run/:run/microdata/:name/group-by/:group-by/compare/:compare/variant/:variant/csv-bom

GET /api/model/:model/run/:run/microdata/:name/group-by/:group-by/compare/:compare/variant/:variant/csv-id
GET /api/model/:model/run/:run/microdata/:name/group-by/:group-by/compare/:compare/variant/:variant/csv-id-bom

GET csv model runs comparison table expressions (enum id's)

GET csv output table accumulators from model run

GET csv output table accumulators from model run (enum id's)

GET csv output table all accumulators from model run

GET csv output table all accumulators from model run (enum id's)

GET csv microdata values from model run

GET csv microdata values from model run (enum id's)

GET csv aggregated microdata from model run

GET csv aggregated microdata from model run (enum id's)

GET csv microdata run comparison

GET csv microdata run comparison (enum id's)

GET Modeling Task metadata and task run history

GET list of modeling tasks

GET /api/model/:model/task-list

GET /api/model/:model/task-list/text
GET /api/model/:model/task-list/text/lang/:lang

GET /api/model/:model/task/:task/sets

GET /api/model/:model/task/:task/runs

GET /api/model/:model/task/:task/run-status/run/:run

GET /api/model/:model/task/:task/run-status/list/:run

GET /api/model/:model/task/:task/run-status/first

GET /api/model/:model/task/:task/run-status/last

GET /api/model/:model/task/:task/run-status/last-completed

GET /api/model/:model/task/:task/text
GET /api/model/:model/task/:task/text/lang/:lang

GET /api/model/:model/task/:task/text-all

PATCH /api/model/:model/profile

DELETE /api/model/:model/profile/:profile

POST /api/model/:model/profile/:profile/key/:key/value/:value

GET list of modeling tasks including text (description and notes)

GET modeling task input worksets

GET modeling task run history

GET status of modeling task run

GET status of modeling task run list

GET status of modeling task first run

GET status of modeling task last run

GET status of modeling task last completed run

GET modeling task including text (description and notes)

GET modeling task text in all languages

Update Model Profile: set of key-value options

PATCH create or replace profile

DELETE profile

POST create or replace profile option

DELETE /api/model/:model/profile/:profile/key/:key

POST /api/model/:model/workset/:set/readonly/:readonly

PUT /api/workset-create

PUT /api/workset-replace

PATCH /api/workset-merge

DELETE /api/model/:model/workset/:set

POST /api/model/:model/delete-worksets

DELETE /api/model/:model/workset/:set/parameter/:name

PATCH /api/model/:model/workset/:set/parameter/:name/new/value

PATCH /api/model/:model/workset/:set/parameter/:name/new/value-id

PATCH /api/model/:model/workset/:set/parameter-text

PUT /api/model/:model/workset/:set/copy/parameter/:name/from-run/:run

PATCH /api/model/:model/workset/:set/merge/parameter/:name/from-run/:run

PUT /api/model/:model/workset/:set/copy/parameter/:name/from-workset/:from-set

DELETE profile option

Update Model Workset: set of input parameters

POST update workset read-only status

PUT create new workset

PUT create or replace workset

PATCH create or merge workset

DELETE workset

POST delete multiple worksets

DELETE parameter from workset

PATCH update workset parameter values

PATCH update workset parameter values (enum id's)

PATCH update workset parameter(s) value notes

PUT copy parameter from model run into workset

PATCH merge parameter from model run into workset

PUT copy parameter from workset to another

PATCH /api/model/:model/workset/:set/merge/parameter/:name/from-workset/:from-set

PATCH /api/run/text

DELETE /api/model/:model/run/:run

POST /api/model/:model/delete-runs

PATCH /api/model/:model/run/:run/parameter-text

PUT /api/task-new

PATCH /api/task

DELETE /api/model/:model/task/:task

POST /api/run

GET /api/run/log/model/:model/stamp/:stamp
GET /api/run/log/model/:model/stamp/:stamp/start/:start/count/:count

PUT /api/run/stop/model/:model/stamp/:stamp

GET /api/download/log/file/:name

PATCH merge parameter from workset to another

Update Model Runs

PATCH update model run text (description and notes)

DELETE model run

POST delete model runs

PATCH update run parameter(s) value notes

Update Modeling Tasks

PUT create or replace modeling task

PATCH create or update modeling task

DELETE modeling task

Run Models: run models and monitor progress

POST a request to run the model

GET state of current model run

PUT stop model run

Download model, model run results or input parameters

GET download log file

GET all download log files for the model

GET /api/download/log/model/:model

GET /api/download/log-all

GET /api/download/file-tree/:folder

POST /api/download/model/:model

POST /api/download/model/:model/run/:run

POST /api/download/model/:model/workset/:set

DELETE /api/download/delete/:folder
DELETE /api/download/start/delete/:folder

DELETE /api/download/delete-all
DELETE /api/download/start/delete-all

GET /api/upload/log/file/:name

GET /api/upload/log/model/:model

GET /api/upload/log-all

GET /api/upload/file-tree/:folder

POST /api/upload/model/:model/run
POST /api/upload/model/:model/run/:run

GET all download log files

GET download files tree

POST initiate model download

POST initiate model run download

POST initiate model workset download

DELETE download files

DELETE all download files

Upload model runs or worksets

GET upload log file

GET all upload log files for the model

GET all upload log files

GET upload files tree

POST initiate model run upload

POST initiate workset upload

POST /api/upload/model/:model/workset
POST /api/upload/model/:model/workset/:set

DELETE /api/upload/delete/:folder
DELETE /api/upload/start/delete/:folder

DELETE /api/upload/delete-all
DELETE /api/upload/start/delete-all

GET /api/user/view/model/:model

PUT /api/user/view/model/:model

DELETE /api/user/view/model/:model

GET /api/service/config

GET /api/service/state

GET /api/service/disk-use

POST /api/service/disk-use/refersh

GET /api/service/job/active/:job

GET /api/service/job/queue/:job

GET /api/service/job/history/:job

DELETE upload files

DELETE all upload files

User: manage user settings and data

GET user views for the model

PUT user views for the model

DELETE user views for the model

Model run jobs and service state

GET service configuration

GET job service state

GET disk usage state

POST refresh disk space usage info

GET state of active model run job

GET state of model run job from queue

GET state of model run job from history

PUT model run job into other queue position

PUT /api/service/job/move/:pos/:job

DELETE /api/service/job/delete/history/:job

POST /api/admin/all-models/refresh

POST /api/admin/all-models/close

POST /api/admin/model/:model/close

POST /api/admin/db-file-open/:path

POST /api/admin/db-cleanup/:path
POST /api/admin/db-cleanup/:path/name/:name
POST /api/admin/db-cleanup/:path/name/:name/digest/:digest

GET /api/admin/db-cleanup/log-all

GET /api/admin/db-cleanup/log/:name

POST /api/admin/jobs-pause/:pause

POST /api/admin-all/jobs-pause/:pause

PUT /shutdown

DELETE state of model run job from history

Administrative: manage web-service state

POST a request to refresh models catalog

POST a request to close models catalog

POST a request to close model database

POST a request to open database file

POST a request to cleanup database file

GET the list of database cleanup logs

GET database cleanup log file

POST a request to pause model run queue

POST a request to pause all queues of model runs

PUT a request to shutdown web-service

Get list of the models.

Method:

GET /api/model-list

Call example:

http://localhost:4040/api/model-list

Return example: This is a beta version and may change in the future.

[
 {
 "ModelId": 101,
 "Name": "IDMM",
 "Digest": "0f76e04fb52de763f836c7b026c00f80",
 "Type": 1,
 "Version": "2.0.0.0",
 "CreateDateTime": "2017-12-19 15:19:57.0747",
 "DefaultLangCode": "EN"
 },
 {
 "ModelId": 101,
 "Name": "NewCaseBased",
 "Digest": "649f17f26d67c37b78dde94f79772445",
 "Type": 0,
 "Version": "1.0.0.0",
 "CreateDateTime": "2017-12-19 15:21:14.0232",
 "DefaultLangCode": "EN"
 },
 {
 "ModelId": 101,
 "Name": "NewTimeBased",
 "Digest": "0ceaa8fbc0b762c5cb287a4910ede8f7",
 "Type": 1,
 "Version": "1.0.1.0",
 "CreateDateTime": "2017-12-19 15:21:47.0408",
 "DefaultLangCode": "EN"
 },
 {
 "ModelId": 1,
 "Name": "modelOne",
 "Digest": "_201208171604590148_",
 "Type": 0,
 "Version": "1.0",
 "CreateDateTime": "2012-08-17 16:04:59.0148",
 "DefaultLangCode": "EN"
 }
]

GET model list

Get model list including text (description and notes).

Methods:

GET /api/model-list/text
GET /api/model-list/text/lang/:lang

Arguments:

:lang - (optional) language code

If optional lang argument specified then result in that language else in browser language or model default. If no such language exist then result in
model default language or can be empty.

Call examples:

http://localhost:4040/api/model-list/text
http://localhost:4040/api/model-list/text/lang/en

Return example: This is a beta version and may change in the future.

GET model list including text (description and notes)

[
 {
 "Model": {
 "ModelId": 101,
 "Name": "IDMM",
 "Digest": "0f76e04fb52de763f836c7b026c00f80",
 "Type": 1,
 "Version": "2.0.0.0",
 "CreateDateTime": "2017-12-19 15:19:57.0747",
 "DefaultLangCode": "EN"
 },
 "DescrNote": {
 "LangCode": "EN",
 "Descr": "model",
 "Note": ""
 }
 },
 {
 "Model": {
 "ModelId": 101,
 "Name": "NewCaseBased",
 "Digest": "649f17f26d67c37b78dde94f79772445",
 "Type": 0,
 "Version": "1.0.0.0",
 "CreateDateTime": "2017-12-19 15:21:14.0232",
 "DefaultLangCode": "EN"
 },
 "DescrNote": {
 "LangCode": "EN",
 "Descr": "Simple case-based model",
 "Note": "This model can serve as a starting point for more complex case-based models."
 }
 },
 {
 "Model": {
 "ModelId": 101,
 "Name": "NewTimeBased",
 "Digest": "0ceaa8fbc0b762c5cb287a4910ede8f7",
 "Type": 1,
 "Version": "1.0.1.0",
 "CreateDateTime": "2017-12-19 15:21:47.0408",
 "DefaultLangCode": "EN"
 },
 "DescrNote": {
 "LangCode": "EN",
 "Descr": "Simple time-based model",
 "Note": "This model can serve as a starting point for more complex time-based models."
 }
 },
 {
 "Model": {
 "ModelId": 1,
 "Name": "modelOne",
 "Digest": "_201208171604590148_",
 "Type": 0,
 "Version": "1.0",
 "CreateDateTime": "2012-08-17 16:04:59.0148",
 "DefaultLangCode": "EN"
 },
 "DescrNote": {
 "LangCode": "EN",
 "Descr": "First model",
 "Note": "First model: openM++ development test model"
 }
 }
]

Get model definition: language-neutral part of model metadata.

Methods:

GET /api/model/:model
GET /api/model/:model/pack

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

Call examples:

http://localhost:4040/api/model/modelOne
http://localhost:4040/api/model/649f17f26d67c37b78dde94f79772445
http://localhost:4040/api/model/RiskPaths/pack

The /pack/ version of the method produce more compact output results. For example range types are retrurned as [min, max] enum id's only:

 {
 "ModelId": 101,
 "TypeId": 103,
 "TypeHid": 101,
 "Name": "LIFE",
 "Digest": "90bc3191bed66b07d1c7b9f88c42584c",
 "DicId": 3,
 "TotalEnumId": 101,
 "IsRange": true,
 "MinEnumId": 0,
 "MaxEnumId": 100,
 "Enum": null
 },

And a regular method (without /pack/) return a full list of enum type values:

 {
 "ModelId": 101,
 "TypeId": 103,
 "TypeHid": 101,
 "Name": "LIFE",
 "Digest": "90bc3191bed66b07d1c7b9f88c42584c",
 "DicId": 3,
 "TotalEnumId": 101,
 "IsRange": true,
 "MinEnumId": 0,
 "MaxEnumId": 100,
 "Enum": [{
 "ModelId": 101,
 "TypeId": 103,
 "EnumId": 0,
 "Name": "0"
 },

 {
 "ModelId": 101,
 "TypeId": 103,
 "EnumId": 100,
 "Name": "100"
 }
]
 }

Return example:

{
 "Model": {
 "ModelId": 1,
 "Name": "modelOne",

GET model definition metadata

 "Name": "modelOne",
 "Digest": "_201208171604590148_",
 "Type": 0,
 "Version": "1.0",
 "CreateDateTime": "2012-08-17 16:04:59.148",
 "DefaultLangCode": "EN"
 },
 "Type": [
 {
 "ModelId": 1,
 "TypeId": 4,
 "TypeHid": 4,
 "Name": "int",
 "Digest": "_int_",
 "DicId": 0,
 "TotalEnumId": 1,
 "Enum": null
 },
 {
 "ModelId": 1,
 "TypeId": 7,
 "TypeHid": 7,
 "Name": "bool",
 "Digest": "_bool_",
 "DicId": 1,
 "TotalEnumId": 2,
 "Enum": [
 {
 "ModelId": 1,
 "TypeId": 7,
 "EnumId": 0,
 "Name": "false"
 },
 {
 "ModelId": 1,
 "TypeId": 7,
 "EnumId": 1,
 "Name": "true"
 }
]
 },
 {
 "ModelId": 1,
 "TypeId": 14,
 "TypeHid": 14,
 "Name": "double",
 "Digest": "_double_",
 "DicId": 0,
 "TotalEnumId": 1,
 "Enum": null
 },
 {
 "ModelId": 1,
 "TypeId": 21,
 "TypeHid": 21,
 "Name": "file",
 "Digest": "_file_",
 "DicId": 0,
 "TotalEnumId": 1,
 "Enum": null
 },
 {
 "ModelId": 1,
 "TypeId": 101,
 "TypeHid": 96,
 "Name": "age",
 "Digest": "_20128171604590121",
 "DicId": 2,
 "TotalEnumId": 500,
 "Enum": [
 {
 "ModelId": 1,
 "TypeId": 101,
 "EnumId": 10,
 "Name": "10-20"
 },
 {
 "ModelId": 1,
 "TypeId": 101,
 "EnumId": 20,
 "Name": "20-30"
 },
 {
 "ModelId": 1,
 "TypeId": 101,
 "EnumId": 30,
 "Name": "30-40"
 },
 {

 {
 "ModelId": 1,
 "TypeId": 101,
 "EnumId": 40,
 "Name": "40+"
 }
]
 },
 {
 "ModelId": 1,
 "TypeId": 102,
 "TypeHid": 97,
 "Name": "sex",
 "Digest": "_20128171604590122",
 "DicId": 2,
 "TotalEnumId": 800,
 "Enum": [
 {
 "ModelId": 1,
 "TypeId": 102,
 "EnumId": 0,
 "Name": "M"
 },
 {
 "ModelId": 1,
 "TypeId": 102,
 "EnumId": 1,
 "Name": "F"
 }
]
 },
 {
 "ModelId": 1,
 "TypeId": 103,
 "TypeHid": 98,
 "Name": "salary",
 "Digest": "_20128171604590123",
 "DicId": 2,
 "TotalEnumId": 400,
 "Enum": [
 {
 "ModelId": 1,
 "TypeId": 103,
 "EnumId": 100,
 "Name": "L"
 },
 {
 "ModelId": 1,
 "TypeId": 103,
 "EnumId": 200,
 "Name": "M"
 },
 {
 "ModelId": 1,
 "TypeId": 103,
 "EnumId": 300,
 "Name": "H"
 }
]
 },
 {
 "ModelId": 1,
 "TypeId": 104,
 "TypeHid": 99,
 "Name": "full",
 "Digest": "_20128171604590124",
 "DicId": 2,
 "TotalEnumId": 44,
 "Enum": [
 {
 "ModelId": 1,
 "TypeId": 104,
 "EnumId": 22,
 "Name": "Full"
 },
 {
 "ModelId": 1,
 "TypeId": 104,
 "EnumId": 33,
 "Name": "Part"
 }
]
 }
],
 "Param": [
 {
 "ModelId": 1,
 "ParamId": 0,

 "ParamId": 0,
 "ParamHid": 44,
 "Name": "ageSex",
 "Digest": "_20128171604590131",
 "Rank": 2,
 "TypeId": 14,
 "IsExtendable": true,
 "IsHidden": false,
 "NumCumulated": 0,
 "DbRunTable": "ageSex_p_2012817",
 "DbSetTable": "ageSex_w_2012817",
 "ImportDigest": "_i0128171604590131",
 "Dim": [
 {
 "ModelId": 1,
 "ParamId": 0,
 "DimId": 0,
 "Name": "dim0",
 "TypeId": 101
 },
 {
 "ModelId": 1,
 "ParamId": 0,
 "DimId": 1,
 "Name": "dim1",
 "TypeId": 102
 }
],
 "Import": [
 {
 "ModelId": 1,
 "ParamId": 0,
 "FromName": "ageSexIncome",
 "FromModel": "modelOne",
 "IsSampleDim": false
 }
]
 },
 {
 "ModelId": 1,
 "ParamId": 1,
 "ParamHid": 45,
 "Name": "salaryAge",
 "Digest": "_20128171604590132",
 "Rank": 2,
 "TypeId": 4,
 "IsExtendable": false,
 "IsHidden": false,
 "NumCumulated": 0,
 "DbRunTable": "salaryAge_p_2012818",
 "DbSetTable": "salaryAge_w_2012818",
 "ImportDigest": "_i0128171604590132",
 "Dim": [
 {
 "ModelId": 1,
 "ParamId": 1,
 "DimId": 0,
 "Name": "dim0",
 "TypeId": 103
 },
 {
 "ModelId": 1,
 "ParamId": 1,
 "DimId": 1,
 "Name": "dim1",
 "TypeId": 101
 }
],
 "Import": [
 {
 "ModelId": 1,
 "ParamId": 1,
 "FromName": "salaryAge",
 "FromModel": "modelOne",
 "IsSampleDim": false
 }
]
 },
 {
 "ModelId": 1,
 "ParamId": 2,
 "ParamHid": 46,
 "Name": "StartingSeed",
 "Digest": "_20128171604590133",
 "Rank": 0,
 "TypeId": 4,
 "IsExtendable": false,
 "IsHidden": false,
 "NumCumulated": 0,

 "NumCumulated": 0,
 "DbRunTable": "StartingSeed_p_2012819",
 "DbSetTable": "StartingSeed_w_2012819",
 "ImportDigest": "_i0128171604590133",
 "Dim": null,
 "Import": [
 {
 "ModelId": 1,
 "ParamId": 2,
 "FromName": "StartingSeed",
 "FromModel": "modelOne",
 "IsSampleDim": false
 }
]
 },
 {
 "ModelId": 1,
 "ParamId": 3,
 "ParamHid": 47,
 "Name": "salaryFull",
 "Digest": "_20128171604590134",
 "Rank": 1,
 "TypeId": 104,
 "IsExtendable": false,
 "IsHidden": false,
 "NumCumulated": 0,
 "DbRunTable": "salaryFull_p_2012812",
 "DbSetTable": "salaryFull_w_2012812",
 "ImportDigest": "_i0128171604590134",
 "Dim": [
 {
 "ModelId": 1,
 "ParamId": 3,
 "DimId": 0,
 "Name": "dim0",
 "TypeId": 103
 }
],
 "Import": null
 },
 {
 "ModelId": 1,
 "ParamId": 4,
 "ParamHid": 48,
 "Name": "baseSalary",
 "Digest": "_20128171604590135",
 "Rank": 0,
 "TypeId": 104,
 "IsExtendable": false,
 "IsHidden": false,
 "NumCumulated": 0,
 "DbRunTable": "baseSalary_p_2012811",
 "DbSetTable": "baseSalary_w_2012811",
 "ImportDigest": "_i0128171604590135",
 "Dim": null,
 "Import": null
 },
 {
 "ModelId": 1,
 "ParamId": 5,
 "ParamHid": 49,
 "Name": "filePath",
 "Digest": "_20128171604590136",
 "Rank": 0,
 "TypeId": 21,
 "IsExtendable": false,
 "IsHidden": false,
 "NumCumulated": 0,
 "DbRunTable": "filePath_p_2012814",
 "DbSetTable": "filePath_w_2012814",
 "ImportDigest": "_i0128171604590136",
 "Dim": null,
 "Import": null
 },
 {
 "ModelId": 1,
 "ParamId": 6,
 "ParamHid": 50,
 "Name": "isOldAge",
 "Digest": "_20128171604590137",
 "Rank": 1,
 "TypeId": 7,
 "IsExtendable": false,
 "IsHidden": false,
 "NumCumulated": 0,
 "DbRunTable": "isOldAge_p_2012815",
 "DbSetTable": "isOldAge_w_2012815",
 "ImportDigest": "_i0128171604590137",

 "Dim": [
 {
 "ModelId": 1,
 "ParamId": 6,
 "DimId": 0,
 "Name": "dim0",
 "TypeId": 101
 }
],
 "Import": null
 }
],
 "Table": [
 {
 "ModelId": 1,
 "TableId": 0,
 "TableHid": 82,
 "Name": "salarySex",
 "Digest": "_20128171604590182",
 "IsUser": false,
 "Rank": 2,
 "IsSparse": true,
 "DbExprTable": "salarySex_v_2012882",
 "DbAccTable": "salarySex_a_2012882",
 "DbAccAllView": "salarySex_d_2012882",
 "ExprPos": 1,
 "IsHidden": false,
 "ImportDigest": "_i0128171604590182",
 "Dim": [
 {
 "ModelId": 1,
 "TableId": 0,
 "DimId": 0,
 "Name": "dim0",
 "TypeId": 103,
 "IsTotal": false,
 "DimSize": 3
 },
 {
 "ModelId": 1,
 "TableId": 0,
 "DimId": 1,
 "Name": "dim1",
 "TypeId": 102,
 "IsTotal": true,
 "DimSize": 3
 }
],
 "Acc": [
 {
 "ModelId": 1,
 "TableId": 0,
 "AccId": 0,
 "Name": "acc0",
 "IsDerived": false,
 "SrcAcc": "value_sum()",
 "AccSql": "A.acc_value"
 },
 {
 "ModelId": 1,
 "TableId": 0,
 "AccId": 1,
 "Name": "acc1",
 "IsDerived": false,
 "SrcAcc": "value_count()",
 "AccSql": "SELECT A1.acc_value FROM salarySex_a_2012882 A1 WHERE A1.run_id = A.run_id AND A1.sub_id = A.sub_id AND A1.dim0 = A.dim0 AND A1.dim1 = A.dim1 A
ND A1.acc_id = 1"
 },
 {
 "ModelId": 1,
 "TableId": 0,
 "AccId": 2,
 "Name": "acc2",
 "IsDerived": true,
 "SrcAcc": "acc0 + acc1",
 "AccSql": "(A.acc_value) + (SELECT A1.acc_value FROM salarySex_a_2012882 A1 WHERE A1.run_id = A.run_id AND A1.sub_id = A.sub_id AND A1.dim0 = A.dim0 AND A1
.dim1 = A.dim1 AND A1.acc_id = 1)"
 }
],
 "Expr": [
 {
 "ModelId": 1,
 "TableId": 0,
 "ExprId": 0,
 "Name": "expr0",
 "Decimals": 4,
 "SrcExpr": "OM_AVG(acc0)",
 "ExprSql": "SELECT M1.run_id, M1.dim0, M1.dim1, AVG(M1.acc_value) AS expr0 FROM salarySex_a_2012882 M1 WHERE M1.acc_id = 0 GROUP BY M1.run_id, M1.dim0,

 "ExprSql": "SELECT M1.run_id, M1.dim0, M1.dim1, AVG(M1.acc_value) AS expr0 FROM salarySex_a_2012882 M1 WHERE M1.acc_id = 0 GROUP BY M1.run_id, M1.dim0,
 M1.dim1"
 },
 {
 "ModelId": 1,
 "TableId": 0,
 "ExprId": 1,
 "Name": "expr1",
 "Decimals": 4,
 "SrcExpr": "OM_SUM(acc1)",
 "ExprSql": "SELECT M1.run_id, M1.dim0, M1.dim1, SUM(M1.acc_value) AS expr1 FROM salarySex_a_2012882 M1 WHERE M1.acc_id = 1 GROUP BY M1.run_id, M1.dim0,
 M1.dim1"
 },
 {
 "ModelId": 1,
 "TableId": 0,
 "ExprId": 2,
 "Name": "expr2",
 "Decimals": 2,
 "SrcExpr": "OM_MIN(acc0)",
 "ExprSql": "SELECT M1.run_id, M1.dim0, M1.dim1, MIN(M1.acc_value) AS expr2 FROM salarySex_a_2012882 M1 WHERE M1.acc_id = 0 GROUP BY M1.run_id, M1.dim0,
M1.dim1"
 },
 {
 "ModelId": 1,
 "TableId": 0,
 "ExprId": 3,
 "Name": "expr3",
 "Decimals": 3,
 "SrcExpr": "OM_AVG(acc0 * acc1)",
 "ExprSql": "SELECT M1.run_id, M1.dim0, M1.dim1, AVG(M1.acc_value * A1.acc1) AS expr3 FROM salarySex_a_2012882 M1 INNER JOIN (SELECT run_id, dim0, dim1, su
b_id, acc_value AS acc1 FROM salarySex_a_2012882 WHERE acc_id = 1) A1 ON (A1.run_id = M1.run_id AND A1.dim0 = M1.dim0 AND A1.dim1 = M1.dim1 AND A1.sub_id = M1.
sub_id) WHERE M1.acc_id = 0 GROUP BY M1.run_id, M1.dim0, M1.dim1"
 }
]
 },
 {
 "ModelId": 1,
 "TableId": 1,
 "TableHid": 83,
 "Name": "fullAgeSalary",
 "Digest": "_20128171604590183",
 "IsUser": false,
 "Rank": 3,
 "IsSparse": false,
 "DbExprTable": "fullAgeSalary_v_2012883",
 "DbAccTable": "fullAgeSalary_a_2012883",
 "DbAccAllView": "fullAgeSalary_d_2012883",
 "ExprPos": 1,
 "IsHidden": false,
 "ImportDigest": "_i0128171604590183",
 "Dim": [
 {
 "ModelId": 1,
 "TableId": 1,
 "DimId": 0,
 "Name": "dim0",
 "TypeId": 104,
 "IsTotal": false,
 "DimSize": 2
 },
 {
 "ModelId": 1,
 "TableId": 1,
 "DimId": 1,
 "Name": "dim1",
 "TypeId": 101,
 "IsTotal": true,
 "DimSize": 5
 },
 {
 "ModelId": 1,
 "TableId": 1,
 "DimId": 2,
 "Name": "dim2",
 "TypeId": 103,
 "IsTotal": false,
 "DimSize": 3
 }
],
 "Acc": [
 {
 "ModelId": 1,
 "TableId": 1,
 "AccId": 0,
 "Name": "acc0",
 "IsDerived": false,
 "SrcAcc": "raw_value()",
 "AccSql": "A.acc_value"

 "AccSql": "A.acc_value"
 }
],
 "Expr": [
 {
 "ModelId": 1,
 "TableId": 1,
 "ExprId": 0,
 "Name": "expr0",
 "Decimals": 2,
 "SrcExpr": "OM_AVG(acc0)",
 "ExprSql": "SELECT M1.run_id, M1.dim0, M1.dim1, M1.dim2, AVG(M1.acc_value) AS expr0 FROM fullAgeSalary_a_2012883 M1 WHERE M1.acc_id = 0 GROUP BY M1.run_
id, M1.dim0, M1.dim1, M1.dim2"
 }
]
 },
 {
 "ModelId": 1,
 "TableId": 2,
 "TableHid": 84,
 "Name": "ageSexIncome",
 "Digest": "_20128171604590184",
 "IsUser": false,
 "Rank": 2,
 "IsSparse": false,
 "DbExprTable": "ageSexIncome_v_2012884",
 "DbAccTable": "ageSexIncome_a_2012884",
 "DbAccAllView": "ageSexIncome_d_2012884",
 "ExprPos": 0,
 "IsHidden": false,
 "ImportDigest": "_i0128171604590131",
 "Dim": [
 {
 "ModelId": 1,
 "TableId": 2,
 "DimId": 0,
 "Name": "dim0",
 "TypeId": 101,
 "IsTotal": false,
 "DimSize": 4
 },
 {
 "ModelId": 1,
 "TableId": 2,
 "DimId": 1,
 "Name": "dim1",
 "TypeId": 102,
 "IsTotal": false,
 "DimSize": 2
 }
],
 "Acc": [
 {
 "ModelId": 1,
 "TableId": 2,
 "AccId": 0,
 "Name": "acc0",
 "IsDerived": false,
 "SrcAcc": "raw_value()",
 "AccSql": "A.acc_value"
 },
 {
 "ModelId": 1,
 "TableId": 2,
 "AccId": 1,
 "Name": "acc1",
 "IsDerived": false,
 "SrcAcc": "adjust_value()",
 "AccSql": "A.acc_value"
 }
],
 "Expr": [
 {
 "ModelId": 1,
 "TableId": 2,
 "ExprId": 0,
 "Name": "expr0",
 "Decimals": 2,
 "SrcExpr": "OM_AVG(acc0)",
 "ExprSql": "SELECT M1.run_id, M1.dim0, M1.dim1, AVG(M1.acc_value) AS expr0 FROM ageSexIncome_a_2012884 M1 WHERE M1.acc_id = 0 GROUP BY M1.run_id, M1.d
im0, M1.dim1"
 },
 {
 "ModelId": 1,
 "TableId": 2,
 "ExprId": 1,
 "Name": "expr1",
 "Decimals": 3,

 "Decimals": 3,
 "SrcExpr": "OM_AVG(acc1)",
 "ExprSql": "SELECT M1.run_id, M1.dim0, M1.dim1, AVG(M1.acc_value) AS expr1 FROM ageSexIncome_a_2012884 M1 WHERE M1.acc_id = 1 GROUP BY M1.run_id, M1.d
im0, M1.dim1"
 }
]
 },
 {
 "ModelId": 1,
 "TableId": 3,
 "TableHid": 85,
 "Name": "seedOldAge",
 "Digest": "_20128171604590185",
 "IsUser": false,
 "Rank": 0,
 "IsSparse": false,
 "DbExprTable": "seedOldAge_v_2012885",
 "DbAccTable": "seedOldAge_a_2012885",
 "DbAccAllView": "seedOldAge_d_2012885",
 "ExprPos": 0,
 "IsHidden": false,
 "ImportDigest": "_i0128171604590185",
 "Dim": null,
 "Acc": [
 {
 "ModelId": 1,
 "TableId": 3,
 "AccId": 0,
 "Name": "acc0",
 "IsDerived": false,
 "SrcAcc": "raw_value()",
 "AccSql": "A.acc_value"
 }
],
 "Expr": [
 {
 "ModelId": 1,
 "TableId": 3,
 "ExprId": 0,
 "Name": "expr0",
 "Decimals": 5,
 "SrcExpr": "OM_AVG(acc0)",
 "ExprSql": "SELECT M1.run_id, AVG(M1.acc_value) AS expr0 FROM seedOldAge_a_2012885 M1 WHERE M1.acc_id = 0 GROUP BY M1.run_id"
 }
]
 }
],
 "Group": [
 {
 "ModelId": 1,
 "GroupId": 1,
 "IsParam": true,
 "Name": "AllParameters",
 "IsHidden": false,
 "GroupPc": [
 {
 "ModelId": 1,
 "GroupId": 1,
 "ChildPos": 0,
 "ChildGroupId": 2,
 "ChildLeafId": -1
 },
 {
 "ModelId": 1,
 "GroupId": 1,
 "ChildPos": 1,
 "ChildGroupId": 3,
 "ChildLeafId": -1
 },
 {
 "ModelId": 1,
 "GroupId": 1,
 "ChildPos": 2,
 "ChildGroupId": -1,
 "ChildLeafId": 2
 },
 {
 "ModelId": 1,
 "GroupId": 1,
 "ChildPos": 3,
 "ChildGroupId": -1,
 "ChildLeafId": 5
 }
]
 },
 {
 "ModelId": 1,
 "GroupId": 2,
 "IsParam": true,

 "IsParam": true,
 "Name": "AgeSexParameters",
 "IsHidden": false,
 "GroupPc": [
 {
 "ModelId": 1,
 "GroupId": 2,
 "ChildPos": 0,
 "ChildGroupId": -1,
 "ChildLeafId": 0
 },
 {
 "ModelId": 1,
 "GroupId": 2,
 "ChildPos": 1,
 "ChildGroupId": -1,
 "ChildLeafId": 1
 },
 {
 "ModelId": 1,
 "GroupId": 2,
 "ChildPos": 2,
 "ChildGroupId": -1,
 "ChildLeafId": 6
 }
]
 },
 {
 "ModelId": 1,
 "GroupId": 3,
 "IsParam": true,
 "Name": "SalaryParameters",
 "IsHidden": false,
 "GroupPc": [
 {
 "ModelId": 1,
 "GroupId": 3,
 "ChildPos": 0,
 "ChildGroupId": -1,
 "ChildLeafId": 1
 },
 {
 "ModelId": 1,
 "GroupId": 3,
 "ChildPos": 1,
 "ChildGroupId": -1,
 "ChildLeafId": 3
 },
 {
 "ModelId": 1,
 "GroupId": 3,
 "ChildPos": 2,
 "ChildGroupId": -1,
 "ChildLeafId": 4
 }
]
 },
 {
 "ModelId": 1,
 "GroupId": 10,
 "IsParam": false,
 "Name": "AdditionalTables",
 "IsHidden": false,
 "GroupPc": [
 {
 "ModelId": 1,
 "GroupId": 10,
 "ChildPos": 0,
 "ChildGroupId": -1,
 "ChildLeafId": 1
 },
 {
 "ModelId": 1,
 "GroupId": 10,
 "ChildPos": 1,
 "ChildGroupId": -1,
 "ChildLeafId": 2
 },
 {
 "ModelId": 1,
 "GroupId": 10,
 "ChildPos": 2,
 "ChildGroupId": -1,
 "ChildLeafId": 3
 }
]
 }
]

}

Get model metadata including text (description and notes) in current user language.

Methods:

GET /api/model/:model/text
GET /api/model/:model/text/lang/:lang
GET /api/model/:model/pack/text
GET /api/model/:model/pack/text/lang/:lang

The /pack/ version of the method produce more compact output results. For example range types are retrurned as [min, max] enum id's only:

 {
 "Type": {
 "ModelId": 101,
 "TypeId": 103,
 "TypeHid": 101,
 "Name": "LIFE",
 "Digest": "90bc3191bed66b07d1c7b9f88c42584c",
 "DicId": 3,
 "TotalEnumId": 101,
 "IsRange": true,
 "MinEnumId": 0,
 "MaxEnumId": 100
 },
 "DescrNote": {
 "LangCode": "EN",
 "Descr": "Simulated age range",
 "Note": ""
 },
 "TypeEnumTxt": []
 },

And a regular method (without /pack/) return a full list of enum type values:

GET model metadata including text (description and notes)

 {
 "Type": {
 "ModelId": 101,
 "TypeId": 103,
 "TypeHid": 101,
 "Name": "LIFE",
 "Digest": "90bc3191bed66b07d1c7b9f88c42584c",
 "DicId": 3,
 "TotalEnumId": 101,
 "IsRange": true,
 "MinEnumId": 0,
 "MaxEnumId": 100
 },
 "DescrNote": {
 "LangCode": "EN",
 "Descr": "Simulated age range",
 "Note": ""
 },
 "TypeEnumTxt": [{
 "Enum": {
 "ModelId": 101,
 "TypeId": 103,
 "EnumId": 0,
 "Name": "0"
 },
 "DescrNote": {
 "LangCode": "EN",
 "Descr": "0",
 "Note": ""
 }
 }, {

 }, {
 "Enum": {
 "ModelId": 101,
 "TypeId": 103,
 "EnumId": 100,
 "Name": "100"
 },
 "DescrNote": {
 "LangCode": "EN",
 "Descr": "100",
 "Note": ""
 }
 }
]
 }

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

:lang - (optional) language code

If optional lang argument specified then result in that language else in browser language or model default. If no such language exist then result in
model default language or can be empty.

Call examples:

http://localhost:4040/api/model/modelOne/text
http://localhost:4040/api/model/modelOne/text/lang/en
http://localhost:4040/api/model/_201208171604590148_/text/lang/en_CA
http://localhost:4040/api/model/RiskPaths/pack/text

Return example:

{
 "Model": {
 "ModelId": 1,
 "Name": "modelOne",
 "Digest": "_201208171604590148_",
 "Type": 0,
 "Version": "1.0",
 "CreateDateTime": "2012-08-17 16:04:59.148",

 "CreateDateTime": "2012-08-17 16:04:59.148",
 "DefaultLangCode": "EN"
 },
 "DescrNote": {
 "LangCode": "EN",
 "Descr": "First model",
 "Note": "First model: openM++ development test model"
 },
 "TypeTxt": [
 {
 "Type": {
 "ModelId": 1,
 "TypeId": 4,
 "TypeHid": 4,
 "Name": "int",
 "Digest": "_int_",
 "DicId": 0,
 "TotalEnumId": 1
 },
 "DescrNote": {
 "LangCode": "",
 "Descr": "",
 "Note": ""
 },
 "TypeEnumTxt": []
 },
 {
 "Type": {
 "ModelId": 1,
 "TypeId": 7,
 "TypeHid": 7,
 "Name": "bool",
 "Digest": "_bool_",
 "DicId": 1,
 "TotalEnumId": 2
 },
 "DescrNote": {
 "LangCode": "EN",
 "Descr": "logical type",
 "Note": ""
 },
 "TypeEnumTxt": [
 {
 "Enum": {
 "ModelId": 1,
 "TypeId": 7,
 "EnumId": 0,
 "Name": "false"
 },
 "DescrNote": {
 "LangCode": "EN",
 "Descr": "False",
 "Note": ""
 }
 },
 {
 "Enum": {
 "ModelId": 1,
 "TypeId": 7,
 "EnumId": 1,
 "Name": "true"
 },
 "DescrNote": {
 "LangCode": "EN",
 "Descr": "True",
 "Note": ""
 }
 }
]
 },
 {
 "Type": {
 "ModelId": 1,
 "TypeId": 14,
 "TypeHid": 14,
 "Name": "double",
 "Digest": "_double_",
 "DicId": 0,
 "TotalEnumId": 1
 },
 "DescrNote": {
 "LangCode": "",
 "Descr": "",
 "Note": ""
 },
 "TypeEnumTxt": []
 },
 {

 {
 "Type": {
 "ModelId": 1,
 "TypeId": 21,
 "TypeHid": 21,
 "Name": "file",
 "Digest": "_file_",
 "DicId": 0,
 "TotalEnumId": 1
 },
 "DescrNote": {
 "LangCode": "",
 "Descr": "",
 "Note": ""
 },
 "TypeEnumTxt": []
 },
 {
 "Type": {
 "ModelId": 1,
 "TypeId": 101,
 "TypeHid": 96,
 "Name": "age",
 "Digest": "_20128171604590121",
 "DicId": 2,
 "TotalEnumId": 500
 },
 "DescrNote": {
 "LangCode": "EN",
 "Descr": "Age",
 "Note": ""
 },
 "TypeEnumTxt": [
 {
 "Enum": {
 "ModelId": 1,
 "TypeId": 101,
 "EnumId": 10,
 "Name": "10-20"
 },
 "DescrNote": {
 "LangCode": "EN",
 "Descr": "age 10-20",
 "Note": ""
 }
 },
 {
 "Enum": {
 "ModelId": 1,
 "TypeId": 101,
 "EnumId": 20,
 "Name": "20-30"
 },
 "DescrNote": {
 "LangCode": "EN",
 "Descr": "age 20-30",
 "Note": ""
 }
 },
 {
 "Enum": {
 "ModelId": 1,
 "TypeId": 101,
 "EnumId": 30,
 "Name": "30-40"
 },
 "DescrNote": {
 "LangCode": "EN",
 "Descr": "age 30-40",
 "Note": ""
 }
 },
 {
 "Enum": {
 "ModelId": 1,
 "TypeId": 101,
 "EnumId": 40,
 "Name": "40+"
 },
 "DescrNote": {
 "LangCode": "EN",
 "Descr": "age 40+",
 "Note": ""
 }
 }
]
 },
 {
 "Type": {

 "Type": {
 "ModelId": 1,
 "TypeId": 102,
 "TypeHid": 97,
 "Name": "sex",
 "Digest": "_20128171604590122",
 "DicId": 2,
 "TotalEnumId": 800
 },
 "DescrNote": {
 "LangCode": "EN",
 "Descr": "Sex",
 "Note": ""
 },
 "TypeEnumTxt": [
 {
 "Enum": {
 "ModelId": 1,
 "TypeId": 102,
 "EnumId": 0,
 "Name": "M"
 },
 "DescrNote": {
 "LangCode": "EN",
 "Descr": "Male",
 "Note": ""
 }
 },
 {
 "Enum": {
 "ModelId": 1,
 "TypeId": 102,
 "EnumId": 1,
 "Name": "F"
 },
 "DescrNote": {
 "LangCode": "EN",
 "Descr": "Female",
 "Note": ""
 }
 }
]
 },
 {
 "Type": {
 "ModelId": 1,
 "TypeId": 103,
 "TypeHid": 98,
 "Name": "salary",
 "Digest": "_20128171604590123",
 "DicId": 2,
 "TotalEnumId": 400
 },
 "DescrNote": {
 "LangCode": "EN",
 "Descr": "Salary",
 "Note": ""
 },
 "TypeEnumTxt": [
 {
 "Enum": {
 "ModelId": 1,
 "TypeId": 103,
 "EnumId": 100,
 "Name": "L"
 },
 "DescrNote": {
 "LangCode": "EN",
 "Descr": "Low",
 "Note": ""
 }
 },
 {
 "Enum": {
 "ModelId": 1,
 "TypeId": 103,
 "EnumId": 200,
 "Name": "M"
 },
 "DescrNote": {
 "LangCode": "EN",
 "Descr": "Medium",
 "Note": ""
 }
 },
 {
 "Enum": {
 "ModelId": 1,

 "TypeId": 103,
 "EnumId": 300,
 "Name": "H"
 },
 "DescrNote": {
 "LangCode": "EN",
 "Descr": "High",
 "Note": ""
 }
 }
]
 },
 {
 "Type": {
 "ModelId": 1,
 "TypeId": 104,
 "TypeHid": 99,
 "Name": "full",
 "Digest": "_20128171604590124",
 "DicId": 2,
 "TotalEnumId": 44
 },
 "DescrNote": {
 "LangCode": "EN",
 "Descr": "Full or part time",
 "Note": ""
 },
 "TypeEnumTxt": [
 {
 "Enum": {
 "ModelId": 1,
 "TypeId": 104,
 "EnumId": 22,
 "Name": "Full"
 },
 "DescrNote": {
 "LangCode": "EN",
 "Descr": "Full-time",
 "Note": ""
 }
 },
 {
 "Enum": {
 "ModelId": 1,
 "TypeId": 104,
 "EnumId": 33,
 "Name": "Part"
 },
 "DescrNote": {
 "LangCode": "EN",
 "Descr": "Part-time",
 "Note": ""
 }
 }
]
 }
],
 "ParamTxt": [
 {
 "Param": {
 "ModelId": 1,
 "ParamId": 0,
 "ParamHid": 44,
 "Name": "ageSex",
 "Digest": "_20128171604590131",
 "Rank": 2,
 "TypeId": 14,
 "IsExtendable": true,
 "IsHidden": false,
 "NumCumulated": 0,
 "DbRunTable": "ageSex_p_2012817",
 "DbSetTable": "ageSex_w_2012817",
 "ImportDigest": "_i0128171604590131"
 },
 "DescrNote": {
 "LangCode": "EN",
 "Descr": "Age by Sex",
 "Note": "Age by Sex note"
 },
 "ParamDimsTxt": [
 {
 "Dim": {
 "ModelId": 1,
 "ParamId": 0,
 "DimId": 0,
 "Name": "dim0",
 "TypeId": 101
 },

 },
 "DescrNote": {
 "LangCode": "EN",
 "Descr": "Age Dim",
 "Note": "Age Dim notes"
 }
 },
 {
 "Dim": {
 "ModelId": 1,
 "ParamId": 0,
 "DimId": 1,
 "Name": "dim1",
 "TypeId": 102
 },
 "DescrNote": {
 "LangCode": "EN",
 "Descr": "Sex Dim",
 "Note": "Sex Dim notes"
 }
 }
]
 },
 {
 "Param": {
 "ModelId": 1,
 "ParamId": 1,
 "ParamHid": 45,
 "Name": "salaryAge",
 "Digest": "_20128171604590132",
 "Rank": 2,
 "TypeId": 4,
 "IsExtendable": false,
 "IsHidden": false,
 "NumCumulated": 0,
 "DbRunTable": "salaryAge_p_2012818",
 "DbSetTable": "salaryAge_w_2012818",
 "ImportDigest": "_i0128171604590132"
 },
 "DescrNote": {
 "LangCode": "EN",
 "Descr": "Salary by Age",
 "Note": "Salary by Age note"
 },
 "ParamDimsTxt": [
 {
 "Dim": {
 "ModelId": 1,
 "ParamId": 1,
 "DimId": 0,
 "Name": "dim0",
 "TypeId": 103
 },
 "DescrNote": {
 "LangCode": "",
 "Descr": "",
 "Note": ""
 }
 },
 {
 "Dim": {
 "ModelId": 1,
 "ParamId": 1,
 "DimId": 1,
 "Name": "dim1",
 "TypeId": 101
 },
 "DescrNote": {
 "LangCode": "",
 "Descr": "",
 "Note": ""
 }
 }
]
 },
 {
 "Param": {
 "ModelId": 1,
 "ParamId": 2,
 "ParamHid": 46,
 "Name": "StartingSeed",
 "Digest": "_20128171604590133",
 "Rank": 0,
 "TypeId": 4,
 "IsExtendable": false,
 "IsHidden": false,
 "NumCumulated": 0,
 "DbRunTable": "StartingSeed_p_2012819",
 "DbSetTable": "StartingSeed_w_2012819",

 "DbSetTable": "StartingSeed_w_2012819",
 "ImportDigest": "_i0128171604590133"
 },
 "DescrNote": {
 "LangCode": "FR",
 "Descr": "Starting Seed",
 "Note": "Random numbers generator starting seed value"
 },
 "ParamDimsTxt": []
 },
 {
 "Param": {
 "ModelId": 1,
 "ParamId": 3,
 "ParamHid": 47,
 "Name": "salaryFull",
 "Digest": "_20128171604590134",
 "Rank": 1,
 "TypeId": 104,
 "IsExtendable": false,
 "IsHidden": false,
 "NumCumulated": 0,
 "DbRunTable": "salaryFull_p_2012812",
 "DbSetTable": "salaryFull_w_2012812",
 "ImportDigest": "_i0128171604590134"
 },
 "DescrNote": {
 "LangCode": "EN",
 "Descr": "Full or part time by Salary level",
 "Note": ""
 },
 "ParamDimsTxt": [
 {
 "Dim": {
 "ModelId": 1,
 "ParamId": 3,
 "DimId": 0,
 "Name": "dim0",
 "TypeId": 103
 },
 "DescrNote": {
 "LangCode": "EN",
 "Descr": "Full Dim",
 "Note": ""
 }
 }
]
 },
 {
 "Param": {
 "ModelId": 1,
 "ParamId": 4,
 "ParamHid": 48,
 "Name": "baseSalary",
 "Digest": "_20128171604590135",
 "Rank": 0,
 "TypeId": 104,
 "IsExtendable": false,
 "IsHidden": false,
 "NumCumulated": 0,
 "DbRunTable": "baseSalary_p_2012811",
 "DbSetTable": "baseSalary_w_2012811",
 "ImportDigest": "_i0128171604590135"
 },
 "DescrNote": {
 "LangCode": "EN",
 "Descr": "Base salary level",
 "Note": ""
 },
 "ParamDimsTxt": []
 },
 {
 "Param": {
 "ModelId": 1,
 "ParamId": 5,
 "ParamHid": 49,
 "Name": "filePath",
 "Digest": "_20128171604590136",
 "Rank": 0,
 "TypeId": 21,
 "IsExtendable": false,
 "IsHidden": false,
 "NumCumulated": 0,
 "DbRunTable": "filePath_p_2012814",
 "DbSetTable": "filePath_w_2012814",
 "ImportDigest": "_i0128171604590136"
 },
 "DescrNote": {

 "DescrNote": {
 "LangCode": "EN",
 "Descr": "File path string",
 "Note": ""
 },
 "ParamDimsTxt": []
 },
 {
 "Param": {
 "ModelId": 1,
 "ParamId": 6,
 "ParamHid": 50,
 "Name": "isOldAge",
 "Digest": "_20128171604590137",
 "Rank": 1,
 "TypeId": 7,
 "IsExtendable": false,
 "IsHidden": false,
 "NumCumulated": 0,
 "DbRunTable": "isOldAge_p_2012815",
 "DbSetTable": "isOldAge_w_2012815",
 "ImportDigest": "_i0128171604590137"
 },
 "DescrNote": {
 "LangCode": "EN",
 "Descr": "Is Old Age",
 "Note": "Is Old Age notes"
 },
 "ParamDimsTxt": [
 {
 "Dim": {
 "ModelId": 1,
 "ParamId": 6,
 "DimId": 0,
 "Name": "dim0",
 "TypeId": 101
 },
 "DescrNote": {
 "LangCode": "EN",
 "Descr": "Age Dim",
 "Note": "Age Dim notes"
 }
 }
]
 }
],
 "TableTxt": [
 {
 "Table": {
 "ModelId": 1,
 "TableId": 0,
 "TableHid": 82,
 "Name": "salarySex",
 "Digest": "_20128171604590182",
 "IsUser": false,
 "Rank": 2,
 "IsSparse": true,
 "DbExprTable": "salarySex_v_2012882",
 "DbAccTable": "salarySex_a_2012882",
 "DbAccAllView": "salarySex_d_2012882",
 "ExprPos": 1,
 "IsHidden": false,
 "ImportDigest": "_i0128171604590182"
 },
 "LangCode": "EN",
 "TableDescr": "Salary by Sex",
 "TableNote": "Salary by Sex notes",
 "ExprDescr": "Measure",
 "ExprNote": "Measure notes",
 "TableDimsTxt": [
 {
 "Dim": {
 "ModelId": 1,
 "TableId": 0,
 "DimId": 0,
 "Name": "dim0",
 "TypeId": 103,
 "IsTotal": false,
 "DimSize": 3
 },
 "DescrNote": {
 "LangCode": "EN",
 "Descr": "Salary Dim",
 "Note": "Salary Dim notes"
 }
 },
 {
 "Dim": {
 "ModelId": 1,

 "ModelId": 1,
 "TableId": 0,
 "DimId": 1,
 "Name": "dim1",
 "TypeId": 102,
 "IsTotal": true,
 "DimSize": 3
 },
 "DescrNote": {
 "LangCode": "EN",
 "Descr": "Sex Dim",
 "Note": "Sex Dim notes"
 }
 }
],
 "TableAccTxt": [
 {
 "Acc": {
 "ModelId": 1,
 "TableId": 0,
 "AccId": 0,
 "Name": "acc0",
 "IsDerived": false,
 "SrcAcc": "value_sum()",
 "AccSql": ""
 },
 "DescrNote": {
 "LangCode": "EN",
 "Descr": "Sum of salary by sex",
 "Note": ""
 }
 },
 {
 "Acc": {
 "ModelId": 1,
 "TableId": 0,
 "AccId": 1,
 "Name": "acc1",
 "IsDerived": false,
 "SrcAcc": "value_count()",
 "AccSql": ""
 },
 "DescrNote": {
 "LangCode": "EN",
 "Descr": "Count of salary by sex",
 "Note": ""
 }
 },
 {
 "Acc": {
 "ModelId": 1,
 "TableId": 0,
 "AccId": 2,
 "Name": "acc2",
 "IsDerived": true,
 "SrcAcc": "acc0 + acc1",
 "AccSql": ""
 },
 "DescrNote": {
 "LangCode": "EN",
 "Descr": "Derived accumulator",
 "Note": ""
 }
 }
],
 "TableExprTxt": [
 {
 "Expr": {
 "ModelId": 1,
 "TableId": 0,
 "ExprId": 0,
 "Name": "expr0",
 "Decimals": 4,
 "SrcExpr": "OM_AVG(acc0)",
 "ExprSql": ""
 },
 "DescrNote": {
 "LangCode": "EN",
 "Descr": "Average acc0",
 "Note": "Average on acc0 notes"
 }
 },
 {
 "Expr": {
 "ModelId": 1,
 "TableId": 0,
 "ExprId": 1,
 "Name": "expr1",

 "Decimals": 4,
 "SrcExpr": "OM_SUM(acc1)",
 "ExprSql": ""
 },
 "DescrNote": {
 "LangCode": "EN",
 "Descr": "Sum acc1",
 "Note": ""
 }
 },
 {
 "Expr": {
 "ModelId": 1,
 "TableId": 0,
 "ExprId": 2,
 "Name": "expr2",
 "Decimals": 2,
 "SrcExpr": "OM_MIN(acc0)",
 "ExprSql": ""
 },
 "DescrNote": {
 "LangCode": "EN",
 "Descr": "Min acc0",
 "Note": ""
 }
 },
 {
 "Expr": {
 "ModelId": 1,
 "TableId": 0,
 "ExprId": 3,
 "Name": "expr3",
 "Decimals": 3,
 "SrcExpr": "OM_AVG(acc0 * acc1)",
 "ExprSql": ""
 },
 "DescrNote": {
 "LangCode": "EN",
 "Descr": "Average acc0 * acc1",
 "Note": ""
 }
 }
]
 },
 {
 "Table": {
 "ModelId": 1,
 "TableId": 1,
 "TableHid": 83,
 "Name": "fullAgeSalary",
 "Digest": "_20128171604590183",
 "IsUser": false,
 "Rank": 3,
 "IsSparse": false,
 "DbExprTable": "fullAgeSalary_v_2012883",
 "DbAccTable": "fullAgeSalary_a_2012883",
 "DbAccAllView": "fullAgeSalary_d_2012883",
 "ExprPos": 1,
 "IsHidden": false,
 "ImportDigest": "_i0128171604590183"
 },
 "LangCode": "EN",
 "TableDescr": "Full Time by Age by Salary Group",
 "TableNote": "Full Time by Age by Salary Group notes",
 "ExprDescr": "Measure",
 "ExprNote": "Measure notes",
 "TableDimsTxt": [
 {
 "Dim": {
 "ModelId": 1,
 "TableId": 1,
 "DimId": 0,
 "Name": "dim0",
 "TypeId": 104,
 "IsTotal": false,
 "DimSize": 2
 },
 "DescrNote": {
 "LangCode": "EN",
 "Descr": "Full Time",
 "Note": "Full or Part Time Dim notes"
 }
 },
 {
 "Dim": {
 "ModelId": 1,
 "TableId": 1,
 "DimId": 1,

 "DimId": 1,
 "Name": "dim1",
 "TypeId": 101,
 "IsTotal": true,
 "DimSize": 5
 },
 "DescrNote": {
 "LangCode": "EN",
 "Descr": "Age Dim",
 "Note": "Age Dim notes"
 }
 },
 {
 "Dim": {
 "ModelId": 1,
 "TableId": 1,
 "DimId": 2,
 "Name": "dim2",
 "TypeId": 103,
 "IsTotal": false,
 "DimSize": 3
 },
 "DescrNote": {
 "LangCode": "EN",
 "Descr": "Salary Dim",
 "Note": "Salary Dim notes"
 }
 }
],
 "TableAccTxt": [
 {
 "Acc": {
 "ModelId": 1,
 "TableId": 1,
 "AccId": 0,
 "Name": "acc0",
 "IsDerived": false,
 "SrcAcc": "raw_value()",
 "AccSql": ""
 },
 "DescrNote": {
 "LangCode": "EN",
 "Descr": "Full time salary by age",
 "Note": "Full time salary by age notes"
 }
 }
],
 "TableExprTxt": [
 {
 "Expr": {
 "ModelId": 1,
 "TableId": 1,
 "ExprId": 0,
 "Name": "expr0",
 "Decimals": 2,
 "SrcExpr": "OM_AVG(acc0)",
 "ExprSql": ""
 },
 "DescrNote": {
 "LangCode": "EN",
 "Descr": "Average acc0",
 "Note": "Average on acc0 notes"
 }
 }
]
 },
 {
 "Table": {
 "ModelId": 1,
 "TableId": 2,
 "TableHid": 84,
 "Name": "ageSexIncome",
 "Digest": "_20128171604590184",
 "IsUser": false,
 "Rank": 2,
 "IsSparse": false,
 "DbExprTable": "ageSexIncome_v_2012884",
 "DbAccTable": "ageSexIncome_a_2012884",
 "DbAccAllView": "ageSexIncome_d_2012884",
 "ExprPos": 0,
 "IsHidden": false,
 "ImportDigest": "_i0128171604590131"
 },
 "LangCode": "EN",
 "TableDescr": "Age by Sex Income",
 "TableNote": "Age by Sex Income notes",
 "ExprDescr": "Income Measure",
 "ExprNote": "Income Measure notes",
 "TableDimsTxt": [

 "TableDimsTxt": [
 {
 "Dim": {
 "ModelId": 1,
 "TableId": 2,
 "DimId": 0,
 "Name": "dim0",
 "TypeId": 101,
 "IsTotal": false,
 "DimSize": 4
 },
 "DescrNote": {
 "LangCode": "EN",
 "Descr": "Age Dim",
 "Note": "Age Dim notes"
 }
 },
 {
 "Dim": {
 "ModelId": 1,
 "TableId": 2,
 "DimId": 1,
 "Name": "dim1",
 "TypeId": 102,
 "IsTotal": false,
 "DimSize": 2
 },
 "DescrNote": {
 "LangCode": "EN",
 "Descr": "Sex Dim",
 "Note": "Sex Dim notes"
 }
 }
],
 "TableAccTxt": [
 {
 "Acc": {
 "ModelId": 1,
 "TableId": 2,
 "AccId": 0,
 "Name": "acc0",
 "IsDerived": false,
 "SrcAcc": "raw_value()",
 "AccSql": ""
 },
 "DescrNote": {
 "LangCode": "EN",
 "Descr": "Income",
 "Note": "Income notes"
 }
 },
 {
 "Acc": {
 "ModelId": 1,
 "TableId": 2,
 "AccId": 1,
 "Name": "acc1",
 "IsDerived": false,
 "SrcAcc": "adjust_value()",
 "AccSql": ""
 },
 "DescrNote": {
 "LangCode": "EN",
 "Descr": "Income adjusted",
 "Note": "Income adjusted notes"
 }
 }
],
 "TableExprTxt": [
 {
 "Expr": {
 "ModelId": 1,
 "TableId": 2,
 "ExprId": 0,
 "Name": "expr0",
 "Decimals": 2,
 "SrcExpr": "OM_AVG(acc0)",
 "ExprSql": ""
 },
 "DescrNote": {
 "LangCode": "EN",
 "Descr": "Average acc0",
 "Note": "Average on acc0 notes"
 }
 },
 {
 "Expr": {
 "ModelId": 1,

 "ModelId": 1,
 "TableId": 2,
 "ExprId": 1,
 "Name": "expr1",
 "Decimals": 3,
 "SrcExpr": "OM_AVG(acc1)",
 "ExprSql": ""
 },
 "DescrNote": {
 "LangCode": "EN",
 "Descr": "Average acc1",
 "Note": "Average on acc1 notes"
 }
 }
]
 },
 {
 "Table": {
 "ModelId": 1,
 "TableId": 3,
 "TableHid": 85,
 "Name": "seedOldAge",
 "Digest": "_20128171604590185",
 "IsUser": false,
 "Rank": 0,
 "IsSparse": false,
 "DbExprTable": "seedOldAge_v_2012885",
 "DbAccTable": "seedOldAge_a_2012885",
 "DbAccAllView": "seedOldAge_d_2012885",
 "ExprPos": 0,
 "IsHidden": false,
 "ImportDigest": "_i0128171604590185"
 },
 "LangCode": "EN",
 "TableDescr": "Seed Old Age",
 "TableNote": "Seed Old Age notes",
 "ExprDescr": "Seed Old Age Measure",
 "ExprNote": "Measure notes",
 "TableDimsTxt": [],
 "TableAccTxt": [
 {
 "Acc": {
 "ModelId": 1,
 "TableId": 3,
 "AccId": 0,
 "Name": "acc0",
 "IsDerived": false,
 "SrcAcc": "raw_value()",
 "AccSql": ""
 },
 "DescrNote": {
 "LangCode": "EN",
 "Descr": "Seed",
 "Note": "Seed notes"
 }
 }
],
 "TableExprTxt": [
 {
 "Expr": {
 "ModelId": 1,
 "TableId": 3,
 "ExprId": 0,
 "Name": "expr0",
 "Decimals": 5,
 "SrcExpr": "OM_AVG(acc0)",
 "ExprSql": ""
 },
 "DescrNote": {
 "LangCode": "EN",
 "Descr": "Average acc0",
 "Note": "Average on acc0 notes"
 }
 }
]
 }
],
 "GroupTxt": [
 {
 "Group": {
 "ModelId": 1,
 "GroupId": 1,
 "IsParam": true,
 "Name": "AllParameters",
 "IsHidden": false,
 "GroupPc": [
 {
 "ModelId": 1,
 "GroupId": 1,

 "GroupId": 1,
 "ChildPos": 0,
 "ChildGroupId": 2,
 "ChildLeafId": -1
 },
 {
 "ModelId": 1,
 "GroupId": 1,
 "ChildPos": 1,
 "ChildGroupId": 3,
 "ChildLeafId": -1
 },
 {
 "ModelId": 1,
 "GroupId": 1,
 "ChildPos": 2,
 "ChildGroupId": -1,
 "ChildLeafId": 2
 },
 {
 "ModelId": 1,
 "GroupId": 1,
 "ChildPos": 3,
 "ChildGroupId": -1,
 "ChildLeafId": 5
 }
]
 },
 "DescrNote": {
 "LangCode": "EN",
 "Descr": "All parameters",
 "Note": "All model parameters group"
 }
 },
 {
 "Group": {
 "ModelId": 1,
 "GroupId": 2,
 "IsParam": true,
 "Name": "AgeSexParameters",
 "IsHidden": false,
 "GroupPc": [
 {
 "ModelId": 1,
 "GroupId": 2,
 "ChildPos": 0,
 "ChildGroupId": -1,
 "ChildLeafId": 0
 },
 {
 "ModelId": 1,
 "GroupId": 2,
 "ChildPos": 1,
 "ChildGroupId": -1,
 "ChildLeafId": 1
 },
 {
 "ModelId": 1,
 "GroupId": 2,
 "ChildPos": 2,
 "ChildGroupId": -1,
 "ChildLeafId": 6
 }
]
 },
 "DescrNote": {
 "LangCode": "EN",
 "Descr": "Age and Sex parameters",
 "Note": "Age and Sex model parameters group"
 }
 },
 {
 "Group": {
 "ModelId": 1,
 "GroupId": 3,
 "IsParam": true,
 "Name": "SalaryParameters",
 "IsHidden": false,
 "GroupPc": [
 {
 "ModelId": 1,
 "GroupId": 3,
 "ChildPos": 0,
 "ChildGroupId": -1,
 "ChildLeafId": 1
 },
 {
 "ModelId": 1,

 "GroupId": 3,
 "ChildPos": 1,
 "ChildGroupId": -1,
 "ChildLeafId": 3
 },
 {
 "ModelId": 1,
 "GroupId": 3,
 "ChildPos": 2,
 "ChildGroupId": -1,
 "ChildLeafId": 4
 }
]
 },
 "DescrNote": {
 "LangCode": "EN",
 "Descr": "Salary parameters",
 "Note": "Salary model parameters group"
 }
 },
 {
 "Group": {
 "ModelId": 1,
 "GroupId": 10,
 "IsParam": false,
 "Name": "AdditionalTables",
 "IsHidden": false,
 "GroupPc": [
 {
 "ModelId": 1,
 "GroupId": 10,
 "ChildPos": 0,
 "ChildGroupId": -1,
 "ChildLeafId": 1
 },
 {
 "ModelId": 1,
 "GroupId": 10,
 "ChildPos": 1,
 "ChildGroupId": -1,
 "ChildLeafId": 2
 },
 {
 "ModelId": 1,
 "GroupId": 10,
 "ChildPos": 2,
 "ChildGroupId": -1,
 "ChildLeafId": 3
 }
]
 },
 "DescrNote": {
 "LangCode": "EN",
 "Descr": "Additional output tables",
 "Note": "Additional output tables group notes"
 }
 }
]
}

Get model metadata including text (description and notes) in all languages.

Methods:

GET /api/model/:model/text-all

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

Call examples:

http://localhost:4040/api/model/modelOne/text-all
http://localhost:4040/api/model/_201208171604590148_/text-all

Return example:

{
 "Model": {
 "ModelId": 1,
 "Name": "modelOne",
 "Digest": "_201208171604590148_",
 "Type": 0,
 "Version": "1.0",
 "CreateDateTime": "2012-08-17 16:04:59.148",
 "DefaultLangCode": "EN"
 },
 "Type": [
 {
 "ModelId": 1,
 "TypeId": 4,
 "TypeHid": 4,
 "Name": "int",
 "Digest": "_int_",
 "DicId": 0,
 "TotalEnumId": 1,
 "Enum": null
 },
 {
 "ModelId": 1,
 "TypeId": 7,
 "TypeHid": 7,
 "Name": "bool",
 "Digest": "_bool_",
 "DicId": 1,
 "TotalEnumId": 2,
 "Enum": [
 {
 "ModelId": 1,
 "TypeId": 7,
 "EnumId": 0,
 "Name": "false"
 },
 {
 "ModelId": 1,
 "TypeId": 7,
 "EnumId": 1,
 "Name": "true"
 }
]
 },
 {
 "ModelId": 1,
 "TypeId": 14,
 "TypeHid": 14,
 "Name": "double",
 "Digest": "_double_",
 "DicId": 0,
 "TotalEnumId": 1,
 "Enum": null
 },
 {
 "ModelId": 1,

GET model metadata including text in all languages

 "ModelId": 1,
 "TypeId": 21,
 "TypeHid": 21,
 "Name": "file",
 "Digest": "_file_",
 "DicId": 0,
 "TotalEnumId": 1,
 "Enum": null
 },
 {
 "ModelId": 1,
 "TypeId": 101,
 "TypeHid": 96,
 "Name": "age",
 "Digest": "_20128171604590121",
 "DicId": 2,
 "TotalEnumId": 500,
 "Enum": [
 {
 "ModelId": 1,
 "TypeId": 101,
 "EnumId": 10,
 "Name": "10-20"
 },
 {
 "ModelId": 1,
 "TypeId": 101,
 "EnumId": 20,
 "Name": "20-30"
 },
 {
 "ModelId": 1,
 "TypeId": 101,
 "EnumId": 30,
 "Name": "30-40"
 },
 {
 "ModelId": 1,
 "TypeId": 101,
 "EnumId": 40,
 "Name": "40+"
 }
]
 },
 {
 "ModelId": 1,
 "TypeId": 102,
 "TypeHid": 97,
 "Name": "sex",
 "Digest": "_20128171604590122",
 "DicId": 2,
 "TotalEnumId": 800,
 "Enum": [
 {
 "ModelId": 1,
 "TypeId": 102,
 "EnumId": 0,
 "Name": "M"
 },
 {
 "ModelId": 1,
 "TypeId": 102,
 "EnumId": 1,
 "Name": "F"
 }
]
 },
 {
 "ModelId": 1,
 "TypeId": 103,
 "TypeHid": 98,
 "Name": "salary",
 "Digest": "_20128171604590123",
 "DicId": 2,
 "TotalEnumId": 400,
 "Enum": [
 {
 "ModelId": 1,
 "TypeId": 103,
 "EnumId": 100,
 "Name": "L"
 },
 {
 "ModelId": 1,
 "TypeId": 103,
 "EnumId": 200,
 "Name": "M"
 },
 {

 {
 "ModelId": 1,
 "TypeId": 103,
 "EnumId": 300,
 "Name": "H"
 }
]
 },
 {
 "ModelId": 1,
 "TypeId": 104,
 "TypeHid": 99,
 "Name": "full",
 "Digest": "_20128171604590124",
 "DicId": 2,
 "TotalEnumId": 44,
 "Enum": [
 {
 "ModelId": 1,
 "TypeId": 104,
 "EnumId": 22,
 "Name": "Full"
 },
 {
 "ModelId": 1,
 "TypeId": 104,
 "EnumId": 33,
 "Name": "Part"
 }
]
 }
],
 "Param": [
 {
 "ModelId": 1,
 "ParamId": 0,
 "ParamHid": 44,
 "Name": "ageSex",
 "Digest": "_20128171604590131",
 "Rank": 2,
 "TypeId": 14,
 "IsExtendable": true,
 "IsHidden": false,
 "NumCumulated": 0,
 "DbRunTable": "ageSex_p_2012817",
 "DbSetTable": "ageSex_w_2012817",
 "ImportDigest": "_i0128171604590131",
 "Dim": [
 {
 "ModelId": 1,
 "ParamId": 0,
 "DimId": 0,
 "Name": "dim0",
 "TypeId": 101
 },
 {
 "ModelId": 1,
 "ParamId": 0,
 "DimId": 1,
 "Name": "dim1",
 "TypeId": 102
 }
],
 "Import": [
 {
 "ModelId": 1,
 "ParamId": 0,
 "FromName": "ageSexIncome",
 "FromModel": "modelOne",
 "IsSampleDim": false
 }
]
 },
 {
 "ModelId": 1,
 "ParamId": 1,
 "ParamHid": 45,
 "Name": "salaryAge",
 "Digest": "_20128171604590132",
 "Rank": 2,
 "TypeId": 4,
 "IsExtendable": false,
 "IsHidden": false,
 "NumCumulated": 0,
 "DbRunTable": "salaryAge_p_2012818",
 "DbSetTable": "salaryAge_w_2012818",
 "ImportDigest": "_i0128171604590132",
 "Dim": [

 "Dim": [
 {
 "ModelId": 1,
 "ParamId": 1,
 "DimId": 0,
 "Name": "dim0",
 "TypeId": 103
 },
 {
 "ModelId": 1,
 "ParamId": 1,
 "DimId": 1,
 "Name": "dim1",
 "TypeId": 101
 }
],
 "Import": [
 {
 "ModelId": 1,
 "ParamId": 1,
 "FromName": "salaryAge",
 "FromModel": "modelOne",
 "IsSampleDim": false
 }
]
 },
 {
 "ModelId": 1,
 "ParamId": 2,
 "ParamHid": 46,
 "Name": "StartingSeed",
 "Digest": "_20128171604590133",
 "Rank": 0,
 "TypeId": 4,
 "IsExtendable": false,
 "IsHidden": false,
 "NumCumulated": 0,
 "DbRunTable": "StartingSeed_p_2012819",
 "DbSetTable": "StartingSeed_w_2012819",
 "ImportDigest": "_i0128171604590133",
 "Dim": null,
 "Import": [
 {
 "ModelId": 1,
 "ParamId": 2,
 "FromName": "StartingSeed",
 "FromModel": "modelOne",
 "IsSampleDim": false
 }
]
 },
 {
 "ModelId": 1,
 "ParamId": 3,
 "ParamHid": 47,
 "Name": "salaryFull",
 "Digest": "_20128171604590134",
 "Rank": 1,
 "TypeId": 104,
 "IsExtendable": false,
 "IsHidden": false,
 "NumCumulated": 0,
 "DbRunTable": "salaryFull_p_2012812",
 "DbSetTable": "salaryFull_w_2012812",
 "ImportDigest": "_i0128171604590134",
 "Dim": [
 {
 "ModelId": 1,
 "ParamId": 3,
 "DimId": 0,
 "Name": "dim0",
 "TypeId": 103
 }
],
 "Import": null
 },
 {
 "ModelId": 1,
 "ParamId": 4,
 "ParamHid": 48,
 "Name": "baseSalary",
 "Digest": "_20128171604590135",
 "Rank": 0,
 "TypeId": 104,
 "IsExtendable": false,
 "IsHidden": false,
 "NumCumulated": 0,
 "DbRunTable": "baseSalary_p_2012811",
 "DbSetTable": "baseSalary_w_2012811",

 "DbSetTable": "baseSalary_w_2012811",
 "ImportDigest": "_i0128171604590135",
 "Dim": null,
 "Import": null
 },
 {
 "ModelId": 1,
 "ParamId": 5,
 "ParamHid": 49,
 "Name": "filePath",
 "Digest": "_20128171604590136",
 "Rank": 0,
 "TypeId": 21,
 "IsExtendable": false,
 "IsHidden": false,
 "NumCumulated": 0,
 "DbRunTable": "filePath_p_2012814",
 "DbSetTable": "filePath_w_2012814",
 "ImportDigest": "_i0128171604590136",
 "Dim": null,
 "Import": null
 },
 {
 "ModelId": 1,
 "ParamId": 6,
 "ParamHid": 50,
 "Name": "isOldAge",
 "Digest": "_20128171604590137",
 "Rank": 1,
 "TypeId": 7,
 "IsExtendable": false,
 "IsHidden": false,
 "NumCumulated": 0,
 "DbRunTable": "isOldAge_p_2012815",
 "DbSetTable": "isOldAge_w_2012815",
 "ImportDigest": "_i0128171604590137",
 "Dim": [
 {
 "ModelId": 1,
 "ParamId": 6,
 "DimId": 0,
 "Name": "dim0",
 "TypeId": 101
 }
],
 "Import": null
 }
],
 "Table": [
 {
 "ModelId": 1,
 "TableId": 0,
 "TableHid": 82,
 "Name": "salarySex",
 "Digest": "_20128171604590182",
 "IsUser": false,
 "Rank": 2,
 "IsSparse": true,
 "DbExprTable": "salarySex_v_2012882",
 "DbAccTable": "salarySex_a_2012882",
 "DbAccAllView": "salarySex_d_2012882",
 "ExprPos": 1,
 "IsHidden": false,
 "ImportDigest": "_i0128171604590182",
 "Dim": [
 {
 "ModelId": 1,
 "TableId": 0,
 "DimId": 0,
 "Name": "dim0",
 "TypeId": 103,
 "IsTotal": false,
 "DimSize": 3
 },
 {
 "ModelId": 1,
 "TableId": 0,
 "DimId": 1,
 "Name": "dim1",
 "TypeId": 102,
 "IsTotal": true,
 "DimSize": 3
 }
],
 "Acc": [
 {
 "ModelId": 1,
 "TableId": 0,

 "AccId": 0,
 "Name": "acc0",
 "IsDerived": false,
 "SrcAcc": "value_sum()",
 "AccSql": "A.acc_value"
 },
 {
 "ModelId": 1,
 "TableId": 0,
 "AccId": 1,
 "Name": "acc1",
 "IsDerived": false,
 "SrcAcc": "value_count()",
 "AccSql": "SELECT A1.acc_value FROM salarySex_a_2012882 A1 WHERE A1.run_id = A.run_id AND A1.sub_id = A.sub_id AND A1.dim0 = A.dim0 AND A1.dim1 = A.dim1 A
ND A1.acc_id = 1"
 },
 {
 "ModelId": 1,
 "TableId": 0,
 "AccId": 2,
 "Name": "acc2",
 "IsDerived": true,
 "SrcAcc": "acc0 + acc1",
 "AccSql": "(A.acc_value) + (SELECT A1.acc_value FROM salarySex_a_2012882 A1 WHERE A1.run_id = A.run_id AND A1.sub_id = A.sub_id AND A1.dim0 = A.dim0 AND A1
.dim1 = A.dim1 AND A1.acc_id = 1)"
 }
],
 "Expr": [
 {
 "ModelId": 1,
 "TableId": 0,
 "ExprId": 0,
 "Name": "expr0",
 "Decimals": 4,
 "SrcExpr": "OM_AVG(acc0)",
 "ExprSql": "SELECT M1.run_id, M1.dim0, M1.dim1, AVG(M1.acc_value) AS expr0 FROM salarySex_a_2012882 M1 WHERE M1.acc_id = 0 GROUP BY M1.run_id, M1.dim0,
 M1.dim1"
 },
 {
 "ModelId": 1,
 "TableId": 0,
 "ExprId": 1,
 "Name": "expr1",
 "Decimals": 4,
 "SrcExpr": "OM_SUM(acc1)",
 "ExprSql": "SELECT M1.run_id, M1.dim0, M1.dim1, SUM(M1.acc_value) AS expr1 FROM salarySex_a_2012882 M1 WHERE M1.acc_id = 1 GROUP BY M1.run_id, M1.dim0,
 M1.dim1"
 },
 {
 "ModelId": 1,
 "TableId": 0,
 "ExprId": 2,
 "Name": "expr2",
 "Decimals": 2,
 "SrcExpr": "OM_MIN(acc0)",
 "ExprSql": "SELECT M1.run_id, M1.dim0, M1.dim1, MIN(M1.acc_value) AS expr2 FROM salarySex_a_2012882 M1 WHERE M1.acc_id = 0 GROUP BY M1.run_id, M1.dim0,
M1.dim1"
 },
 {
 "ModelId": 1,
 "TableId": 0,
 "ExprId": 3,
 "Name": "expr3",
 "Decimals": 3,
 "SrcExpr": "OM_AVG(acc0 * acc1)",
 "ExprSql": "SELECT M1.run_id, M1.dim0, M1.dim1, AVG(M1.acc_value * A1.acc1) AS expr3 FROM salarySex_a_2012882 M1 INNER JOIN (SELECT run_id, dim0, dim1, su
b_id, acc_value AS acc1 FROM salarySex_a_2012882 WHERE acc_id = 1) A1 ON (A1.run_id = M1.run_id AND A1.dim0 = M1.dim0 AND A1.dim1 = M1.dim1 AND A1.sub_id = M1.
sub_id) WHERE M1.acc_id = 0 GROUP BY M1.run_id, M1.dim0, M1.dim1"
 }
]
 },
 {
 "ModelId": 1,
 "TableId": 1,
 "TableHid": 83,
 "Name": "fullAgeSalary",
 "Digest": "_20128171604590183",
 "IsUser": false,
 "Rank": 3,
 "IsSparse": false,
 "DbExprTable": "fullAgeSalary_v_2012883",
 "DbAccTable": "fullAgeSalary_a_2012883",
 "DbAccAllView": "fullAgeSalary_d_2012883",
 "ExprPos": 1,
 "IsHidden": false,
 "ImportDigest": "_i0128171604590183",
 "Dim": [
 {

 {
 "ModelId": 1,
 "TableId": 1,
 "DimId": 0,
 "Name": "dim0",
 "TypeId": 104,
 "IsTotal": false,
 "DimSize": 2
 },
 {
 "ModelId": 1,
 "TableId": 1,
 "DimId": 1,
 "Name": "dim1",
 "TypeId": 101,
 "IsTotal": true,
 "DimSize": 5
 },
 {
 "ModelId": 1,
 "TableId": 1,
 "DimId": 2,
 "Name": "dim2",
 "TypeId": 103,
 "IsTotal": false,
 "DimSize": 3
 }
],
 "Acc": [
 {
 "ModelId": 1,
 "TableId": 1,
 "AccId": 0,
 "Name": "acc0",
 "IsDerived": false,
 "SrcAcc": "raw_value()",
 "AccSql": "A.acc_value"
 }
],
 "Expr": [
 {
 "ModelId": 1,
 "TableId": 1,
 "ExprId": 0,
 "Name": "expr0",
 "Decimals": 2,
 "SrcExpr": "OM_AVG(acc0)",
 "ExprSql": "SELECT M1.run_id, M1.dim0, M1.dim1, M1.dim2, AVG(M1.acc_value) AS expr0 FROM fullAgeSalary_a_2012883 M1 WHERE M1.acc_id = 0 GROUP BY M1.run_
id, M1.dim0, M1.dim1, M1.dim2"
 }
]
 },
 {
 "ModelId": 1,
 "TableId": 2,
 "TableHid": 84,
 "Name": "ageSexIncome",
 "Digest": "_20128171604590184",
 "IsUser": false,
 "Rank": 2,
 "IsSparse": false,
 "DbExprTable": "ageSexIncome_v_2012884",
 "DbAccTable": "ageSexIncome_a_2012884",
 "DbAccAllView": "ageSexIncome_d_2012884",
 "ExprPos": 0,
 "IsHidden": false,
 "ImportDigest": "_i0128171604590131",
 "Dim": [
 {
 "ModelId": 1,
 "TableId": 2,
 "DimId": 0,
 "Name": "dim0",
 "TypeId": 101,
 "IsTotal": false,
 "DimSize": 4
 },
 {
 "ModelId": 1,
 "TableId": 2,
 "DimId": 1,
 "Name": "dim1",
 "TypeId": 102,
 "IsTotal": false,
 "DimSize": 2
 }
],
 "Acc": [
 {

 {
 "ModelId": 1,
 "TableId": 2,
 "AccId": 0,
 "Name": "acc0",
 "IsDerived": false,
 "SrcAcc": "raw_value()",
 "AccSql": "A.acc_value"
 },
 {
 "ModelId": 1,
 "TableId": 2,
 "AccId": 1,
 "Name": "acc1",
 "IsDerived": false,
 "SrcAcc": "adjust_value()",
 "AccSql": "A.acc_value"
 }
],
 "Expr": [
 {
 "ModelId": 1,
 "TableId": 2,
 "ExprId": 0,
 "Name": "expr0",
 "Decimals": 2,
 "SrcExpr": "OM_AVG(acc0)",
 "ExprSql": "SELECT M1.run_id, M1.dim0, M1.dim1, AVG(M1.acc_value) AS expr0 FROM ageSexIncome_a_2012884 M1 WHERE M1.acc_id = 0 GROUP BY M1.run_id, M1.d
im0, M1.dim1"
 },
 {
 "ModelId": 1,
 "TableId": 2,
 "ExprId": 1,
 "Name": "expr1",
 "Decimals": 3,
 "SrcExpr": "OM_AVG(acc1)",
 "ExprSql": "SELECT M1.run_id, M1.dim0, M1.dim1, AVG(M1.acc_value) AS expr1 FROM ageSexIncome_a_2012884 M1 WHERE M1.acc_id = 1 GROUP BY M1.run_id, M1.d
im0, M1.dim1"
 }
]
 },
 {
 "ModelId": 1,
 "TableId": 3,
 "TableHid": 85,
 "Name": "seedOldAge",
 "Digest": "_20128171604590185",
 "IsUser": false,
 "Rank": 0,
 "IsSparse": false,
 "DbExprTable": "seedOldAge_v_2012885",
 "DbAccTable": "seedOldAge_a_2012885",
 "DbAccAllView": "seedOldAge_d_2012885",
 "ExprPos": 0,
 "IsHidden": false,
 "ImportDigest": "_i0128171604590185",
 "Dim": null,
 "Acc": [
 {
 "ModelId": 1,
 "TableId": 3,
 "AccId": 0,
 "Name": "acc0",
 "IsDerived": false,
 "SrcAcc": "raw_value()",
 "AccSql": "A.acc_value"
 }
],
 "Expr": [
 {
 "ModelId": 1,
 "TableId": 3,
 "ExprId": 0,
 "Name": "expr0",
 "Decimals": 5,
 "SrcExpr": "OM_AVG(acc0)",
 "ExprSql": "SELECT M1.run_id, AVG(M1.acc_value) AS expr0 FROM seedOldAge_a_2012885 M1 WHERE M1.acc_id = 0 GROUP BY M1.run_id"
 }
]
 }
],
 "Group": [
 {
 "ModelId": 1,
 "GroupId": 1,
 "IsParam": true,
 "Name": "AllParameters",

 "Name": "AllParameters",
 "IsHidden": false,
 "GroupPc": [
 {
 "ModelId": 1,
 "GroupId": 1,
 "ChildPos": 0,
 "ChildGroupId": 2,
 "ChildLeafId": -1
 },
 {
 "ModelId": 1,
 "GroupId": 1,
 "ChildPos": 1,
 "ChildGroupId": 3,
 "ChildLeafId": -1
 },
 {
 "ModelId": 1,
 "GroupId": 1,
 "ChildPos": 2,
 "ChildGroupId": -1,
 "ChildLeafId": 2
 },
 {
 "ModelId": 1,
 "GroupId": 1,
 "ChildPos": 3,
 "ChildGroupId": -1,
 "ChildLeafId": 5
 }
]
 },
 {
 "ModelId": 1,
 "GroupId": 2,
 "IsParam": true,
 "Name": "AgeSexParameters",
 "IsHidden": false,
 "GroupPc": [
 {
 "ModelId": 1,
 "GroupId": 2,
 "ChildPos": 0,
 "ChildGroupId": -1,
 "ChildLeafId": 0
 },
 {
 "ModelId": 1,
 "GroupId": 2,
 "ChildPos": 1,
 "ChildGroupId": -1,
 "ChildLeafId": 1
 },
 {
 "ModelId": 1,
 "GroupId": 2,
 "ChildPos": 2,
 "ChildGroupId": -1,
 "ChildLeafId": 6
 }
]
 },
 {
 "ModelId": 1,
 "GroupId": 3,
 "IsParam": true,
 "Name": "SalaryParameters",
 "IsHidden": false,
 "GroupPc": [
 {
 "ModelId": 1,
 "GroupId": 3,
 "ChildPos": 0,
 "ChildGroupId": -1,
 "ChildLeafId": 1
 },
 {
 "ModelId": 1,
 "GroupId": 3,
 "ChildPos": 1,
 "ChildGroupId": -1,
 "ChildLeafId": 3
 },
 {
 "ModelId": 1,
 "GroupId": 3,
 "ChildPos": 2,
 "ChildGroupId": -1,

 "ChildGroupId": -1,
 "ChildLeafId": 4
 }
]
 },
 {
 "ModelId": 1,
 "GroupId": 10,
 "IsParam": false,
 "Name": "AdditionalTables",
 "IsHidden": false,
 "GroupPc": [
 {
 "ModelId": 1,
 "GroupId": 10,
 "ChildPos": 0,
 "ChildGroupId": -1,
 "ChildLeafId": 1
 },
 {
 "ModelId": 1,
 "GroupId": 10,
 "ChildPos": 1,
 "ChildGroupId": -1,
 "ChildLeafId": 2
 },
 {
 "ModelId": 1,
 "GroupId": 10,
 "ChildPos": 2,
 "ChildGroupId": -1,
 "ChildLeafId": 3
 }
]
 }
],
 "ModelName": "modelOne",
 "ModelDigest": "_201208171604590148_",
 "ModelTxt": [
 {
 "ModelId": 1,
 "LangCode": "EN",
 "Descr": "First model",
 "Note": "First model: openM++ development test model"
 },
 {
 "ModelId": 1,
 "LangCode": "FR",
 "Descr": "(FR) First model",
 "Note": ""
 }
],
 "TypeTxt": [
 {
 "ModelId": 1,
 "TypeId": 7,
 "LangCode": "EN",
 "Descr": "logical type",
 "Note": ""
 },
 {
 "ModelId": 1,
 "TypeId": 7,
 "LangCode": "FR",
 "Descr": "type logique",
 "Note": ""
 },
 {
 "ModelId": 1,
 "TypeId": 101,
 "LangCode": "EN",
 "Descr": "Age",
 "Note": ""
 },
 {
 "ModelId": 1,
 "TypeId": 101,
 "LangCode": "FR",
 "Descr": "(FR) Age",
 "Note": ""
 },
 {
 "ModelId": 1,
 "TypeId": 102,
 "LangCode": "EN",
 "Descr": "Sex",
 "Note": ""
 },

 {
 "ModelId": 1,
 "TypeId": 103,
 "LangCode": "EN",
 "Descr": "Salary",
 "Note": ""
 },
 {
 "ModelId": 1,
 "TypeId": 104,
 "LangCode": "EN",
 "Descr": "Full or part time",
 "Note": ""
 }
],
 "TypeEnumTxt": [
 {
 "ModelId": 1,
 "TypeId": 7,
 "EnumId": 0,
 "LangCode": "EN",
 "Descr": "False",
 "Note": ""
 },
 {
 "ModelId": 1,
 "TypeId": 7,
 "EnumId": 0,
 "LangCode": "FR",
 "Descr": "Faux",
 "Note": ""
 },
 {
 "ModelId": 1,
 "TypeId": 7,
 "EnumId": 1,
 "LangCode": "EN",
 "Descr": "True",
 "Note": ""
 },
 {
 "ModelId": 1,
 "TypeId": 7,
 "EnumId": 1,
 "LangCode": "FR",
 "Descr": "Vrai",
 "Note": ""
 },
 {
 "ModelId": 1,
 "TypeId": 101,
 "EnumId": 10,
 "LangCode": "EN",
 "Descr": "age 10-20",
 "Note": ""
 },
 {
 "ModelId": 1,
 "TypeId": 101,
 "EnumId": 10,
 "LangCode": "FR",
 "Descr": "(FR) age 10-20",
 "Note": ""
 },
 {
 "ModelId": 1,
 "TypeId": 101,
 "EnumId": 20,
 "LangCode": "EN",
 "Descr": "age 20-30",
 "Note": ""
 },
 {
 "ModelId": 1,
 "TypeId": 101,
 "EnumId": 20,
 "LangCode": "FR",
 "Descr": "(FR) age 20-30",
 "Note": ""
 },
 {
 "ModelId": 1,
 "TypeId": 101,
 "EnumId": 30,
 "LangCode": "EN",
 "Descr": "age 30-40",
 "Note": ""
 },

 },
 {
 "ModelId": 1,
 "TypeId": 101,
 "EnumId": 30,
 "LangCode": "FR",
 "Descr": "(FR) age 30-40",
 "Note": ""
 },
 {
 "ModelId": 1,
 "TypeId": 101,
 "EnumId": 40,
 "LangCode": "EN",
 "Descr": "age 40+",
 "Note": ""
 },
 {
 "ModelId": 1,
 "TypeId": 101,
 "EnumId": 40,
 "LangCode": "FR",
 "Descr": "(FR) age 40+",
 "Note": ""
 },
 {
 "ModelId": 1,
 "TypeId": 102,
 "EnumId": 0,
 "LangCode": "EN",
 "Descr": "Male",
 "Note": ""
 },
 {
 "ModelId": 1,
 "TypeId": 102,
 "EnumId": 1,
 "LangCode": "EN",
 "Descr": "Female",
 "Note": ""
 },
 {
 "ModelId": 1,
 "TypeId": 103,
 "EnumId": 100,
 "LangCode": "EN",
 "Descr": "Low",
 "Note": ""
 },
 {
 "ModelId": 1,
 "TypeId": 103,
 "EnumId": 200,
 "LangCode": "EN",
 "Descr": "Medium",
 "Note": ""
 },
 {
 "ModelId": 1,
 "TypeId": 103,
 "EnumId": 300,
 "LangCode": "EN",
 "Descr": "High",
 "Note": ""
 },
 {
 "ModelId": 1,
 "TypeId": 104,
 "EnumId": 22,
 "LangCode": "EN",
 "Descr": "Full-time",
 "Note": ""
 },
 {
 "ModelId": 1,
 "TypeId": 104,
 "EnumId": 33,
 "LangCode": "EN",
 "Descr": "Part-time",
 "Note": ""
 }
],
 "ParamTxt": [
 {
 "ModelId": 1,
 "ParamId": 0,
 "LangCode": "EN",
 "Descr": "Age by Sex",
 "Note": "Age by Sex note"

 "Note": "Age by Sex note"
 },
 {
 "ModelId": 1,
 "ParamId": 0,
 "LangCode": "FR",
 "Descr": "(FR) Age by Sex",
 "Note": ""
 },
 {
 "ModelId": 1,
 "ParamId": 1,
 "LangCode": "EN",
 "Descr": "Salary by Age",
 "Note": "Salary by Age note"
 },
 {
 "ModelId": 1,
 "ParamId": 1,
 "LangCode": "FR",
 "Descr": "(FR) Salary by Age",
 "Note": "(FR) Salary by Age note"
 },
 {
 "ModelId": 1,
 "ParamId": 2,
 "LangCode": "FR",
 "Descr": "Starting Seed",
 "Note": "Random numbers generator starting seed value"
 },
 {
 "ModelId": 1,
 "ParamId": 3,
 "LangCode": "EN",
 "Descr": "Full or part time by Salary level",
 "Note": ""
 },
 {
 "ModelId": 1,
 "ParamId": 4,
 "LangCode": "EN",
 "Descr": "Base salary level",
 "Note": ""
 },
 {
 "ModelId": 1,
 "ParamId": 5,
 "LangCode": "EN",
 "Descr": "File path string",
 "Note": ""
 },
 {
 "ModelId": 1,
 "ParamId": 6,
 "LangCode": "EN",
 "Descr": "Is Old Age",
 "Note": "Is Old Age notes"
 },
 {
 "ModelId": 1,
 "ParamId": 6,
 "LangCode": "FR",
 "Descr": "(FR) Is Old Age",
 "Note": "(FR) Is Old Age notes"
 }
],
 "ParamDimsTxt": [
 {
 "ModelId": 1,
 "ParamId": 0,
 "DimId": 0,
 "LangCode": "EN",
 "Descr": "Age Dim",
 "Note": "Age Dim notes"
 },
 {
 "ModelId": 1,
 "ParamId": 0,
 "DimId": 0,
 "LangCode": "FR",
 "Descr": "(FR) Age Dim",
 "Note": "(FR) Age Dim notes"
 },
 {
 "ModelId": 1,
 "ParamId": 0,
 "DimId": 1,
 "LangCode": "EN",

 "LangCode": "EN",
 "Descr": "Sex Dim",
 "Note": "Sex Dim notes"
 },
 {
 "ModelId": 1,
 "ParamId": 0,
 "DimId": 1,
 "LangCode": "FR",
 "Descr": "Sex Dim",
 "Note": ""
 },
 {
 "ModelId": 1,
 "ParamId": 3,
 "DimId": 0,
 "LangCode": "EN",
 "Descr": "Full Dim",
 "Note": ""
 },
 {
 "ModelId": 1,
 "ParamId": 6,
 "DimId": 0,
 "LangCode": "EN",
 "Descr": "Age Dim",
 "Note": "Age Dim notes"
 },
 {
 "ModelId": 1,
 "ParamId": 6,
 "DimId": 0,
 "LangCode": "FR",
 "Descr": "(FR) Age Dim",
 "Note": "(FR) Age Dim notes"
 }
],
 "TableTxt": [
 {
 "ModelId": 1,
 "TableId": 0,
 "LangCode": "EN",
 "Descr": "Salary by Sex",
 "Note": "Salary by Sex notes",
 "ExprDescr": "Measure",
 "ExprNote": "Measure notes"
 },
 {
 "ModelId": 1,
 "TableId": 0,
 "LangCode": "FR",
 "Descr": "(FR) Salary by Sex",
 "Note": "(FR) Salary by Sex notes",
 "ExprDescr": "(FR) Measure",
 "ExprNote": ""
 },
 {
 "ModelId": 1,
 "TableId": 1,
 "LangCode": "EN",
 "Descr": "Full Time by Age by Salary Group",
 "Note": "Full Time by Age by Salary Group notes",
 "ExprDescr": "Measure",
 "ExprNote": "Measure notes"
 },
 {
 "ModelId": 1,
 "TableId": 1,
 "LangCode": "FR",
 "Descr": "(FR) Full Time by Age by Salary Group",
 "Note": "(FR) Full Time by Age by Salary Group notes",
 "ExprDescr": "(FR) Measure",
 "ExprNote": ""
 },
 {
 "ModelId": 1,
 "TableId": 2,
 "LangCode": "EN",
 "Descr": "Age by Sex Income",
 "Note": "Age by Sex Income notes",
 "ExprDescr": "Income Measure",
 "ExprNote": "Income Measure notes"
 },
 {
 "ModelId": 1,
 "TableId": 2,
 "LangCode": "FR",
 "Descr": "(FR) Age by Sex Income",
 "Note": "(FR) Age by Sex Income notes",

 "Note": "(FR) Age by Sex Income notes",
 "ExprDescr": "(FR) Income Measure notes",
 "ExprNote": ""
 },
 {
 "ModelId": 1,
 "TableId": 3,
 "LangCode": "EN",
 "Descr": "Seed Old Age",
 "Note": "Seed Old Age notes",
 "ExprDescr": "Seed Old Age Measure",
 "ExprNote": "Measure notes"
 },
 {
 "ModelId": 1,
 "TableId": 3,
 "LangCode": "FR",
 "Descr": "(FR) Seed Old Age",
 "Note": "(FR) Seed Old Age notes",
 "ExprDescr": "(FR) Measure notes",
 "ExprNote": ""
 }
],
 "TableDimsTxt": [
 {
 "ModelId": 1,
 "TableId": 0,
 "DimId": 0,
 "LangCode": "EN",
 "Descr": "Salary Dim",
 "Note": "Salary Dim notes"
 },
 {
 "ModelId": 1,
 "TableId": 0,
 "DimId": 0,
 "LangCode": "FR",
 "Descr": "(FR) Salary Dim",
 "Note": "(FR) Salary Dim notes"
 },
 {
 "ModelId": 1,
 "TableId": 0,
 "DimId": 1,
 "LangCode": "EN",
 "Descr": "Sex Dim",
 "Note": "Sex Dim notes"
 },
 {
 "ModelId": 1,
 "TableId": 0,
 "DimId": 1,
 "LangCode": "FR",
 "Descr": "(FR) Sex Dim",
 "Note": ""
 },
 {
 "ModelId": 1,
 "TableId": 1,
 "DimId": 0,
 "LangCode": "EN",
 "Descr": "Full Time",
 "Note": "Full or Part Time Dim notes"
 },
 {
 "ModelId": 1,
 "TableId": 1,
 "DimId": 0,
 "LangCode": "FR",
 "Descr": "(FR) Full Time",
 "Note": "(FR) Full or Part Time Dim notes"
 },
 {
 "ModelId": 1,
 "TableId": 1,
 "DimId": 1,
 "LangCode": "EN",
 "Descr": "Age Dim",
 "Note": "Age Dim notes"
 },
 {
 "ModelId": 1,
 "TableId": 1,
 "DimId": 1,
 "LangCode": "FR",
 "Descr": "(FR) Age Dim",
 "Note": ""
 },

 {
 "ModelId": 1,
 "TableId": 1,
 "DimId": 2,
 "LangCode": "EN",
 "Descr": "Salary Dim",
 "Note": "Salary Dim notes"
 },
 {
 "ModelId": 1,
 "TableId": 1,
 "DimId": 2,
 "LangCode": "FR",
 "Descr": "(FR) Salary Dim",
 "Note": "(FR) Salary Dim notes"
 },
 {
 "ModelId": 1,
 "TableId": 2,
 "DimId": 0,
 "LangCode": "EN",
 "Descr": "Age Dim",
 "Note": "Age Dim notes"
 },
 {
 "ModelId": 1,
 "TableId": 2,
 "DimId": 0,
 "LangCode": "FR",
 "Descr": "(FR) Age Dim",
 "Note": "(FR) Age Dim notes"
 },
 {
 "ModelId": 1,
 "TableId": 2,
 "DimId": 1,
 "LangCode": "EN",
 "Descr": "Sex Dim",
 "Note": "Sex Dim notes"
 },
 {
 "ModelId": 1,
 "TableId": 2,
 "DimId": 1,
 "LangCode": "FR",
 "Descr": "(FR) Sex Dim",
 "Note": ""
 }
],
 "TableAccTxt": [
 {
 "ModelId": 1,
 "TableId": 0,
 "AccId": 0,
 "LangCode": "EN",
 "Descr": "Sum of salary by sex",
 "Note": ""
 },
 {
 "ModelId": 1,
 "TableId": 0,
 "AccId": 1,
 "LangCode": "EN",
 "Descr": "Count of salary by sex",
 "Note": ""
 },
 {
 "ModelId": 1,
 "TableId": 0,
 "AccId": 2,
 "LangCode": "EN",
 "Descr": "Derived accumulator",
 "Note": ""
 },
 {
 "ModelId": 1,
 "TableId": 1,
 "AccId": 0,
 "LangCode": "EN",
 "Descr": "Full time salary by age",
 "Note": "Full time salary by age notes"
 },
 {
 "ModelId": 1,
 "TableId": 2,
 "AccId": 0,
 "LangCode": "EN",
 "Descr": "Income",

 "Descr": "Income",
 "Note": "Income notes"
 },
 {
 "ModelId": 1,
 "TableId": 2,
 "AccId": 1,
 "LangCode": "EN",
 "Descr": "Income adjusted",
 "Note": "Income adjusted notes"
 },
 {
 "ModelId": 1,
 "TableId": 3,
 "AccId": 0,
 "LangCode": "EN",
 "Descr": "Seed",
 "Note": "Seed notes"
 }
],
 "TableExprTxt": [
 {
 "ModelId": 1,
 "TableId": 0,
 "ExprId": 0,
 "LangCode": "EN",
 "Descr": "Average acc0",
 "Note": "Average on acc0 notes"
 },
 {
 "ModelId": 1,
 "TableId": 0,
 "ExprId": 0,
 "LangCode": "FR",
 "Descr": "(FR) Average acc0",
 "Note": "(FR) Average on acc0 notes"
 },
 {
 "ModelId": 1,
 "TableId": 0,
 "ExprId": 1,
 "LangCode": "EN",
 "Descr": "Sum acc1",
 "Note": ""
 },
 {
 "ModelId": 1,
 "TableId": 0,
 "ExprId": 2,
 "LangCode": "EN",
 "Descr": "Min acc0",
 "Note": ""
 },
 {
 "ModelId": 1,
 "TableId": 0,
 "ExprId": 3,
 "LangCode": "EN",
 "Descr": "Average acc0 * acc1",
 "Note": ""
 },
 {
 "ModelId": 1,
 "TableId": 1,
 "ExprId": 0,
 "LangCode": "EN",
 "Descr": "Average acc0",
 "Note": "Average on acc0 notes"
 },
 {
 "ModelId": 1,
 "TableId": 2,
 "ExprId": 0,
 "LangCode": "EN",
 "Descr": "Average acc0",
 "Note": "Average on acc0 notes"
 },
 {
 "ModelId": 1,
 "TableId": 2,
 "ExprId": 1,
 "LangCode": "EN",
 "Descr": "Average acc1",
 "Note": "Average on acc1 notes"
 },
 {
 "ModelId": 1,
 "TableId": 3,
 "ExprId": 0,

 "ExprId": 0,
 "LangCode": "EN",
 "Descr": "Average acc0",
 "Note": "Average on acc0 notes"
 }
],
 "GroupTxt": [
 {
 "ModelId": 1,
 "GroupId": 1,
 "LangCode": "EN",
 "Descr": "All parameters",
 "Note": "All model parameters group"
 },
 {
 "ModelId": 1,
 "GroupId": 1,
 "LangCode": "FR",
 "Descr": "(FR) All parameters",
 "Note": ""
 },
 {
 "ModelId": 1,
 "GroupId": 2,
 "LangCode": "EN",
 "Descr": "Age and Sex parameters",
 "Note": "Age and Sex model parameters group"
 },
 {
 "ModelId": 1,
 "GroupId": 2,
 "LangCode": "FR",
 "Descr": "(FR) Age and Sex parameters",
 "Note": "(FR) Age and Sex model parameters group"
 },
 {
 "ModelId": 1,
 "GroupId": 3,
 "LangCode": "EN",
 "Descr": "Salary parameters",
 "Note": "Salary model parameters group"
 },
 {
 "ModelId": 1,
 "GroupId": 10,
 "LangCode": "EN",
 "Descr": "Additional output tables",
 "Note": "Additional output tables group notes"
 },
 {
 "ModelId": 1,
 "GroupId": 10,
 "LangCode": "FR",
 "Descr": "(FR) Additional output tables",
 "Note": ""
 }
]
}

Get model languages.

Methods:

GET /api/model/:model/lang-list

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

Call examples:

http://localhost:4040/api/model/modelOne/lang-list
http://localhost:4040/api/model/649f17f26d67c37b78dde94f79772445/lang-list

Return example:

Known issue: There is no "model languages" table in current database, only master language list table lang_lst . As result if there are multiple
model in same database it is assumed all models have same list of languages.

[
 {
 "LangCode": "EN",
 "Name": "English"
 },
 {
 "LangCode": "FR",
 "Name": "Français"
 }
]

GET model languages

Get model language-specific strings.

Language-specific strings are (code, label) rows from lang_word and model_word database tables.

Methods:

GET /api/model/:model/word-list
GET /api/model/:model/word-list/lang/:lang

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

:lang - (optional) language code

If optional lang argument specified then result in that language else in browser language or model default. If no such language exist then result in
model default language or can be empty.

Call examples:

http://localhost:4040/api/model/modelOne/word-list
http://localhost:4040/api/model/modelOne/word-list/lang/fr-CA
http://localhost:4040/api/model/_201208171604590148_/word-list

Return example:

GET model language-specific strings

{
 "ModelName": "modelOne",
 "ModelDigest": "_201208171604590148_",
 "LangCode": "EN",
 "LangWords": [
 {
 "Code": "all",
 "Label": "All"
 },
 {
 "Code": "max",
 "Label": "Max"
 },
 {
 "Code": "min",
 "Label": "Min"
 },
 {
 "Code": "Sub-value %d",
 "Label": "Sub-value %d"
 },
 {
 "Code": "Read",
 "Label": "Read"
 }
],
 "ModelLangCode": "EN",
 "ModelWords": [
 {
 "Code": "Event loop completed",
 "Label": "Event loop completed"
 },
 {
 "Code": "Reading Parameters",
 "Label": "Reading Parameters"
 },
 {
 "Code": "Running Simulation",
 "Label": "Running Simulation"
 },
 {
 "Code": "Start model subvalue",
 "Label": "Start model subvalue"
 },
 {
 "Code": "Writing Output Tables",
 "Label": "Writing Output Tables"
 }
]
}

Get model profile. Profile is a set of key-value options, similar to ini-file, which can be used to run the model. Please keep in mind, there is no
actual link between profiles and models and any profile can be applied to run any model (it is by design, similar to ini-file).

Methods:

GET /api/model/:model/profile/:profile

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

:profile - (required) profile name

Profile name is unique per database.

Call examples:

http://localhost:4040/api/model/modelOne/profile/modelOne

Return example: This is a beta version and may change in the future.

{
 "Name": "modelOne",
 "Opts": {
 "OpenM.SparseOutput": "true",
 "Parameter.StartingSeed": "1023"
 }
}

GET model profile

Get list of profile names by model name or model digest.

Profile is a set of key-value options, similar to ini-file, which can be used to run the model. Please keep in mind, there is no actual link between
profiles and models and any profile can be applied to run any model (it is by design, similar to ini-file).

Methods:

GET /api/model/:model/profile-list

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

Model digest or name is used by server to find SQLite database. There is no explicit link between model and profile. All profile name from that
database will be selected.

Call examples:

http://localhost:4040/api/model/modelOne/profile-list

Return example:

[
 "modelOne"
]

GET list of profiles

Get list of model run results: language-neutral part of run list metadata.

Methods:

GET /api/model/:model/run-list

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

Call examples:

http://localhost:4040/api/model/modelOne/run-list
http://localhost:4040/api/model/_201208171604590148_/run-list

Return example:

[
 {
 "ModelName": "modelOne",
 "ModelDigest": "_201208171604590148_",
 "Name": "Default",
 "SubCount": 1,
 "SubStarted": 1,
 "SubCompleted": 1,
 "CreateDateTime": "2021-03-11 00:27:56.583",
 "Status": "s",
 "UpdateDateTime": "2021-03-11 00:27:57.030",
 "RunDigest": "88b8c45b77993133b07a7c85e4447d5c",
 "ValueDigest": "6c5c0f48e19f67899c868688bb8a23fd",
 "RunStamp": "2021_03_11_00_27_56_535",
 "Txt": [],
 "Opts": {},
 "Param": [],
 "Table": [],
 "Progress": []
 },
 {
 "ModelName": "modelOne",
 "ModelDigest": "_201208171604590148_",
 "Name": "Default-4",
 "SubCount": 4,
 "SubStarted": 4,
 "SubCompleted": 4,
 "CreateDateTime": "2021-03-11 00:27:57.119",
 "Status": "s",
 "UpdateDateTime": "2021-03-11 00:27:57.955",
 "RunDigest": "c6ced1efa64dca8a98e5cd323ac7f50d",
 "ValueDigest": "d900353af61f7f824ddae66b47b456ea",
 "RunStamp": "2021_03_11_00_27_57_080",
 "Txt": [],
 "Opts": {},
 "Param": [],
 "Table": [],
 "Progress": []
 },
 {
 "ModelName": "modelOne",
 "ModelDigest": "_201208171604590148_",
 "Name": "First Task Run_Default",
 "SubCount": 1,
 "SubStarted": 1,
 "SubCompleted": 1,
 "CreateDateTime": "2021-03-11 00:27:58.054",
 "Status": "s",
 "UpdateDateTime": "2021-03-11 00:27:58.485",
 "RunDigest": "419f0d1b7078cff499f87be5d9e8995c",
 "ValueDigest": "6c5c0f48e19f67899c868688bb8a23fd",
 "RunStamp": "2021_03_11_00_27_58_005",
 "Txt": [],
 "Opts": {},
 "Param": [],
 "Table": [],

GET list of model runs

 "Table": [],
 "Progress": []
 },
 {
 "ModelName": "modelOne",
 "ModelDigest": "_201208171604590148_",
 "Name": "First Task Run_modelOne_other",
 "SubCount": 1,
 "SubStarted": 1,
 "SubCompleted": 1,
 "CreateDateTime": "2021-03-11 00:27:58.505",
 "Status": "s",
 "UpdateDateTime": "2021-03-11 00:27:58.833",
 "RunDigest": "ec2455261ede37787150692c460a2688",
 "ValueDigest": "fb27d108fae2040fa1cae6f49704a1b7",
 "RunStamp": "2021_03_11_00_27_58_005",
 "Txt": [],
 "Opts": {},
 "Param": [],
 "Table": [],
 "Progress": []
 },
 {
 "ModelName": "modelOne",
 "ModelDigest": "_201208171604590148_",
 "Name": "Sub-values_2_from_csv",
 "SubCount": 2,
 "SubStarted": 2,
 "SubCompleted": 2,
 "CreateDateTime": "2021-03-11 00:27:58.935",
 "Status": "s",
 "UpdateDateTime": "2021-03-11 00:27:59.531",
 "RunDigest": "de486efd4c8d002036876a3b9a285f63",
 "ValueDigest": "c91cee4876452c95717b8d2d6aaee7a5",
 "RunStamp": "2021_03_11_00_27_58_895",
 "Txt": [],
 "Opts": {},
 "Param": [],
 "Table": [],
 "Progress": []
 },
 {
 "ModelName": "modelOne",
 "ModelDigest": "_201208171604590148_",
 "Name": "Sub-values_4",
 "SubCount": 4,
 "SubStarted": 4,
 "SubCompleted": 4,
 "CreateDateTime": "2021-03-11 00:27:59.631",
 "Status": "s",
 "UpdateDateTime": "2021-03-11 00:28:00.492",
 "RunDigest": "668da5c876e3c7c8742d24e17071505f",
 "ValueDigest": "2ccb8ebabceb2cfb23bbca6403ac52d0",
 "RunStamp": "2021_03_11_00_27_59_582",
 "Txt": [],
 "Opts": {},
 "Param": [],
 "Table": [],
 "Progress": []
 },
 {
 "ModelName": "modelOne",
 "ModelDigest": "_201208171604590148_",
 "Name": "Group_sub-values_2_from_csv",
 "SubCount": 2,
 "SubStarted": 2,
 "SubCompleted": 2,
 "CreateDateTime": "2021-03-11 00:28:00.587",
 "Status": "s",
 "UpdateDateTime": "2021-03-11 00:28:00.921",
 "RunDigest": "e36f2fbff9439a8f4f7268e50eef2986",
 "ValueDigest": "d73a023253e620a3df7fc45b4b826a60",
 "RunStamp": "2021_03_11_00_28_00_543",
 "Txt": [],
 "Opts": {},
 "Param": [],
 "Table": [],
 "Progress": []
 },
 {
 "ModelName": "modelOne",
 "ModelDigest": "_201208171604590148_",
 "Name": "Import_from_Default_run",
 "SubCount": 1,
 "SubStarted": 1,
 "SubCompleted": 1,
 "CreateDateTime": "2021-03-11 00:28:01.015",
 "Status": "s",
 "UpdateDateTime": "2021-03-11 00:28:01.256",

 "UpdateDateTime": "2021-03-11 00:28:01.256",
 "RunDigest": "dcc2a68b7e86267d7efad9f8b7fd2092",
 "ValueDigest": "6c5c0f48e19f67899c868688bb8a23fd",
 "RunStamp": "2021_03_11_00_28_00_952",
 "Txt": [],
 "Opts": {},
 "Param": [],
 "Table": [],
 "Progress": []
 },
 {
 "ModelName": "modelOne",
 "ModelDigest": "_201208171604590148_",
 "Name": "Base_run_is_Sub-values_2_from_csv",
 "SubCount": 2,
 "SubStarted": 2,
 "SubCompleted": 2,
 "CreateDateTime": "2021-03-11 00:28:01.326",
 "Status": "s",
 "UpdateDateTime": "2021-03-11 00:28:01.619",
 "RunDigest": "a57ac3d4c0cefdc09939ad7150661bed",
 "ValueDigest": "c91cee4876452c95717b8d2d6aaee7a5",
 "RunStamp": "2021_03_11_00_28_01_286",
 "Txt": [],
 "Opts": {},
 "Param": [],
 "Table": [],
 "Progress": []
 },
 {
 "ModelName": "modelOne",
 "ModelDigest": "_201208171604590148_",
 "Name": "Base_run_and_partial_input_set",
 "SubCount": 1,
 "SubStarted": 1,
 "SubCompleted": 1,
 "CreateDateTime": "2021-03-11 00:28:01.704",
 "Status": "s",
 "UpdateDateTime": "2021-03-11 00:28:01.913",
 "RunDigest": "f170ec1ad8596d1f82114285c3d93eec",
 "ValueDigest": "f8638fcc86441f3fd22b2c37e0ed5e47",
 "RunStamp": "2021_03_11_00_28_01_661",
 "Txt": [],
 "Opts": {},
 "Param": [],
 "Table": [],
 "Progress": []
 },
 {
 "ModelName": "modelOne",
 "ModelDigest": "_201208171604590148_",
 "Name": "Task Run with Suppressed Tables_Default",
 "SubCount": 2,
 "SubStarted": 2,
 "SubCompleted": 2,
 "CreateDateTime": "2021-03-11 00:28:01.994",
 "Status": "s",
 "UpdateDateTime": "2021-03-11 00:28:02.241",
 "RunDigest": "e40a172f046a248d85f0fc600d9aa133",
 "ValueDigest": "74dc31c98dd0e491bfdbf0f68961576d",
 "RunStamp": "2021_03_11_00_28_01_943",
 "Txt": [],
 "Opts": {},
 "Param": [],
 "Table": [],
 "Progress": []
 },
 {
 "ModelName": "modelOne",
 "ModelDigest": "_201208171604590148_",
 "Name": "Task Run with Suppressed Tables_modelOne_other",
 "SubCount": 2,
 "SubStarted": 2,
 "SubCompleted": 2,
 "CreateDateTime": "2021-03-11 00:28:02.253",
 "Status": "s",
 "UpdateDateTime": "2021-03-11 00:28:02.435",
 "RunDigest": "e97dc09e7ae4965a47688eb90ba434c1",
 "ValueDigest": "7dd0761dcfd04cb8def60c63a2804157",
 "RunStamp": "2021_03_11_00_28_01_943",
 "Txt": [],
 "Opts": {},
 "Param": [],
 "Table": [],
 "Progress": []
 },
 {
 "ModelName": "modelOne",

 "ModelName": "modelOne",
 "ModelDigest": "_201208171604590148_",
 "Name": "Task Run with NotSuppressed Tables_Default",
 "SubCount": 2,
 "SubStarted": 2,
 "SubCompleted": 2,
 "CreateDateTime": "2021-03-11 00:28:02.572",
 "Status": "s",
 "UpdateDateTime": "2021-03-11 00:28:03.016",
 "RunDigest": "ef9920516d16859e1705574d7e6f8891",
 "ValueDigest": "e284bb8c7f1e28aa6dc5b52fa78d975d",
 "RunStamp": "2021_03_11_00_28_02_520",
 "Txt": [],
 "Opts": {},
 "Param": [],
 "Table": [],
 "Progress": []
 },
 {
 "ModelName": "modelOne",
 "ModelDigest": "_201208171604590148_",
 "Name": "Task Run with NotSuppressed Tables_modelOne_other",
 "SubCount": 2,
 "SubStarted": 2,
 "SubCompleted": 2,
 "CreateDateTime": "2021-03-11 00:28:03.036",
 "Status": "s",
 "UpdateDateTime": "2021-03-11 00:28:03.372",
 "RunDigest": "a5b56959d3f3efd82e7702289af43022",
 "ValueDigest": "79c55110928e7d372c0570cfa2202867",
 "RunStamp": "2021_03_11_00_28_02_520",
 "Txt": [],
 "Opts": {},
 "Param": [],
 "Table": [],
 "Progress": []
 }
]

Get list of model runs, including text (description and notes).

Methods:

GET /api/model/:model/run-list/text
GET /api/model/:model/run-list/text/lang/:lang

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

:lang - (optional) language code

If optional lang argument specified then result in that language else in browser language. If no such language exist then text portion of result
(description and notes) is empty.

Call examples:

http://localhost:4040/api/model/modelOne/run-list/text
http://localhost:4040/api/model/_201208171604590148_/run-list/text
http://localhost:4040/api/model/modelOne/run-list/text/lang/en_CA

Return example:

[
 {
 "ModelName": "modelOne",
 "ModelDigest": "_201208171604590148_",
 "Name": "Default",
 "SubCount": 1,
 "SubStarted": 1,
 "SubCompleted": 1,
 "CreateDateTime": "2021-03-11 00:27:56.583",
 "Status": "s",
 "UpdateDateTime": "2021-03-11 00:27:57.030",
 "RunDigest": "88b8c45b77993133b07a7c85e4447d5c",
 "ValueDigest": "6c5c0f48e19f67899c868688bb8a23fd",
 "RunStamp": "2021_03_11_00_27_56_535",
 "Txt": [
 {
 "LangCode": "EN",
 "Descr": "Model One default set of parameters",
 "Note": ""
 }
],
 "Opts": {},
 "Param": [],
 "Table": [],
 "Progress": []
 },
 {
 "ModelName": "modelOne",
 "ModelDigest": "_201208171604590148_",
 "Name": "Default-4",
 "SubCount": 4,
 "SubStarted": 4,
 "SubCompleted": 4,
 "CreateDateTime": "2021-03-11 00:27:57.119",
 "Status": "s",
 "UpdateDateTime": "2021-03-11 00:27:57.955",
 "RunDigest": "c6ced1efa64dca8a98e5cd323ac7f50d",
 "ValueDigest": "d900353af61f7f824ddae66b47b456ea",
 "RunStamp": "2021_03_11_00_27_57_080",
 "Txt": [
 {
 "LangCode": "EN",
 "Descr": "Model One default set of parameters",
 "Note": ""
 }
],
 "Opts": {},

GET list of model runs including text (description and notes)

 "Opts": {},
 "Param": [],
 "Table": [],
 "Progress": []
 },
 {
 "ModelName": "modelOne",
 "ModelDigest": "_201208171604590148_",
 "Name": "First Task Run_Default",
 "SubCount": 1,
 "SubStarted": 1,
 "SubCompleted": 1,
 "CreateDateTime": "2021-03-11 00:27:58.054",
 "Status": "s",
 "UpdateDateTime": "2021-03-11 00:27:58.485",
 "RunDigest": "419f0d1b7078cff499f87be5d9e8995c",
 "ValueDigest": "6c5c0f48e19f67899c868688bb8a23fd",
 "RunStamp": "2021_03_11_00_27_58_005",
 "Txt": [
 {
 "LangCode": "EN",
 "Descr": "Model One default set of parameters",
 "Note": ""
 }
],
 "Opts": {},
 "Param": [],
 "Table": [],
 "Progress": []
 },
 {
 "ModelName": "modelOne",
 "ModelDigest": "_201208171604590148_",
 "Name": "First Task Run_modelOne_other",
 "SubCount": 1,
 "SubStarted": 1,
 "SubCompleted": 1,
 "CreateDateTime": "2021-03-11 00:27:58.505",
 "Status": "s",
 "UpdateDateTime": "2021-03-11 00:27:58.833",
 "RunDigest": "ec2455261ede37787150692c460a2688",
 "ValueDigest": "fb27d108fae2040fa1cae6f49704a1b7",
 "RunStamp": "2021_03_11_00_27_58_005",
 "Txt": [
 {
 "LangCode": "EN",
 "Descr": "Model One other set of parameters",
 "Note": ""
 }
],
 "Opts": {},
 "Param": [],
 "Table": [],
 "Progress": []
 },
 {
 "ModelName": "modelOne",
 "ModelDigest": "_201208171604590148_",
 "Name": "Sub-values_2_from_csv",
 "SubCount": 2,
 "SubStarted": 2,
 "SubCompleted": 2,
 "CreateDateTime": "2021-03-11 00:27:58.935",
 "Status": "s",
 "UpdateDateTime": "2021-03-11 00:27:59.531",
 "RunDigest": "de486efd4c8d002036876a3b9a285f63",
 "ValueDigest": "c91cee4876452c95717b8d2d6aaee7a5",
 "RunStamp": "2021_03_11_00_27_58_895",
 "Txt": [
 {
 "LangCode": "EN",
 "Descr": "Parameter sub-values 2 from csv",
 "Note": ""
 }
],
 "Opts": {},
 "Param": [],
 "Table": [],
 "Progress": []
 },
 {
 "ModelName": "modelOne",
 "ModelDigest": "_201208171604590148_",
 "Name": "Sub-values_4",
 "SubCount": 4,
 "SubStarted": 4,
 "SubCompleted": 4,
 "CreateDateTime": "2021-03-11 00:27:59.631",

 "CreateDateTime": "2021-03-11 00:27:59.631",
 "Status": "s",
 "UpdateDateTime": "2021-03-11 00:28:00.492",
 "RunDigest": "668da5c876e3c7c8742d24e17071505f",
 "ValueDigest": "2ccb8ebabceb2cfb23bbca6403ac52d0",
 "RunStamp": "2021_03_11_00_27_59_582",
 "Txt": [
 {
 "LangCode": "EN",
 "Descr": "Parameter sub-values 4",
 "Note": ""
 }
],
 "Opts": {},
 "Param": [],
 "Table": [],
 "Progress": []
 },
 {
 "ModelName": "modelOne",
 "ModelDigest": "_201208171604590148_",
 "Name": "Group_sub-values_2_from_csv",
 "SubCount": 2,
 "SubStarted": 2,
 "SubCompleted": 2,
 "CreateDateTime": "2021-03-11 00:28:00.587",
 "Status": "s",
 "UpdateDateTime": "2021-03-11 00:28:00.921",
 "RunDigest": "e36f2fbff9439a8f4f7268e50eef2986",
 "ValueDigest": "d73a023253e620a3df7fc45b4b826a60",
 "RunStamp": "2021_03_11_00_28_00_543",
 "Txt": [
 {
 "LangCode": "EN",
 "Descr": "Parameter group sub-values 2 from csv",
 "Note": ""
 }
],
 "Opts": {},
 "Param": [],
 "Table": [],
 "Progress": []
 },
 {
 "ModelName": "modelOne",
 "ModelDigest": "_201208171604590148_",
 "Name": "Import_from_Default_run",
 "SubCount": 1,
 "SubStarted": 1,
 "SubCompleted": 1,
 "CreateDateTime": "2021-03-11 00:28:01.015",
 "Status": "s",
 "UpdateDateTime": "2021-03-11 00:28:01.256",
 "RunDigest": "dcc2a68b7e86267d7efad9f8b7fd2092",
 "ValueDigest": "6c5c0f48e19f67899c868688bb8a23fd",
 "RunStamp": "2021_03_11_00_28_00_952",
 "Txt": [
 {
 "LangCode": "EN",
 "Descr": "Import parameters from Default run",
 "Note": ""
 }
],
 "Opts": {},
 "Param": [],
 "Table": [],
 "Progress": []
 },
 {
 "ModelName": "modelOne",
 "ModelDigest": "_201208171604590148_",
 "Name": "Base_run_is_Sub-values_2_from_csv",
 "SubCount": 2,
 "SubStarted": 2,
 "SubCompleted": 2,
 "CreateDateTime": "2021-03-11 00:28:01.326",
 "Status": "s",
 "UpdateDateTime": "2021-03-11 00:28:01.619",
 "RunDigest": "a57ac3d4c0cefdc09939ad7150661bed",
 "ValueDigest": "c91cee4876452c95717b8d2d6aaee7a5",
 "RunStamp": "2021_03_11_00_28_01_286",
 "Txt": [
 {
 "LangCode": "EN",
 "Descr": "Parameters from base run Sub-values_2_from_csv",
 "Note": ""
 }
],
 "Opts": {},

 "Opts": {},
 "Param": [],
 "Table": [],
 "Progress": []
 },
 {
 "ModelName": "modelOne",
 "ModelDigest": "_201208171604590148_",
 "Name": "Base_run_and_partial_input_set",
 "SubCount": 1,
 "SubStarted": 1,
 "SubCompleted": 1,
 "CreateDateTime": "2021-03-11 00:28:01.704",
 "Status": "s",
 "UpdateDateTime": "2021-03-11 00:28:01.913",
 "RunDigest": "f170ec1ad8596d1f82114285c3d93eec",
 "ValueDigest": "f8638fcc86441f3fd22b2c37e0ed5e47",
 "RunStamp": "2021_03_11_00_28_01_661",
 "Txt": [
 {
 "LangCode": "EN",
 "Descr": "Parameters from base run and from partial input set",
 "Note": ""
 }
],
 "Opts": {},
 "Param": [],
 "Table": [],
 "Progress": []
 },
 {
 "ModelName": "modelOne",
 "ModelDigest": "_201208171604590148_",
 "Name": "Task Run with Suppressed Tables_Default",
 "SubCount": 2,
 "SubStarted": 2,
 "SubCompleted": 2,
 "CreateDateTime": "2021-03-11 00:28:01.994",
 "Status": "s",
 "UpdateDateTime": "2021-03-11 00:28:02.241",
 "RunDigest": "e40a172f046a248d85f0fc600d9aa133",
 "ValueDigest": "74dc31c98dd0e491bfdbf0f68961576d",
 "RunStamp": "2021_03_11_00_28_01_943",
 "Txt": [
 {
 "LangCode": "EN",
 "Descr": "Model One default set of parameters",
 "Note": ""
 }
],
 "Opts": {},
 "Param": [],
 "Table": [],
 "Progress": []
 },
 {
 "ModelName": "modelOne",
 "ModelDigest": "_201208171604590148_",
 "Name": "Task Run with Suppressed Tables_modelOne_other",
 "SubCount": 2,
 "SubStarted": 2,
 "SubCompleted": 2,
 "CreateDateTime": "2021-03-11 00:28:02.253",
 "Status": "s",
 "UpdateDateTime": "2021-03-11 00:28:02.435",
 "RunDigest": "e97dc09e7ae4965a47688eb90ba434c1",
 "ValueDigest": "7dd0761dcfd04cb8def60c63a2804157",
 "RunStamp": "2021_03_11_00_28_01_943",
 "Txt": [
 {
 "LangCode": "EN",
 "Descr": "Model One other set of parameters",
 "Note": ""
 }
],
 "Opts": {},
 "Param": [],
 "Table": [],
 "Progress": []
 },
 {
 "ModelName": "modelOne",
 "ModelDigest": "_201208171604590148_",
 "Name": "Task Run with NotSuppressed Tables_Default",
 "SubCount": 2,
 "SubStarted": 2,
 "SubCompleted": 2,
 "CreateDateTime": "2021-03-11 00:28:02.572",

 "Status": "s",
 "UpdateDateTime": "2021-03-11 00:28:03.016",
 "RunDigest": "ef9920516d16859e1705574d7e6f8891",
 "ValueDigest": "e284bb8c7f1e28aa6dc5b52fa78d975d",
 "RunStamp": "2021_03_11_00_28_02_520",
 "Txt": [
 {
 "LangCode": "EN",
 "Descr": "Model One default set of parameters",
 "Note": ""
 }
],
 "Opts": {},
 "Param": [],
 "Table": [],
 "Progress": []
 },
 {
 "ModelName": "modelOne",
 "ModelDigest": "_201208171604590148_",
 "Name": "Task Run with NotSuppressed Tables_modelOne_other",
 "SubCount": 2,
 "SubStarted": 2,
 "SubCompleted": 2,
 "CreateDateTime": "2021-03-11 00:28:03.036",
 "Status": "s",
 "UpdateDateTime": "2021-03-11 00:28:03.372",
 "RunDigest": "a5b56959d3f3efd82e7702289af43022",
 "ValueDigest": "79c55110928e7d372c0570cfa2202867",
 "RunStamp": "2021_03_11_00_28_02_520",
 "Txt": [
 {
 "LangCode": "EN",
 "Descr": "Model One other set of parameters",
 "Note": ""
 }
],
 "Opts": {},
 "Param": [],
 "Table": [],
 "Progress": []
 }
]

Get status of model run by run digest, run stamp or run name. If there is only multiple runs with such stamp or name exist then it is better to use
GET status of model run list method to get run status of all runs.

Methods:

GET /api/model/:model/run/:run/status

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

:run - (required) model run digest, run stamp or run name

Model run can be identified by run digest, run stamp or run name. It is recommended to use digest because it is uniquely identifies model run.
Run stamp, if not explicitly specified as model run option, automatically generated as timestamp string, ex.: 2016_08_17_21_07_55_123. It is
also possible to use run name, which is more human readable than digest, but if there are multiple runs with same name or same run stamp in
database then result is undefined.

Call examples:

http://localhost:4040/api/model/modelOne/run/Default-4/status
http://localhost:4040/api/model/modelOne/run/05403de52f30f59b050417561914fbb8/status
http://localhost:4040/api/model/modelOne/run/2019_01_17_19_59_52_998/status

Return example: This is a beta version and may change in the future.

GET status of model run

{
 "ModelName": "modelOne",
 "ModelDigest": "_201208171604590148_",
 "Name": "Default-4",
 "SubCount": 4,
 "SubStarted": 4,
 "SubCompleted": 4,
 "CreateDateTime": "2021-03-11 00:27:57.119",
 "Status": "s",
 "UpdateDateTime": "2021-03-11 00:27:57.955",
 "RunDigest": "c6ced1efa64dca8a98e5cd323ac7f50d",
 "ValueDigest": "d900353af61f7f824ddae66b47b456ea",
 "RunStamp": "2021_03_11_00_27_57_080",
 "Txt": [],
 "Opts": {},
 "Param": [],
 "Table": [],
 "Progress": [
 {
 "SubId": 0,
 "CreateDateTime": "2021-03-11 00:27:57.151",
 "Status": "s",
 "UpdateDateTime": "2021-03-11 00:27:57.512",
 "Count": 100,
 "Value": 0
 },
 {
 "SubId": 1,
 "CreateDateTime": "2021-03-11 00:27:57.153",
 "Status": "s",
 "UpdateDateTime": "2021-03-11 00:27:57.669",
 "Count": 100,
 "Value": 0
 },
 {
 "SubId": 2,
 "CreateDateTime": "2021-03-11 00:27:57.157",
 "Status": "s",
 "UpdateDateTime": "2021-03-11 00:27:57.649",
 "Count": 100,
 "Value": 0
 },
 {
 "SubId": 3,
 "CreateDateTime": "2021-03-11 00:27:57.159",
 "Status": "s",
 "UpdateDateTime": "2021-03-11 00:27:57.746",
 "Count": 100,
 "Value": 0
 }
]
}

Get status of model runs by run digest, run stamp or run name. If there is only single run with such stamp or name exist then result similar to the
result of GET status of model run method.

Methods:

GET /api/model/:model/run/:run/status/list

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

:run - (required) model run digest, run stamp or run name

Model run can be identified by run digest, run stamp or run name. It is recommended to use digest because it is uniquely identifies model run.
Run stamp, if not explicitly specified as model run option, automatically generated as timestamp string, ex.: 2016_08_17_21_07_55_123. It is
also possible to use run name, which is more human readable than digest.

Call examples:

http://localhost:4040/api/model/modelOne/run/Default-4/status/list
http://localhost:4040/api/model/modelOne/run/05403de52f30f59b050417561914fbb8/status/list
http://localhost:4040/api/model/modelOne/run/2019_01_17_19_59_52_998/status/list

Return example: This is a beta version and may change in the future.

GET status of model run list

[
 {
 "ModelName": "modelOne",
 "ModelDigest": "_201208171604590148_",
 "Name": "Default-4",
 "SubCount": 4,
 "SubStarted": 4,
 "SubCompleted": 4,
 "CreateDateTime": "2021-03-11 00:27:57.119",
 "Status": "s",
 "UpdateDateTime": "2021-03-11 00:27:57.955",
 "RunDigest": "c6ced1efa64dca8a98e5cd323ac7f50d",
 "ValueDigest": "d900353af61f7f824ddae66b47b456ea",
 "RunStamp": "2021_03_11_00_27_57_080",
 "Txt": [],
 "Opts": {},
 "Param": [],
 "Table": [],
 "Progress": [
 {
 "SubId": 0,
 "CreateDateTime": "2021-03-11 00:27:57.151",
 "Status": "s",
 "UpdateDateTime": "2021-03-11 00:27:57.512",
 "Count": 100,
 "Value": 0
 },
 {
 "SubId": 1,
 "CreateDateTime": "2021-03-11 00:27:57.153",
 "Status": "s",
 "UpdateDateTime": "2021-03-11 00:27:57.669",
 "Count": 100,
 "Value": 0
 },
 {
 "SubId": 2,
 "CreateDateTime": "2021-03-11 00:27:57.157",
 "Status": "s",
 "UpdateDateTime": "2021-03-11 00:27:57.649",
 "Count": 100,
 "Value": 0
 },
 {
 "SubId": 3,
 "CreateDateTime": "2021-03-11 00:27:57.159",
 "Status": "s",
 "UpdateDateTime": "2021-03-11 00:27:57.746",
 "Count": 100,
 "Value": 0
 }
]
 }
]

Get status of first model run.

Methods:

GET /api/model/:model/run/status/first

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

Call examples:

http://localhost:4040/api/model/modelOne/run/status/first
http://localhost:4040/api/model/_201208171604590148_/run/status/first

Return example: This is a beta version and may change in the future.

{
 "ModelName": "modelOne",
 "ModelDigest": "_201208171604590148_",
 "Name": "Default",
 "SubCount": 1,
 "SubStarted": 1,
 "SubCompleted": 1,
 "CreateDateTime": "2021-03-11 00:27:56.583",
 "Status": "s",
 "UpdateDateTime": "2021-03-11 00:27:57.030",
 "RunDigest": "88b8c45b77993133b07a7c85e4447d5c",
 "ValueDigest": "6c5c0f48e19f67899c868688bb8a23fd",
 "RunStamp": "2021_03_11_00_27_56_535",
 "Txt": [],
 "Opts": {},
 "Param": [],
 "Table": [],
 "Progress": [
 {
 "SubId": 0,
 "CreateDateTime": "2021-03-11 00:27:56.647",
 "Status": "s",
 "UpdateDateTime": "2021-03-11 00:27:56.816",
 "Count": 100,
 "Value": 0
 }
]
}

GET status of first model run

Get status of last model run.

Methods:

GET /api/model/:model/run/status/last

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

Call examples:

http://localhost:4040/api/model/modelOne/run/status/last
http://localhost:4040/api/model/_201208171604590148_/run/status/last

Return example: This is a beta version and may change in the future.

{
 "ModelName": "modelOne",
 "ModelDigest": "_201208171604590148_",
 "Name": "Task Run with NotSuppressed Tables_modelOne_other",
 "SubCount": 2,
 "SubStarted": 2,
 "SubCompleted": 2,
 "CreateDateTime": "2021-03-11 00:28:03.036",
 "Status": "s",
 "UpdateDateTime": "2021-03-11 00:28:03.372",
 "RunDigest": "a5b56959d3f3efd82e7702289af43022",
 "ValueDigest": "79c55110928e7d372c0570cfa2202867",
 "RunStamp": "2021_03_11_00_28_02_520",
 "Txt": [],
 "Opts": {},
 "Param": [],
 "Table": [],
 "Progress": [
 {
 "SubId": 0,
 "CreateDateTime": "2021-03-11 00:28:03.070",
 "Status": "s",
 "UpdateDateTime": "2021-03-11 00:28:03.204",
 "Count": 100,
 "Value": 0
 },
 {
 "SubId": 1,
 "CreateDateTime": "2021-03-11 00:28:03.073",
 "Status": "s",
 "UpdateDateTime": "2021-03-11 00:28:03.195",
 "Count": 100,
 "Value": 0
 }
]
}

GET status of last model run

Get status of last completed model run. Run completed if run status one of: s=success, x=exit, e=error

Methods:

GET /api/model/:model/run/status/last-completed

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

Call examples:

http://localhost:4040/api/model/modelOne/run/status/last-completed
http://localhost:4040/api/model/_201208171604590148_/run/status/last-completed

Return example: This is a beta version and may change in the future.

{
 "ModelName": "modelOne",
 "ModelDigest": "_201208171604590148_",
 "Name": "Task Run with NotSuppressed Tables_modelOne_other",
 "SubCount": 2,
 "SubStarted": 2,
 "SubCompleted": 2,
 "CreateDateTime": "2021-03-11 00:28:03.036",
 "Status": "s",
 "UpdateDateTime": "2021-03-11 00:28:03.372",
 "RunDigest": "a5b56959d3f3efd82e7702289af43022",
 "ValueDigest": "79c55110928e7d372c0570cfa2202867",
 "RunStamp": "2021_03_11_00_28_02_520",
 "Txt": [],
 "Opts": {},
 "Param": [],
 "Table": [],
 "Progress": [
 {
 "SubId": 0,
 "CreateDateTime": "2021-03-11 00:28:03.070",
 "Status": "s",
 "UpdateDateTime": "2021-03-11 00:28:03.204",
 "Count": 100,
 "Value": 0
 },
 {
 "SubId": 1,
 "CreateDateTime": "2021-03-11 00:28:03.073",
 "Status": "s",
 "UpdateDateTime": "2021-03-11 00:28:03.195",
 "Count": 100,
 "Value": 0
 }
]
}

GET status of last completed model run

Get model run results metadata and status

Methods:

GET /api/model/:model/run/:run

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

:run - (required) model run digest, run stamp or run name

Model run can be identified by run digest, run stamp or run name. It is recommended to use digest because it is uniquely identifies model run.
Run stamp, if not explicitly specified as model run option, automatically generated as timestamp string, ex.: 2016_08_17_21_07_55_123. It is
also possible to use name, which is more human readable than digest, but if there are multiple runs with same name in database than result is
undefined.

Call examples:

http://localhost:4040/api/model/modelOne/run/Default-4
http://localhost:4040/api/model/_201208171604590148_/run/Default-4
http://localhost:4040/api/model/modelOne/run/2019_01_17_19_59_52_998

Return example:

{
 "ModelName": "modelOne",
 "ModelDigest": "_201208171604590148_",
 "Name": "Default-4",
 "SubCount": 4,
 "SubStarted": 4,
 "SubCompleted": 4,
 "CreateDateTime": "2021-11-10 19:08:00.578",
 "Status": "s",
 "UpdateDateTime": "2021-11-10 19:08:04.632",
 "RunDigest": "77074b15c611d2330acc249286bddc04",
 "ValueDigest": "3da3d883d9cb45d419847d3b20cbb6e2",
 "RunStamp": "2021_11_10_19_08_00_552",
 "Txt": [],
 "Opts": {
 "OpenM.LogFilePath": "modelOne.log",
 "OpenM.RunName": "Default-4",
 "OpenM.RunStamp": "2021_11_10_19_08_00_552",
 "OpenM.SetId": "2",
 "OpenM.SetName": "Default",
 "OpenM.SubValues": "4",
 "OpenM.Threads": "4"
 },
 "Param": [
 {
 "Name": "ageSex",
 "Txt": [],
 "SubCount": 1,
 "DefaultSubId": 0,
 "ValueDigest": "ca3edf7630fae786c75f10781a664933"
 },
 {
 "Name": "salaryAge",
 "Txt": [],
 "SubCount": 1,
 "DefaultSubId": 0,
 "ValueDigest": "0becae6201e424a1f3b66e421864b4b3"
 },
 {
 "Name": "StartingSeed",
 "Txt": [],
 "SubCount": 1,
 "DefaultSubId": 0,
 "ValueDigest": "cb565f810da2b25939d0bd958cb5392a"
 },

GET model run metadata and status

 },
 {
 "Name": "salaryFull",
 "Txt": [],
 "SubCount": 1,
 "DefaultSubId": 0,
 "ValueDigest": "a2f1ce089553caf3f7fb080aa170507d"
 },
 {
 "Name": "baseSalary",
 "Txt": [],
 "SubCount": 1,
 "DefaultSubId": 0,
 "ValueDigest": "1541b570479f12a40b9d8a782795c7c2"
 },
 {
 "Name": "filePath",
 "Txt": [],
 "SubCount": 1,
 "DefaultSubId": 0,
 "ValueDigest": "f5d536e282b0941dc84f17cc11a94091"
 },
 {
 "Name": "isOldAge",
 "Txt": [],
 "SubCount": 1,
 "DefaultSubId": 0,
 "ValueDigest": "ef4288d0277e97b1b8a2009ce962323b"
 },
 {
 "Name": "salaryByYears",
 "Txt": [],
 "SubCount": 1,
 "DefaultSubId": 0,
 "ValueDigest": "41934eed3ed19a88b3cb346e447f689f"
 },
 {
 "Name": "salaryByPeriod",
 "Txt": [],
 "SubCount": 1,
 "DefaultSubId": 0,
 "ValueDigest": "3871b18ad0ae36bab0a5badd5bcaab6f"
 },
 {
 "Name": "salaryByLow",
 "Txt": [],
 "SubCount": 1,
 "DefaultSubId": 0,
 "ValueDigest": "b93c3f85f3259f2ad709f39403e7fac9"
 },
 {
 "Name": "salaryByMiddle",
 "Txt": [],
 "SubCount": 1,
 "DefaultSubId": 0,
 "ValueDigest": "6e0d6bf8f96c2d89ff2d2ae2fd82997b"
 }
],
 "Table": [
 {
 "Name": "salarySex",
 "ValueDigest": "5b5f5dd270012d1d2eff0d1440613f68"
 },
 {
 "Name": "fullAgeSalary",
 "ValueDigest": "2501fe0596490d69a6e37260f0af35bc"
 },
 {
 "Name": "ageSexIncome",
 "ValueDigest": "aa6c5e76c324cc1bd413afe8e6de6f27"
 },
 {
 "Name": "seedOldAge",
 "ValueDigest": "4883e0ea0adbb4f649ca19aea3b60a78"
 },
 {
 "Name": "incomeByYear",
 "ValueDigest": "83b59f82f2b57268886db6fad85bf423"
 },
 {
 "Name": "incomeByLow",
 "ValueDigest": "d4fac571f0a6943afb96ab428ac79b4a"
 },
 {
 "Name": "incomeByMiddle",
 "ValueDigest": "818c1b6a7ee16d13377e6ffb5355948f"
 },
 {

 {
 "Name": "incomeByPeriod",
 "ValueDigest": "5379aabc2d6ca654c6e28766ca597d20"
 }
],
 "Progress": [
 {
 "SubId": 0,
 "CreateDateTime": "2021-11-10 19:08:04.470",
 "Status": "s",
 "UpdateDateTime": "2021-11-10 19:08:04.552",
 "Count": 100,
 "Value": 0
 },
 {
 "SubId": 1,
 "CreateDateTime": "2021-11-10 19:08:04.470",
 "Status": "s",
 "UpdateDateTime": "2021-11-10 19:08:04.522",
 "Count": 100,
 "Value": 0
 },
 {
 "SubId": 2,
 "CreateDateTime": "2021-11-10 19:08:04.471",
 "Status": "s",
 "UpdateDateTime": "2021-11-10 19:08:04.538",
 "Count": 100,
 "Value": 0
 },
 {
 "SubId": 3,
 "CreateDateTime": "2021-11-10 19:08:04.471",
 "Status": "s",
 "UpdateDateTime": "2021-11-10 19:08:04.570",
 "Count": 100,
 "Value": 0
 }
]
}

Get model run results, including text (description and notes)

Methods:

GET /api/model/:model/run/:run/text
GET /api/model/:model/run/:run/text/lang/:lang

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

:run - (required) model run digest, run stamp or run name

Model run can be identified by run digest, run stamp or run name. It is recommended to use digest because it is uniquely identifies model run.
Run stamp, if not explicitly specified as model run option, automatically generated as timestamp string, ex.: 2016_08_17_21_07_55_123. It is
also possible to use name, which is more human readable than digest, but if there are multiple runs with same name in database than result is
undefined.

:lang - (optional) language code

If optional lang argument specified then result in that language else in browser language. If no such language exist then text portion of result
(description and notes) is empty.

Call examples:

http://localhost:4040/api/model/modelOne/run/Default-4/text
http://localhost:4040/api/model/_201208171604590148_/run/Default-4/text
http://localhost:4040/api/model/modelOne/run/Default-4/text/lang/en
http://localhost:4040/api/model/modelOne/run/05403de52f30f59b050417561914fbb8/text/lang/en
http://localhost:4040/api/model/modelOne/run/2019_01_17_19_59_52_998/text/lang/en

Return example:

{
 "ModelName": "modelOne",
 "ModelDigest": "_201208171604590148_",
 "Name": "Default-4",
 "SubCount": 4,
 "SubStarted": 4,
 "SubCompleted": 4,
 "CreateDateTime": "2021-11-10 19:08:00.578",
 "Status": "s",
 "UpdateDateTime": "2021-11-10 19:08:04.632",
 "RunDigest": "77074b15c611d2330acc249286bddc04",
 "ValueDigest": "3da3d883d9cb45d419847d3b20cbb6e2",
 "RunStamp": "2021_11_10_19_08_00_552",
 "Txt": [
 {
 "LangCode": "EN",
 "Descr": "Model One default set of parameters",
 "Note": ""
 }
],
 "Opts": {
 "OpenM.LogFilePath": "modelOne.log",
 "OpenM.RunName": "Default-4",
 "OpenM.RunStamp": "2021_11_10_19_08_00_552",
 "OpenM.SetId": "2",
 "OpenM.SetName": "Default",
 "OpenM.SubValues": "4",
 "OpenM.Threads": "4"
 },
 "Param": [
 {
 "Name": "ageSex",
 "Txt": [
 {

GET model run including text (description and notes)

 {
 "LangCode": "EN",
 "Note": "Age by Sex default values"
 }
],
 "SubCount": 1,
 "DefaultSubId": 0,
 "ValueDigest": "ca3edf7630fae786c75f10781a664933"
 },
 {
 "Name": "salaryAge",
 "Txt": [
 {
 "LangCode": "EN",
 "Note": "Salary by Age default values"
 }
],
 "SubCount": 1,
 "DefaultSubId": 0,
 "ValueDigest": "0becae6201e424a1f3b66e421864b4b3"
 },
 {
 "Name": "StartingSeed",
 "Txt": [
 {
 "LangCode": "EN",
 "Note": "Starting seed default value"
 }
],
 "SubCount": 1,
 "DefaultSubId": 0,
 "ValueDigest": "cb565f810da2b25939d0bd958cb5392a"
 },
 {
 "Name": "salaryFull",
 "Txt": [
 {
 "LangCode": "EN",
 "Note": "Full or part time by Salary default values"
 }
],
 "SubCount": 1,
 "DefaultSubId": 0,
 "ValueDigest": "a2f1ce089553caf3f7fb080aa170507d"
 },
 {
 "Name": "baseSalary",
 "Txt": [],
 "SubCount": 1,
 "DefaultSubId": 0,
 "ValueDigest": "1541b570479f12a40b9d8a782795c7c2"
 },
 {
 "Name": "filePath",
 "Txt": [],
 "SubCount": 1,
 "DefaultSubId": 0,
 "ValueDigest": "f5d536e282b0941dc84f17cc11a94091"
 },
 {
 "Name": "isOldAge",
 "Txt": [
 {
 "LangCode": "EN",
 "Note": "Is old age default values"
 }
],
 "SubCount": 1,
 "DefaultSubId": 0,
 "ValueDigest": "ef4288d0277e97b1b8a2009ce962323b"
 },
 {
 "Name": "salaryByYears",
 "Txt": [
 {
 "LangCode": "EN",
 "Note": "Salary by Years default values"
 }
],
 "SubCount": 1,
 "DefaultSubId": 0,
 "ValueDigest": "41934eed3ed19a88b3cb346e447f689f"
 },
 {
 "Name": "salaryByPeriod",
 "Txt": [
 {
 "LangCode": "EN",
 "Note": "Salary by Period default values"

 "Note": "Salary by Period default values"
 }
],
 "SubCount": 1,
 "DefaultSubId": 0,
 "ValueDigest": "3871b18ad0ae36bab0a5badd5bcaab6f"
 },
 {
 "Name": "salaryByLow",
 "Txt": [
 {
 "LangCode": "EN",
 "Note": "Salary by Low Period default values"
 }
],
 "SubCount": 1,
 "DefaultSubId": 0,
 "ValueDigest": "b93c3f85f3259f2ad709f39403e7fac9"
 },
 {
 "Name": "salaryByMiddle",
 "Txt": [
 {
 "LangCode": "EN",
 "Note": "Salary by Middle Period default values"
 }
],
 "SubCount": 1,
 "DefaultSubId": 0,
 "ValueDigest": "6e0d6bf8f96c2d89ff2d2ae2fd82997b"
 }
],
 "Table": [
 {
 "Name": "salarySex",
 "ValueDigest": "5b5f5dd270012d1d2eff0d1440613f68"
 },
 {
 "Name": "fullAgeSalary",
 "ValueDigest": "2501fe0596490d69a6e37260f0af35bc"
 },
 {
 "Name": "ageSexIncome",
 "ValueDigest": "aa6c5e76c324cc1bd413afe8e6de6f27"
 },
 {
 "Name": "seedOldAge",
 "ValueDigest": "4883e0ea0adbb4f649ca19aea3b60a78"
 },
 {
 "Name": "incomeByYear",
 "ValueDigest": "83b59f82f2b57268886db6fad85bf423"
 },
 {
 "Name": "incomeByLow",
 "ValueDigest": "d4fac571f0a6943afb96ab428ac79b4a"
 },
 {
 "Name": "incomeByMiddle",
 "ValueDigest": "818c1b6a7ee16d13377e6ffb5355948f"
 },
 {
 "Name": "incomeByPeriod",
 "ValueDigest": "5379aabc2d6ca654c6e28766ca597d20"
 }
],
 "Progress": [
 {
 "SubId": 0,
 "CreateDateTime": "2021-11-10 19:08:04.470",
 "Status": "s",
 "UpdateDateTime": "2021-11-10 19:08:04.552",
 "Count": 100,
 "Value": 0
 },
 {
 "SubId": 1,
 "CreateDateTime": "2021-11-10 19:08:04.470",
 "Status": "s",
 "UpdateDateTime": "2021-11-10 19:08:04.522",
 "Count": 100,
 "Value": 0
 },
 {
 "SubId": 2,
 "CreateDateTime": "2021-11-10 19:08:04.471",
 "Status": "s",
 "UpdateDateTime": "2021-11-10 19:08:04.538",

 "UpdateDateTime": "2021-11-10 19:08:04.538",
 "Count": 100,
 "Value": 0
 },
 {
 "SubId": 3,
 "CreateDateTime": "2021-11-10 19:08:04.471",
 "Status": "s",
 "UpdateDateTime": "2021-11-10 19:08:04.570",
 "Count": 100,
 "Value": 0
 }
]
}

Get model run results, including text (description and notes) in all languages

Methods:

GET /api/model/:model/run/:run/text-all

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

:run - (required) model run digest, run stamp or run name

Model run can be identified by run digest, run stamp or run name. It is recommended to use digest because it is uniquely identifies model run.
Run stamp, if not explicitly specified as model run option, automatically generated as timestamp string, ex.: 2016_08_17_21_07_55_123. It is
also possible to use name, which is more human readable than digest, but if there are multiple runs with same name in database than result is
undefined.

Call examples:

http://localhost:4040/api/model/modelOne/run/Default/text-all
http://localhost:4040/api/model/_201208171604590148_/run/Default/text-all
http://localhost:4040/api/model/modelOne/run/6fbad822cb9ae42deea1ede626890711/text-all
http://localhost:4040/api/model/modelOne/run/2019_01_17_19_59_52_998/text-all

Return example:

{
 "ModelName": "modelOne",
 "ModelDigest": "_201208171604590148_",
 "Name": "Default",
 "SubCount": 1,
 "SubStarted": 1,
 "SubCompleted": 1,
 "CreateDateTime": "2021-11-10 19:07:56.864",
 "Status": "s",
 "UpdateDateTime": "2021-11-10 19:08:00.537",
 "RunDigest": "b2b0878d5b6740983429a06cd856a9b0",
 "ValueDigest": "a1c9a056f2ee40fcc1e07471097845a7",
 "RunStamp": "2021_11_10_19_07_56_837",
 "Txt": [
 {
 "LangCode": "EN",
 "Descr": "Model One default set of parameters",
 "Note": ""
 },
 {
 "LangCode": "FR",
 "Descr": "Modèle Un ensemble de paramètres par défaut",
 "Note": ""
 }
],
 "Opts": {
 "OpenM.LogFilePath": "modelOne.log",
 "OpenM.RunName": "Default",
 "OpenM.RunStamp": "2021_11_10_19_07_56_837",
 "OpenM.SetId": "2",
 "OpenM.SetName": "Default"
 },
 "Param": [
 {
 "Name": "ageSex",
 "Txt": [
 {
 "LangCode": "EN",
 "Note": "Age by Sex default values"
 },
 {
 "LangCode": "FR",
 "Note": "Valeurs par défaut de l'Âge par Sexe"
 }

GET model run including text in all languages

 }
],
 "SubCount": 1,
 "DefaultSubId": 0,
 "ValueDigest": "ca3edf7630fae786c75f10781a664933"
 },
 {
 "Name": "salaryAge",
 "Txt": [
 {
 "LangCode": "EN",
 "Note": "Salary by Age default values"
 },
 {
 "LangCode": "FR",
 "Note": "Salaire par Âge valeurs par défaut"
 }
],
 "SubCount": 1,
 "DefaultSubId": 0,
 "ValueDigest": "0becae6201e424a1f3b66e421864b4b3"
 },
 {
 "Name": "StartingSeed",
 "Txt": [
 {
 "LangCode": "EN",
 "Note": "Starting seed default value"
 }
],
 "SubCount": 1,
 "DefaultSubId": 0,
 "ValueDigest": "cb565f810da2b25939d0bd958cb5392a"
 },
 {
 "Name": "salaryFull",
 "Txt": [
 {
 "LangCode": "EN",
 "Note": "Full or part time by Salary default values"
 }
],
 "SubCount": 1,
 "DefaultSubId": 0,
 "ValueDigest": "a2f1ce089553caf3f7fb080aa170507d"
 },
 {
 "Name": "baseSalary",
 "Txt": [],
 "SubCount": 1,
 "DefaultSubId": 0,
 "ValueDigest": "1541b570479f12a40b9d8a782795c7c2"
 },
 {
 "Name": "filePath",
 "Txt": [],
 "SubCount": 1,
 "DefaultSubId": 0,
 "ValueDigest": "f5d536e282b0941dc84f17cc11a94091"
 },
 {
 "Name": "isOldAge",
 "Txt": [
 {
 "LangCode": "EN",
 "Note": "Is old age default values"
 }
],
 "SubCount": 1,
 "DefaultSubId": 0,
 "ValueDigest": "ef4288d0277e97b1b8a2009ce962323b"
 },
 {
 "Name": "salaryByYears",
 "Txt": [
 {
 "LangCode": "EN",
 "Note": "Salary by Years default values"
 }
],
 "SubCount": 1,
 "DefaultSubId": 0,
 "ValueDigest": "41934eed3ed19a88b3cb346e447f689f"
 },
 {
 "Name": "salaryByPeriod",
 "Txt": [
 {

 {
 "LangCode": "EN",
 "Note": "Salary by Period default values"
 }
],
 "SubCount": 1,
 "DefaultSubId": 0,
 "ValueDigest": "3871b18ad0ae36bab0a5badd5bcaab6f"
 },
 {
 "Name": "salaryByLow",
 "Txt": [
 {
 "LangCode": "EN",
 "Note": "Salary by Low Period default values"
 }
],
 "SubCount": 1,
 "DefaultSubId": 0,
 "ValueDigest": "b93c3f85f3259f2ad709f39403e7fac9"
 },
 {
 "Name": "salaryByMiddle",
 "Txt": [
 {
 "LangCode": "EN",
 "Note": "Salary by Middle Period default values"
 }
],
 "SubCount": 1,
 "DefaultSubId": 0,
 "ValueDigest": "6e0d6bf8f96c2d89ff2d2ae2fd82997b"
 }
],
 "Table": [
 {
 "Name": "salarySex",
 "ValueDigest": "2d860e00b49881ed802377529236fc0e"
 },
 {
 "Name": "fullAgeSalary",
 "ValueDigest": "6f55fbd529a126a6d5ac6a6e855476ce"
 },
 {
 "Name": "ageSexIncome",
 "ValueDigest": "72121007312255cdcad7a82b46e6aa9c"
 },
 {
 "Name": "seedOldAge",
 "ValueDigest": "df4c82301d470072348f996b7d75424d"
 },
 {
 "Name": "incomeByYear",
 "ValueDigest": "83b59f82f2b57268886db6fad85bf423"
 },
 {
 "Name": "incomeByLow",
 "ValueDigest": "d4fac571f0a6943afb96ab428ac79b4a"
 },
 {
 "Name": "incomeByMiddle",
 "ValueDigest": "818c1b6a7ee16d13377e6ffb5355948f"
 },
 {
 "Name": "incomeByPeriod",
 "ValueDigest": "5379aabc2d6ca654c6e28766ca597d20"
 }
],
 "Progress": [
 {
 "SubId": 0,
 "CreateDateTime": "2021-11-10 19:08:00.399",
 "Status": "s",
 "UpdateDateTime": "2021-11-10 19:08:00.433",
 "Count": 100,
 "Value": 0
 }
]
}

Get list of model worksets: language-neutral part of workset list metadata. Workset is a set of model input parameters (a.k.a. "scenario" input).
Workset can be used to run the model.

Methods:

GET /api/model/:model/workset-list

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

Call examples:

http://localhost:4040/api/model/modelOne/workset-list
http://localhost:4040/api/model/649f17f26d67c37b78dde94f79772445/workset-list

Return example:

[
 {
 "ModelName": "modelOne",
 "ModelDigest": "_201208171604590148_",
 "Name": "modelOne",
 "BaseRunDigest": "",
 "IsReadonly": true,
 "UpdateDateTime": "2013-05-29 23:55:07.1234",
 "Txt": [],
 "Param": []
 },
 {
 "ModelName": "modelOne",
 "ModelDigest": "_201208171604590148_",
 "Name": "modelOne_set",
 "BaseRunDigest": "",
 "IsReadonly": false,
 "UpdateDateTime": "2013-05-30 23:55:07.1234",
 "Txt": [],
 "Param": []
 },
 {
 "ModelName": "modelOne",
 "ModelDigest": "_201208171604590148_",
 "Name": "modelOne_other",
 "BaseRunDigest": "",
 "IsReadonly": true,
 "UpdateDateTime": "2013-05-29 23:55:07.1234",
 "Txt": [],
 "Param": []
 }
]

GET list of model worksets

Get list of model worksets, including text (description and notes). Workset is a set of model input parameters (a.k.a. "scenario" input). Workset
can be used to run the model.

Methods:

GET /api/model/:model/workset-list/text
GET /api/model/:model/workset-list/text/lang/:lang

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

:lang - (optional) language code

If optional lang argument specified then result in that language else in browser language. If no such language exist then text portion of result
(description and notes) is empty.

Call examples:

http://localhost:4040/api/model/modelOne/workset-list/text
http://localhost:4040/api/model/649f17f26d67c37b78dde94f79772445/workset-list/text
http://localhost:4040/api/model/modelOne/workset-list/text/lang/fr-FR

Return example:

GET list of model worksets including text (description and notes)

[
 {
 "ModelName": "modelOne",
 "ModelDigest": "_201208171604590148_",
 "Name": "modelOne",
 "BaseRunDigest": "",
 "IsReadonly": true,
 "UpdateDateTime": "2013-05-29 23:55:07.1234",
 "Txt": [
 {
 "LangCode": "EN",
 "Descr": "Model One default set of parameters",
 "Note": ""
 }
],
 "Param": []
 },
 {
 "ModelName": "modelOne",
 "ModelDigest": "_201208171604590148_",
 "Name": "modelOne_set",
 "BaseRunDigest": "",
 "IsReadonly": false,
 "UpdateDateTime": "2013-05-30 23:55:07.1234",
 "Txt": [
 {
 "LangCode": "EN",
 "Descr": "modelOne modified set of parameters",
 "Note": ""
 }
],
 "Param": []
 },
 {
 "ModelName": "modelOne",
 "ModelDigest": "_201208171604590148_",
 "Name": "modelOne_other",
 "BaseRunDigest": "",
 "IsReadonly": true,
 "UpdateDateTime": "2013-05-29 23:55:07.1234",
 "Txt": [
 {
 "LangCode": "EN",
 "Descr": "Model One other set of parameters",
 "Note": ""
 }
],
 "Param": []
 }
]

Get status of model workset. Workset is a set of model input parameters (a.k.a. "scenario" input). Workset can be used to run the model.

Methods:

GET /api/model/:model/workset/:set/status
GET /api/model/:model/workset/:set

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

:set - (required) workset name

Workset is uniquely identified by name (inside the model). Different models can have worksets with same name, i.e. each model can have
workset with name "Default".

Call examples:

http://localhost:4040/api/model/modelOne/workset/modelOne_set/status
http://localhost:4040/api/model/649f17f26d67c37b78dde94f79772445/workset/Default/status

Return example: This is a beta version and may change in the future.

{
 "SetId": 101,
 "BaseRunId": 0,
 "ModelId": 101,
 "Name": "Default",
 "IsReadonly": true,
 "UpdateDateTime": "2017-12-19 15:21:14.0232"
}

GET workset status

Get status of default model workset. Workset is a set of model input parameters (a.k.a. "scenario" input). Workset can be used to run the model.
Default workset is a first workset of the model with set_id = min(set_id) for that model.

Methods:

GET /api/model/:model/workset/status/default

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

Call examples:

http://localhost:4040/api/model/modelOne/workset/status/default
http://localhost:4040/api/model/649f17f26d67c37b78dde94f79772445/workset/status/default

Return example: This is a beta version and may change in the future.

{
 "SetId": 101,
 "BaseRunId": 0,
 "ModelId": 101,
 "Name": "Default",
 "IsReadonly": true,
 "UpdateDateTime": "2017-12-19 15:21:14.0232"
}

GET model default workset status

Get model workset metadata, including text (description and notes). Workset is a set of model input parameters (a.k.a. "scenario" input). Workset
can be used to run the model.

Methods:

GET /api/model/:model/workset/:set/text
GET /api/model/:model/workset/:set/text/lang/:lang

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

:set - (required) workset name

Workset is uniquely identified by name (inside the model). Different models can have worksets with same name, i.e. each model can have
workset with name "Default".

:lang - (optional) language code

If optional lang argument specified then result in that language else in browser language. If no such language exist then text portion of result
(description and notes) is empty.

Call examples:

http://localhost:4040/api/model/modelOne/workset/modelOne_set/text
http://localhost:4040/api/model/649f17f26d67c37b78dde94f79772445/workset/Default/text
http://localhost:4040/api/model/modelOne/workset/modelOne_set/text/lang/FR
http://localhost:4040/api/model/649f17f26d67c37b78dde94f79772445/workset/Default/text/lang/en

Return example:

GET workset including text (description and notes)

{
 "ModelName": "modelOne",
 "ModelDigest": "_201208171604590148_",
 "Name": "Default",
 "BaseRunDigest": "",
 "IsReadonly": true,
 "UpdateDateTime": "2020-03-17 12:10:48.303",
 "Txt": [
 {
 "LangCode": "EN",
 "Descr": "Model One default set of parameters",
 "Note": ""
 }
],
 "Param": [
 {
 "Name": "ageSex",
 "SubCount": 1,
 "DefaultSubId": 0,
 "Txt": [
 {
 "LangCode": "EN",
 "Note": "Age by Sex default values"
 }
]
 },
 {
 "Name": "salaryAge",
 "SubCount": 1,
 "DefaultSubId": 0,
 "Txt": [
 {
 "LangCode": "EN",
 "Note": "Salary by Age default values"
 }
]
 },
 {
 "Name": "StartingSeed",
 "SubCount": 1,
 "DefaultSubId": 0,
 "Txt": [
 {
 "LangCode": "EN",
 "Note": "Starting seed default value"
 }
]
 },
 {
 "Name": "salaryFull",
 "SubCount": 4,
 "DefaultSubId": 3,
 "Txt": [
 {
 "LangCode": "EN",
 "Note": "Full or part time by Salary default values"
 }
]
 },
 {
 "Name": "baseSalary",
 "SubCount": 4,
 "DefaultSubId": 3,
 "Txt": []
 },
 {
 "Name": "filePath",
 "SubCount": 4,
 "DefaultSubId": 3,
 "Txt": []
 },
 {
 "Name": "isOldAge",
 "SubCount": 4,
 "DefaultSubId": 3,
 "Txt": [
 {
 "LangCode": "EN",
 "Note": "Is old age default values"
 }
]
 }
]
}

Get model workset metadata, including text (description and notes), in all languages. Workset is a set of model input parameters (a.k.a.
"scenario" input). Workset can be used to run the model.

Methods:

GET /api/model/:model/workset/:set/text-all

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

:set - (required) workset name

Workset is uniquely identified by name (inside the model). Different models can have worksets with same name, i.e. each model can have
workset with name "Default".

Call examples:

http://localhost:4040/api/model/modelOne/workset/modelOne_set/text-all
http://localhost:4040/api/model/649f17f26d67c37b78dde94f79772445/workset/Default/text-all

Return example:

{
 "ModelName": "modelOne",
 "ModelDigest": "_201208171604590148_",
 "Name": "Default",
 "BaseRunDigest": "",
 "IsReadonly": true,
 "UpdateDateTime": "2021-09-22 21:37:46.792",
 "Txt": [
 {
 "LangCode": "EN",
 "Descr": "Model One default set of parameters",
 "Note": ""
 },
 {
 "LangCode": "FR",
 "Descr": "(FR) Model One default set of parameters",
 "Note": ""
 }
],
 "Param": [
 {
 "Name": "ageSex",
 "SubCount": 1,
 "DefaultSubId": 0,
 "Txt": [
 {
 "LangCode": "EN",
 "Note": "Age by Sex default values"
 },
 {
 "LangCode": "FR",
 "Note": "(FR) Age by Sex default values"
 }
]
 },
 {
 "Name": "salaryAge",
 "SubCount": 1,
 "DefaultSubId": 0,
 "Txt": [
 {
 "LangCode": "EN",
 "Note": "Salary by Age default values"
 },
 {
 "LangCode": "FR",
 "Note": "(FR) Salary by Age default values"

GET workset including text in all languages

 "Note": "(FR) Salary by Age default values"
 }
]
 },
 {
 "Name": "StartingSeed",
 "SubCount": 1,
 "DefaultSubId": 0,
 "Txt": [
 {
 "LangCode": "EN",
 "Note": "Starting seed default value"
 }
]
 },
 {
 "Name": "salaryFull",
 "SubCount": 4,
 "DefaultSubId": 3,
 "Txt": [
 {
 "LangCode": "EN",
 "Note": "Full or part time by Salary default values"
 }
]
 },
 {
 "Name": "baseSalary",
 "SubCount": 4,
 "DefaultSubId": 3,
 "Txt": []
 },
 {
 "Name": "filePath",
 "SubCount": 4,
 "DefaultSubId": 3,
 "Txt": []
 },
 {
 "Name": "isOldAge",
 "SubCount": 4,
 "DefaultSubId": 3,
 "Txt": [
 {
 "LangCode": "EN",
 "Note": "Is old age default values"
 }
]
 }
]
}

Read a "page" of parameter values from workset.

Page is part of parameter values defined by zero-based "start" row number and row count. If row count <= 0 then all rows below start row number
returned.

Dimension(s) and enum-based parameters returned as enum codes. If dimension type or parameter type is simple (integer or boolean) then
string value used (ex.: "true", "1234").

Method verb must be POST and Content-Type header "application/json". JSON body POSTed to specify parameter name, page size, row count,
filters and row order. It is expected to be JSON representation of db.ReadLayout structure from Go library.

Method:

POST /api/model/:model/workset/:set/parameter/value

Call example:

curl -v -X POST -H "Content-Type: application/json" http://localhost:4040/api/model/modelOne/workset/Default/parameter/value -d @test.json

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

:set - (required) workset name

Workset is uniquely identified by name (inside the model). Different models can have worksets with same name, i.e. each model can have
workset with name "Default".

JSON body arguments:

For example:

{
 "Name": "ageSex",
 "Offset": 0,
 "Size": 100,
 "IsFullPage": true,
 "IsSubId": true,
 "SubId": 2,
 "Filter": [{
 "Name": "dim0",
 "Op": "IN",
 "Values": ["20-30", "40+"]
 }, {
 "Name": "dim1",
 "Op": "=",
 "Values": ["F"]
 }
],
 "OrderBy": [{
 "IndexOne": 2,
 "IsDesc": true
 }, {
 "IndexOne": 3,
 "IsDesc": true
 }
]
}

Read parameter values from workset

https://pkg.go.dev/github.com/openmpp/go/ompp/db#ReadLayout

Name - (required) parameter name
Offset - (optional) zero-based start row to select parameter values
Size - (optional) max row count to select parameter values, if size <= 0 then all rows selected
IsFullPage - (optional) if true then always return non-empty last page of data
IsSubId - (optional) if true then select only single sub-value, default: all sub-values
SubId - (optional) sub-value id to select if IsSubId is true
Filter - (optional) conditions to filter dimension enum code(s)
OrderBy - (optional) list of columns indexes (one based) to order by

Filter conditions joined by AND and can have following operations:

= - enum equal to: AgeGroup = "20-30"
!= - enum not equal to: AgeGroup <> "20-30"
> - enum greater than: AgeGroup > "20-30"
>= - enum greater or equal: AgeGroup >= "20-30"
< - enum less than: AgeGroup < "20-30"
<= - enum less or equal: AgeGroup <= "20-30"
IN - enum is in the list of: AgeGroup IN ("20-30", "30-40", "40+")
BETWEEN - between min and max: AgeGroup BETWEEN "30-40" AND "all"
IN_AUTO - automatically choose most suitable: = or != or IN or BETWEEN

Keep in mind: dimension enums are always ordered by id's, not by code and result of filter Sex < "M" may not be Sex = "F" .

Order by specified by one-based column(s) index(es) in result. In case of parameters columns are:

 SELECT sub_id, dim0, dim1, ..., value FROM parameterTable ORDER BY 1, 2,...

Columns always contain enum id's, not enum codes and therefore result ordered by id's

JSON response:

{
 Layout: {
 Offset: actual first row number of the page data (zero-base),
 Size: actual data page row count,
 IsLastPage: true if this is last page of data
 },
 Page: [....page of data...]
}

Example 1:

JSON body:

{
 "Name": "ageSex",
 "Filter": [],
 "OrderBy": []
}

Result:

< HTTP/1.1 200 OK
< Access-Control-Allow-Origin: *
< Content-Type: application/json
< Date: Tue, 19 Dec 2017 17:13:51 GMT
< Content-Length: 424
<
{"Layout":{"Offset":0,"Size":8,"IsFullPage":false,"IsLastPage":true}
,"Page":[{"Dims":["10-20","M"],"IsNull":false,"Value":0.1,"SubId":0}
,{"Dims":["10-20","F"],"IsNull":false,"Value":0.2,"SubId":0}
,{"Dims":["20-30","M"],"IsNull":false,"Value":0.3,"SubId":0}
,{"Dims":["20-30","F"],"IsNull":false,"Value":0.4,"SubId":0}
,{"Dims":["30-40","M"],"IsNull":false,"Value":0.5,"SubId":0}
,{"Dims":["30-40","F"],"IsNull":false,"Value":0.6,"SubId":0}
,{"Dims":["40+","M"],"IsNull":false,"Value":0.7,"SubId":0}
,{"Dims":["40+","F"],"IsNull":false,"Value":0.8,"SubId":0}
]}

Example 2:

JSON body:

{
 "Name": "ageSex",
 "Offset": 6,
 "Size": 4,
 "IsFullPage": true,
 "Filter": [],
 "OrderBy": []
}

Result:

{"Layout":{"Offset":6,"Size":2,"IsFullPage":true,"IsLastPage":true}
,"Page":[{"Dims":["40+","M"],"IsNull":false,"Value":0.7,"SubId":0}
,{"Dims":["40+","F"],"IsNull":false,"Value":0.8,"SubId":0}
]}

Example 3:

JSON body:

{
 "Name": "ageSex",
 "Offset": 2,
 "OrderBy": [{
 "IndexOne": 2,
 "IsDesc": true
 }, {
 "IndexOne": 3,
 "IsDesc": true
 }
]
}

Result:

{"Layout":{"Offset":2,"Size":6,"IsFullPage":false,"IsLastPage":true}
,"Page":[{"Dims":["30-40","F"],"IsNull":false,"Value":0.6,"SubId":0}
,{"Dims":["30-40","M"],"IsNull":false,"Value":0.5,"SubId":0}
,{"Dims":["20-30","F"],"IsNull":false,"Value":0.4,"SubId":0}
,{"Dims":["20-30","M"],"IsNull":false,"Value":0.3,"SubId":0}
,{"Dims":["10-20","F"],"IsNull":false,"Value":0.2,"SubId":0}
,{"Dims":["10-20","M"],"IsNull":false,"Value":0.1,"SubId":0}
]}

Example 4:

JSON body:

{
 "Name": "isOldAge",
 "Offset": 0,
 "Size": 0,
 "Filter": [{
 "Name": "dim0",
 "Op": "IN",
 "Values": ["20-30", "40+"]
 }
],
 "OrderBy": [{
 "IndexOne": 2,
 "IsDesc": true
 }
],
 "IsSubId": true,
 "SubId": 2
}

Result:

{
"Page":[
{"Dims":["40+"],"IsNull":false,"Value":true,"SubId":2}
,{"Dims":["20-30"],"IsNull":false,"Value":false,"SubId":2}
],
"Layout":{"Offset":0,"Size":2,"IsLastPage":true,"IsFullPage":false}
}

Read a "page" of parameter values from workset.

Page is part of parameter values defined by zero-based "start" row number and row count. If row count <= 0 then all rows below start row number
returned. Dimension(s) and enum-based parameters returned as enum id, not enum codes.

Method verb must be POST and Content-Type header "application/json". JSON body POSTed to specify parameter name, page size, row count,
filters and row order. It is expected to be JSON representation of db.ReadLayout structure from Go library.

Method:

POST /api/model/:model/workset/:set/parameter/value-id

For example:

curl -v -X POST -H "Content-Type: application/json" http://localhost:4040/api/model/modelOne/workset/Default/parameter/value-id -d @test.json

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

:set - (required) workset name

Workset is uniquely identified by name (inside the model). Different models can have worksets with same name, i.e. each model can have
workset with name "Default".

JSON body arguments:

For example:

{
 "Name": "ageSex",
 "Offset": 0,
 "Size": 100,
 "IsFullPage": true,
 "IsSubId": true,
 "SubId": 2,
 "FilterById": [{
 "Name": "AgeGroup",
 "Op": "IN",
 "EnumIds": [20, 40]
 }, {
 "Name": "Sex",
 "Op": "=",
 "EnumIds": [1]
 }
],
 "OrderBy": [{
 "IndexOne": 2,
 "IsDesc": true
 }, {
 "IndexOne": 3,
 "IsDesc": true
 }
]
}

Name - (required) parameter name
Offset - (optional) zero-based start row to select parameter values
Size - (optional) max row count to select parameter values, if size <= 0 then all rows selected
IsFullPage - (optional) if true then always return non-empty last page of data.
IsSubId - (optional) if true then select only single sub-value, default: all sub-values
SubId - (optional) sub-value id to select if IsSubId is true
FilterById - (optional) conditions to filter dimension enum id's
OrderBy - (optional) list of columns indexes (one based) to order by

Read parameter values from workset (enum id's)

https://pkg.go.dev/github.com/openmpp/go/ompp/db#ReadLayout

Filter conditions joined by AND and can have following operations:

= - enum id equal to: AgeGroup = 20
!= - enum id not equal to: AgeGroup <> 20
> - enum id greater than: AgeGroup > 20
>= - enum id greater or equal: AgeGroup >= 20
< - enum id less than: AgeGroup < 20
<= - enum id less or equal: AgeGroup <= 20
IN - in the list of id's: AgeGroup IN (20, 30, 40)
BETWEEN - between min and max: AgeGroup BETWEEN 20 AND 40
IN_AUTO - automatically choose most suitable: = or != or IN or BETWEEN

Order by specified by one-based column(s) index(es) in result. In case of parameters columns are:

 SELECT sub_id, dim0, dim1, ..., value FROM parameterTable

JSON response:

{
 Layout: {
 Offset: actual first row number of the page data (zero-base),
 Size: actual data page row count,
 IsLastPage: true if this is last page of data
 },
 Page: [....page of data...]
}

Example 1:

JSON body:

{
 "Name": "ageSex"
}

Result:

< HTTP/1.1 200 OK
< Content-Type: application/json
< Date: Fri, 14 Dec 2018 01:48:51 GMT
< Content-Length: 508
<
{"Layout":{"Offset":0,"Size":8,"IsFullPage":false,"IsLastPage":true}
,"Page":[{"DimIds":[10,0],"IsNull":false,"Value":0.1,"SubId":0}
,{"DimIds":[10,1],"IsNull":false,"Value":0.2,"SubId":0}
,{"DimIds":[20,0],"IsNull":false,"Value":0.3,"SubId":0}
,{"DimIds":[20,1],"IsNull":false,"Value":0.4,"SubId":0}
,{"DimIds":[30,0],"IsNull":false,"Value":0.5,"SubId":0}
,{"DimIds":[30,1],"IsNull":false,"Value":0.6,"SubId":0}
,{"DimIds":[40,0],"IsNull":false,"Value":0.7,"SubId":0}
,{"DimIds":[40,1],"IsNull":false,"Value":0.8,"SubId":0}
]}

Example 2:

JSON body:

{
 "Name": "ageSex",
 "Offset": 6,
 "Size": 4,
 "IsFullPage": true
}

Result:

{"Layout":{"Offset":6,"Size":2,"IsFullPage":true,"IsLastPage":true}
,"Page":[{"DimIds":[40,0],"IsNull":false,"Value":0.7,"SubId":0}
,{"DimIds":[40,1],"IsNull":false,"Value":0.8,"SubId":0}
]}

Example 3:

JSON body:

{
 "Name": "ageSex",
 "Offset": 2,
 "OrderBy": [{
 "IndexOne": 2,
 "IsDesc": true
 }, {
 "IndexOne": 3,
 "IsDesc": true
 }
]
}

Result:

{"Layout":{"Offset":2,"Size":6,"IsFullPage":false,"IsLastPage":true}
,"Page":[{"DimIds":[30,1],"IsNull":false,"Value":0.6,"SubId":0}
,{"DimIds":[30,0],"IsNull":false,"Value":0.5,"SubId":0}
,{"DimIds":[20,1],"IsNull":false,"Value":0.4,"SubId":0}
,{"DimIds":[20,0],"IsNull":false,"Value":0.3,"SubId":0}
,{"DimIds":[10,1],"IsNull":false,"Value":0.2,"SubId":0}
,{"DimIds":[10,0],"IsNull":false,"Value":0.1,"SubId":0}
]}

Example 4:

JSON body:

{
 "Name": "isOldAge",
 "Offset": 0,
 "Size": 0,
 "IsSubId": true,
 "SubId": 2,
 "FilterById": [{
 "Name": "dim0",
 "Op": "IN",
 "EnumIds": [20, 40]
 }
],
 "OrderBy": [{
 "IndexOne": 2,
 "IsDesc": true
 }, {
 "IndexOne": 3,
 "IsDesc": true
 }
]
}

Result:

{
"Page":[
{"DimIds":[40],"IsNull":false,"Value":true,"SubId":2}
,{"DimIds":[20],"IsNull":false,"Value":false,"SubId":2}
],
"Layout":{"Offset":0,"Size":2,"IsLastPage":true,"IsFullPage":false}
}

Read a "page" of parameter values from model run.

Page is part of parameter values defined by zero-based "start" row number and row count. If row count <= 0 then all rows below start row number
returned.

Dimension(s) and enum-based parameters returned as enum codes. Dimension type or parameter type is simple (integer or boolean) then string
value used (ex.: "true", "1234").

Method verb must be POST and Content-Type header "application/json". JSON body POSTed to specify parameter name, page size, row count,
filters and row order. It is expected to be JSON representation of db.ReadLayout structure from Go library.

Method:

POST /api/model/:model/run/:run/parameter/value

For example:

curl -v -X POST -H "Content-Type: application/json" http://localhost:4040/api/model/modelOne/run/Default/parameter/value -d @test.json
curl -v -X POST -H "Content-Type: application/json" http://localhost:4040/api/model/modelOne/run/2016_08_17_21_07_55_123/parameter/value -d @test.json

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

:run - (required) model run digest, run stamp or run name

Model run can be identified by run digest, run stamp or run name. It is recommended to use digest because it is uniquely identifies model run.
Run stamp, if not explicitly specified as model run option, automatically generated as timestamp string, ex.: 2016_08_17_21_07_55_123. It is
also possible to use name, which is more human readable than digest, but if there are multiple runs with same name in database than result is
undefined.

JSON body arguments:

For example:

{
 "Name": "ageSex",
 "Offset": 0,
 "Size": 100,
 "IsFullPage": true,
 "IsSubId": true,
 "SubId": 2,
 "Filter": [{
 "Name": "AgeGroup",
 "Op": "IN",
 "Values": ["20-30", "30-40", "40+"]
 }, {
 "Name": "Sex",
 "Op": "=",
 "Values": ["F"]
 }
],
 "OrderBy": [{
 "IndexOne": 2,
 "IsDesc": true
 }, {
 "IndexOne": 3,
 "IsDesc": true
 }
]
}

Read parameter values from model run

https://pkg.go.dev/github.com/openmpp/go/ompp/db#ReadLayout

Name - (required) parameter name
Offset - (optional) zero-based start row to select parameter values
Size - (optional) max row count to select parameter values.
IsFullPage - (optional) if true then always return non-empty last page of data.
IsSubId - (optional) if true then select only single sub-value, default: all sub-values
SubId - (optional) sub-value id to select if IsSubId is true
Filter - (optional) conditions to filter dimension enum code(s)
OrderBy - (optional) list of columns indexes (one based) to order by

By default oms service selects 100 rows (it can be configured). If Size <= 0 specified then all rows selected.

Filter conditions joined by AND and can have following operations:

= - enum equal to: AgeGroup = "20-30"
!= - enum not equal to: AgeGroup <> "20-30"
> - enum greater than: AgeGroup > "20-30"
>= - enum greater or equal: AgeGroup >= "20-30"
< - enum less than: AgeGroup < "20-30"
<= - enum less or equal: AgeGroup <= "20-30"
IN - enum is in the list of: AgeGroup IN ("20-30", "30-40", "40+")
BETWEEN - between min and max: AgeGroup BETWEEN "30-40" AND "all"
IN_AUTO - automatically choose most suitable: = or != or IN or BETWEEN

Keep in mind: dimension enums are always ordered by id's, not by code and result of filter Sex < "M" may not be Sex = "F" .

Order by specified by one-based column(s) index(es) in result. In case of parameters columns are:

 SELECT sub_id, dim0, dim1, ..., value FROM parameterTable ORDER BY 1, 2,...

Columns always contain enum id's, not enum codes and therefore result ordered by id's

JSON response:

{
 Layout: {
 Offset: actual first row number of the page data (zero-base),
 Size: actual data page row count,
 IsLastPage: true if this is last page of data
 },
 Page: [....page of data...]
}

Example 1:

JSON body:

{
 "Name": "ageSex",
 "Filter": [],
 "OrderBy": []
}

Result:

< HTTP/1.1 200 OK
< Content-Type: application/json
< Date: Fri, 14 Dec 2018 01:53:21 GMT
< Content-Length: 544
<
{"Layout":{"Offset":0,"Size":8,"IsFullPage":false,"IsLastPage":true}
,"Page":[{"Dims":["10-20","M"],"IsNull":false,"Value":0.1,"SubId":0}
,{"Dims":["10-20","F"],"IsNull":false,"Value":0.2,"SubId":0}
,{"Dims":["20-30","M"],"IsNull":false,"Value":0.3,"SubId":0}
,{"Dims":["20-30","F"],"IsNull":false,"Value":0.4,"SubId":0}
,{"Dims":["30-40","M"],"IsNull":false,"Value":0.5,"SubId":0}
,{"Dims":["30-40","F"],"IsNull":false,"Value":0.6,"SubId":0}
,{"Dims":["40+","M"],"IsNull":false,"Value":0.7,"SubId":0}
,{"Dims":["40+","F"],"IsNull":false,"Value":0.8,"SubId":0}
]}

Example 2:

JSON body:

{
 "Name": "ageSex",
 "Offset": 6,
 "Size": 4,
 "IsFullPage": true,
 "Filter": [],
 "OrderBy": []
}

Result:

{"Layout":{"Offset":6,"Size":2,"IsFullPage":true,"IsLastPage":true}
,"Page":[{"Dims":["40+","M"],"IsNull":false,"Value":0.7,"SubId":0}
,{"Dims":["40+","F"],"IsNull":false,"Value":0.8,"SubId":0}
]}

Example 3:

JSON body:

{
 "Name": "ageSex",
 "Offset": 2,
 "OrderBy": [{
 "IndexOne": 2,
 "IsDesc": true
 }, {
 "IndexOne": 3,
 "IsDesc": true
 }
]
}

Result:

{"Layout":{"Offset":2,"Size":6,"IsFullPage":false,"IsLastPage":true}
,"Page":[{"Dims":["30-40","F"],"IsNull":false,"Value":0.6,"SubId":0}
,{"Dims":["30-40","M"],"IsNull":false,"Value":0.5,"SubId":0}
,{"Dims":["20-30","F"],"IsNull":false,"Value":0.4,"SubId":0}
,{"Dims":["20-30","M"],"IsNull":false,"Value":0.3,"SubId":0}
,{"Dims":["10-20","F"],"IsNull":false,"Value":0.2,"SubId":0}
,{"Dims":["10-20","M"],"IsNull":false,"Value":0.1,"SubId":0}
]}

Example 4:

JSON body:

{
 "Name": "isOldAge",
 "Offset": 0,
 "Size": 0,
 "IsSubId": true,
 "SubId": 2,
 "Filter": [{
 "Name": "dim0",
 "Op": "IN",
 "Values": ["20-30", "40+"]
 }
],
 "OrderBy": [{
 "IndexOne": 2,
 "IsDesc": true
 }, {
 "IndexOne": 3,
 "IsDesc": true
 }
]
}

Result:

{
"Page":[
{"Dims":["40+"],"IsNull":false,"Value":true,"SubId":2}
,{"Dims":["20-30"],"IsNull":false,"Value":false,"SubId":2}
],
"Layout":{"Offset":0,"Size":2,"IsLastPage":true,"IsFullPage":false}
}

Read a "page" of parameter values from model run.

Page is part of parameter values defined by zero-based "start" row number and row count. If row count <= 0 then all rows below start row number
returned. Dimension(s) and enum-based parameters returned as enum id, not enum codes.

Method verb must be POST and Content-Type header "application/json". JSON body POSTed to specify parameter name, page size, row count,
filters and row order. It is expected to be JSON representation of db.ReadLayout structure from Go library.

Method:

POST /api/model/:model/run/:run/parameter/value-id

For example:

curl -v -X POST -H "Content-Type: application/json" http://localhost:4040/api/model/modelOne/run/Default/parameter/value-id -d @test.json
curl -v -X POST -H "Content-Type: application/json" http://localhost:4040/api/model/modelOne/run/2019_01_17_19_59_52_998/parameter/value-id -d @test.json

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

:run - (required) model run digest, run stamp or run name

Model run can be identified by run digest, run stamp or run name. It is recommended to use digest because it is uniquely identifies model run.
Run stamp, if not explicitly specified as model run option, automatically generated as timestamp string, ex.: 2016_08_17_21_07_55_123. It is
also possible to use name, which is more human readable than digest, but if there are multiple runs with same name in database than result is
undefined.

JSON body arguments:

For example:

{
 "Name": "ageSex",
 "Offset": 0,
 "Size": 100,
 "IsFullPage": true,
 "IsSubId": true,
 "SubId": 2,
 "FilterById": [{
 "Name": "AgeGroup",
 "Op": "IN",
 "EnumIds": [20, 40]
 }, {
 "Name": "Sex",
 "Op": "=",
 "EnumIds": [1]
 }
],
 "OrderBy": [{
 "IndexOne": 2,
 "IsDesc": true
 }, {
 "IndexOne": 3,
 "IsDesc": true
 }
]
}

Read parameter values from model run (enum id's)

https://pkg.go.dev/github.com/openmpp/go/ompp/db#ReadLayout

Name - (required) parameter name
Offset - (optional) zero-based start row to select parameter values
Size - (optional) max row count to select parameter values, if size <= 0 then all rows selected
IsFullPage - (optional) if true then always return non-empty last page of data.
IsSubId - (optional) if true then select only single sub-value, default: all sub-values
SubId - (optional) sub-value id to select if IsSubId is true
FilterById - (optional) conditions to filter dimension enum code(s)
OrderBy - (optional) list of columns indexes (one based) to order by

Filter conditions joined by AND and can have following operations:

= - enum id equal to: AgeGroup = 20
!= - enum id not equal to: AgeGroup <> 20
> - enum id greater than: AgeGroup > 20
>= - enum id greater or equal: AgeGroup >= 20
< - enum id less than: AgeGroup < 20
<= - enum id less or equal: AgeGroup <= 20
IN - in the list of id's: AgeGroup IN (20, 30, 40)
BETWEEN - between min and max: AgeGroup BETWEEN 20 AND 40
IN_AUTO - automatically choose most suitable: = or != or IN or BETWEEN

Order by specified by one-based column(s) index(es) in result. In case of parameters columns are:

 SELECT sub_id, dim0, dim1, ..., value FROM parameterTable ORDER BY 1, 2,...

Columns always contain enum id's, not enum codes and therefore result ordered by id's

JSON response:

{
 Layout: {
 Offset: actual first row number of the page data (zero-base),
 Size: actual data page row count,
 IsLastPage: true if this is last page of data
 },
 Page: [....page of data...]
}

Example 1:

JSON body:

{
 "Name": "ageSex"
}

Result:

< HTTP/1.1 200 OK
< Content-Type: application/json
< Date: Fri, 14 Dec 2018 01:56:34 GMT
< Content-Length: 508
<
{"Layout":{"Offset":0,"Size":8,"IsFullPage":false,"IsLastPage":true}
,"Page":[{"DimIds":[10,0],"IsNull":false,"Value":0.1,"SubId":0}
,{"DimIds":[10,1],"IsNull":false,"Value":0.2,"SubId":0}
,{"DimIds":[20,0],"IsNull":false,"Value":0.3,"SubId":0}
,{"DimIds":[20,1],"IsNull":false,"Value":0.4,"SubId":0}
,{"DimIds":[30,0],"IsNull":false,"Value":0.5,"SubId":0}
,{"DimIds":[30,1],"IsNull":false,"Value":0.6,"SubId":0}
,{"DimIds":[40,0],"IsNull":false,"Value":0.7,"SubId":0}
,{"DimIds":[40,1],"IsNull":false,"Value":0.8,"SubId":0}
]}

Example 2:

JSON body:

{
 "Name": "ageSex",
 "Offset": 6,
 "Size": 4,
 "IsFullPage": true
}

Result:

{"Layout":{"Offset":6,"Size":2,"IsFullPage":true,"IsLastPage":true}
,"Page":[{"DimIds":[40,0],"IsNull":false,"Value":0.7,"SubId":0}
,{"DimIds":[40,1],"IsNull":false,"Value":0.8,"SubId":0}
]}

Example 3:

JSON body:

{
 "Name": "ageSex",
 "Offset": 2,
 "OrderBy": [{
 "IndexOne": 2,
 "IsDesc": true
 }, {
 "IndexOne": 3,
 "IsDesc": true
 }
]
}

Result:

{"Layout":{"Offset":2,"Size":6,"IsFullPage":false,"IsLastPage":true}
,"Page":[{"DimIds":[30,1],"IsNull":false,"Value":0.6,"SubId":0}
,{"DimIds":[30,0],"IsNull":false,"Value":0.5,"SubId":0}
,{"DimIds":[20,1],"IsNull":false,"Value":0.4,"SubId":0}
,{"DimIds":[20,0],"IsNull":false,"Value":0.3,"SubId":0}
,{"DimIds":[10,1],"IsNull":false,"Value":0.2,"SubId":0}
,{"DimIds":[10,0],"IsNull":false,"Value":0.1,"SubId":0}
]}

Example 4:

JSON body:

{
 "Name": "isOldAge",
 "Offset": 0,
 "Size": 0,
 "IsSubId": true,
 "SubId": 2,
 "FilterById": [{
 "Name": "dim0",
 "Op": "IN",
 "EnumIds": [20, 40]
 }
],
 "OrderBy": [{
 "IndexOne": 2,
 "IsDesc": true
 }, {
 "IndexOne": 3,
 "IsDesc": true
 }
]
}

Result:

{
"Page":[
{"DimIds":[40],"IsNull":false,"Value":true,"SubId":2}
,{"DimIds":[20],"IsNull":false,"Value":false,"SubId":2}
],
"Layout":{"Offset":0,"Size":2,"IsLastPage":true,"IsFullPage":false}
}

Read a "page" of output table values from model run.

Page is part of output table values defined by zero-based "start" row number and row count. If row count <= 0 then all rows below start row
number returned.

Dimension(s) and enum-based parameters returned as enum codes. If dimension type or parameter type is simple (integer or boolean) then
string value used (ex.: "true", "1234").

Values can be from output table expressions, accumulators or derived accumulators .

Method verb must be POST and Content-Type header "application/json".

JSON body POSTed to specify output table name, page size, row count, filters and row order. It is expected to be JSON representation of
db.ReadLayout structure from Go library.

Method:

POST /api/model/:model/run/:run/table/value

For example:

curl -v -X POST -H "Content-Type: application/json" http://localhost:4040/api/model/modelOne/run/Default/table/value -d @test.json
curl -v -X POST -H "Content-Type: application/json" http://localhost:4040/api/model/modelOne/run/2019_01_17_19_59_52_998/table/value -d @test.json

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

:run - (required) model run digest, run stamp or run name

Model run can be identified by run digest, run stamp or run name. It is recommended to use digest because it is uniquely identifies model run.
Run stamp, if not explicitly specified as model run option, automatically generated as timestamp string, ex.: 2016_08_17_21_07_55_123. It is
also possible to use name, which is more human readable than digest, but if there are multiple runs with same name in database than result is
undefined.

JSON body arguments:

For example:

Read output table values from model run

https://pkg.go.dev/github.com/openmpp/go/ompp/db#ReadLayout

{
 "Name": "salarySex",
 "Offset": 0,
 "Size": 100,
 "IsFullPage": true,
 "Filter": [{
 "Name": "dim0",
 "Op": "IN",
 "Values": ["L", "H"]
 }, {
 "Name": "dim1",
 "Op": "BETWEEN",
 "Values": ["F", "all"]
 }
],
 "OrderBy": [{
 "IndexOne": 2,
 "IsDesc": true
 }, {
 "IndexOne": 3,
 "IsDesc": true
 }
],
 "IsSubId": true,
 "SubId": 2,
 "ValueName": "acc2",
 "IsAccum": true,
 "IsAllAccum": true
}

Name - (required) output table name
Offset - (optional) zero-based start row to select output table values
Size - (optional) max row count to select output table values, if size <= 0 then all rows selected
IsFullPage - (optional) if true then always return non-empty last page of data
Filter - (optional) conditions to filter dimension enum id's
OrderBy - (optional) list of columns indexes (one based) to order by
IsSubId - (optional) if true then select only single sub-value, default: all sub-values
SubId - (optional) sub-value id to select if IsSubId is true
ValueName - (optional) if not empty then only that value selected (ex.: "acc2"), default: all values
IsAccum - (optional) if true then select accumulators
IsAllAccum - (optional) if true then select from "all accumulators" view else from accumulators table

Filter conditions joined by AND and can have following operations:

= - enum equal to: AgeGroup = "20-30"
!= - enum not equal to: AgeGroup <> "20-30"
> - enum greater than: AgeGroup > "20-30"
>= - enum greater or equal: AgeGroup >= "20-30"
< - enum less than: AgeGroup < "20-30"
<= - enum less or equal: AgeGroup <= "20-30"
IN - enum is in the list of: AgeGroup IN ("20-30", "30-40", "40+")
BETWEEN - between min and max: AgeGroup BETWEEN "30-40" AND "all"
IN_AUTO - automatically choose most suitable: = or != or IN or BETWEEN

Keep in mind: dimension enums are always ordered by id's, not by code and result of filter Sex < "M" may not be Sex = "F" .

Order by specified by one-based column(s) index(es) in result. Columns always contain enum id's, not enum codes and therefore result ordered
by id's

In case of output table expressions columns are:

 SELECT expr_id, dim0, dim1, ..., expr_value FROM valueTable ORDER BY 1, 2,...

In case of output table accumulators columns are:

 SELECT acc_id, sub_id, dim0, dim1, ..., acc_value FROM accumulatorTable ORDER BY 1, 2,...

In case of "all accumulators" columns are:

 SELECT sub_id, dim0, dim1, ..., acc0, acc1,... FROM allAccumulatorsView ORDER BY 1, 2,...

JSON response:

{
 Layout: {
 Offset: actual first row number of the page data (zero-base),
 Size: actual data page row count,
 IsLastPage: true if this is last page of data
 },
 Page: [....page of data...]
}

Example 1:

JSON body:

{
 "Name": "salarySex",
 "Filter": [],
 "OrderBy": []
}

Result:

< HTTP/1.1 200 OK
< Access-Control-Allow-Origin: *
< Content-Type: application/json
< Date: Tue, 19 Dec 2017 18:43:54 GMT
< Transfer-Encoding: chunked
<
{"Layout":{"Offset":0,"Size":36,"IsFullPage":false,"IsLastPage":true}
,"Page":[{"Dims":["L","M"],"Value":50,"IsNull":false,"ExprId":0}
,{"Dims":["L","F"],"Value":60,"IsNull":false,"ExprId":0}
,{"Dims":["L","all"],"Value":1,"IsNull":false,"ExprId":0}
,{"Dims":["M","M"],"Value":51.599999999999994,"IsNull":false,"ExprId":0}
,{"Dims":["M","F"],"Value":62,"IsNull":false,"ExprId":0}
,{"Dims":["M","all"],"Value":2,"IsNull":false,"ExprId":0}
,{"Dims":["H","M"],"Value":53.2,"IsNull":false,"ExprId":0}
,{"Dims":["H","F"],"Value":64,"IsNull":false,"ExprId":0}
,{"Dims":["H","all"],"Value":3,"IsNull":false,"ExprId":0}
,{"Dims":["L","M"],"Value":1,"IsNull":false,"ExprId":1}
,{"Dims":["L","F"],"Value":2,"IsNull":false,"ExprId":1}
,{"Dims":["L","all"],"Value":801,"IsNull":false,"ExprId":1}
,{"Dims":["M","M"],"Value":3,"IsNull":false,"ExprId":1}
,{"Dims":["M","F"],"Value":4,"IsNull":false,"ExprId":1}
,{"Dims":["M","all"],"Value":803,"IsNull":false,"ExprId":1}
,{"Dims":["H","M"],"Value":4,"IsNull":false,"ExprId":1}
,{"Dims":["H","F"],"Value":5,"IsNull":false,"ExprId":1}
,{"Dims":["H","all"],"Value":804,"IsNull":false,"ExprId":1}
,{"Dims":["L","M"],"Value":50,"IsNull":false,"ExprId":2}
,{"Dims":["L","F"],"Value":60,"IsNull":false,"ExprId":2}
,{"Dims":["L","all"],"Value":1,"IsNull":false,"ExprId":2}
,{"Dims":["M","M"],"Value":51.599999999999994,"IsNull":false,"ExprId":2}
,{"Dims":["M","F"],"Value":62,"IsNull":false,"ExprId":2}
,{"Dims":["M","all"],"Value":2,"IsNull":false,"ExprId":2}
,{"Dims":["H","M"],"Value":53.2,"IsNull":false,"ExprId":2}
,{"Dims":["H","F"],"Value":64,"IsNull":false,"ExprId":2}
,{"Dims":["H","all"],"Value":3,"IsNull":false,"ExprId":2}
,{"Dims":["L","M"],"Value":50,"IsNull":false,"ExprId":3}
,{"Dims":["L","F"],"Value":120,"IsNull":false,"ExprId":3}
,{"Dims":["L","all"],"Value":801,"IsNull":false,"ExprId":3}
,{"Dims":["M","M"],"Value":154.79999999999998,"IsNull":false,"ExprId":3}
,{"Dims":["M","F"],"Value":248,"IsNull":false,"ExprId":3}
,{"Dims":["M","all"],"Value":1606,"IsNull":false,"ExprId":3}
,{"Dims":["H","M"],"Value":212.8,"IsNull":false,"ExprId":3}
,{"Dims":["H","F"],"Value":320,"IsNull":false,"ExprId":3}
,{"Dims":["H","all"],"Value":2412,"IsNull":false,"ExprId":3}
]}

Example 2:

JSON body:

{
 "Name": "salarySex",
 "Offset": 32,
 "Size": 8,
 "IsFullPage": true,
 "Filter": [],
 "OrderBy": []
}

Result:

{"Layout":{"Offset":32,"Size":4,"IsFullPage":true,"IsLastPage":true}
,"Page":[{"Dims":["M","all"],"Value":1606,"IsNull":false,"ExprId":3}
,{"Dims":["H","M"],"Value":212.8,"IsNull":false,"ExprId":3}
,{"Dims":["H","F"],"Value":320,"IsNull":false,"ExprId":3}
,{"Dims":["H","all"],"Value":2412,"IsNull":false,"ExprId":3}
]}

Example 3:

JSON body:

{
 "Name": "salarySex",
 "Filter": [],
 "OrderBy": [{
 "IndexOne": 2,
 "IsDesc": true
 }, {
 "IndexOne": 3,
 "IsDesc": true
 }
],
 "IsAccum": true,
 "IsAllAccum": false
}

Result:

{"Layout":{"Offset":0,"Size":18,"IsFullPage":false,"IsLastPage":true}
,"Page":[{"Dims":["H","M"],"Value":53.2,"IsNull":false,"AccId":0,"SubId":0}
,{"Dims":["H","F"],"Value":64,"IsNull":false,"AccId":0,"SubId":0}
,{"Dims":["H","all"],"Value":3,"IsNull":false,"AccId":0,"SubId":0}
,{"Dims":["H","M"],"Value":4,"IsNull":false,"AccId":1,"SubId":0}
,{"Dims":["H","F"],"Value":5,"IsNull":false,"AccId":1,"SubId":0}
,{"Dims":["H","all"],"Value":804,"IsNull":false,"AccId":1,"SubId":0}
,{"Dims":["M","M"],"Value":51.599999999999994,"IsNull":false,"AccId":0,"SubId":0}
,{"Dims":["M","F"],"Value":62,"IsNull":false,"AccId":0,"SubId":0}
,{"Dims":["M","all"],"Value":2,"IsNull":false,"AccId":0,"SubId":0}
,{"Dims":["M","M"],"Value":3,"IsNull":false,"AccId":1,"SubId":0}
,{"Dims":["M","F"],"Value":4,"IsNull":false,"AccId":1,"SubId":0}
,{"Dims":["M","all"],"Value":803,"IsNull":false,"AccId":1,"SubId":0}
,{"Dims":["L","M"],"Value":50,"IsNull":false,"AccId":0,"SubId":0}
,{"Dims":["L","F"],"Value":60,"IsNull":false,"AccId":0,"SubId":0}
,{"Dims":["L","all"],"Value":1,"IsNull":false,"AccId":0,"SubId":0}
,{"Dims":["L","M"],"Value":1,"IsNull":false,"AccId":1,"SubId":0}
,{"Dims":["L","F"],"Value":2,"IsNull":false,"AccId":1,"SubId":0}
,{"Dims":["L","all"],"Value":801,"IsNull":false,"AccId":1,"SubId":0}
]}

Example 4:

JSON body:

{
 "Name": "salarySex",
 "Offset": 0,
 "Size": 100,
 "Filter": [{
 "Name": "dim0",
 "Op": "IN",
 "Values": ["L", "H"]
 }, {
 "Name": "dim1",
 "Op": "BETWEEN",
 "Values": ["F", "all"]
 }
],
 "OrderBy": [{
 "IndexOne": 2,
 "IsDesc": true
 }, {
 "IndexOne": 3,
 "IsDesc": true
 }
],
 "IsSubId": true,
 "SubId": 2,
 "ValueName": "acc1",
 "IsAccum": true,
 "IsAllAccum": true
}

Result:

{"Page":[{"Dims":["H","all"],"SubId":2,"IsNull":[false],"Value":[804]}
,{"Dims":["H","F"],"SubId":2,"IsNull":[false],"Value":[5]}
,{"Dims":["L","all"],"SubId":2,"IsNull":[false],"Value":[802]}
,{"Dims":["L","F"],"SubId":2,"IsNull":[false],"Value":[3]}],
"Layout":{"Offset":0,"Size":4,"IsLastPage":true,"IsFullPage":false}}

Read a "page" of output table values from model run.

Page is part of output table values defined by zero-based "start" row number and row count. If row count <= 0 then all rows below start row
number returned.

Dimension(s) returned as enum id, not enum codes.

Values can be from output table expressions, accumulators or derived accumulators .

Method verb must be POST and Content-Type header "application/json".

JSON body POSTed to specify output table name, page size, row count, filters and row order. It is expected to be JSON representation of
db.ReadLayout structure from Go library.

Method:

POST /api/model/:model/run/:run/table/value-id

For example:

curl -v -X POST -H "Content-Type: application/json" http://localhost:4040/api/model/modelOne/run/Default/table/value-id -d @test.json
curl -v -X POST -H "Content-Type: application/json" http://localhost:4040/api/model/modelOne/run/2019_01_17_19_59_52_998/table/value-id -d @test.json

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

:run - (required) model run digest, run stamp or run name

Model run can be identified by run digest, run stamp or run name. It is recommended to use digest because it is uniquely identifies model run.
Run stamp, if not explicitly specified as model run option, automatically generated as timestamp string, ex.: 2016_08_17_21_07_55_123. It is
also possible to use name, which is more human readable than digest, but if there are multiple runs with same name in database than result is
undefined.

JSON body arguments:

For example:

Read output table values from model run (enum id's)

https://pkg.go.dev/github.com/openmpp/go/ompp/db#ReadLayout

{
 "Name": "salarySex",
 "Offset": 0,
 "Size": 100,
 "IsFullPage": true,
 "IsSubId": true,
 "SubId": 2,
 "FilterById": [{
 "Name": "AgeGroup",
 "Op": "IN",
 "EnumIds": [100, 300]
 }, {
 "Name": "Province",
 "Op": "BETWEEN",
 "EnumIds": [1, 800]
 }
],
 "OrderBy": [{
 "IndexOne": 2,
 "IsDesc": true
 }, {
 "IndexOne": 3,
 "IsDesc": true
 }
],
 "ValueName": "acc2",
 "IsAccum": true,
 "IsAllAccum": true
}

Name - (required) output table name
Offset - (optional) zero-based start row to select output table values
Size - (optional) max row count to select output table values, if size <= 0 then all rows selected
IsFullPage - (optional) if true then always return non-empty last page of data
IsSubId - (optional) if true then select only single sub-value, default: all sub-values
SubId - (optional) sub-value id to select if IsSubId is true
FilterById - (optional) conditions to filter dimension enum id's
OrderBy - (optional) list of columns indexes (one based) to order by
ValueName - (optional) if not empty then only that value selected (ex.: "acc2"), default: all values
IsAccum - (optional) if true then select accumulators
IsAllAccum - (optional) if true then select from "all accumulators" view else from accumulators table

Filter conditions joined by AND and can have following operations:

= - enum id equal to: AgeGroup = 20
!= - enum id not equal to: AgeGroup <> 20
> - enum id greater than: AgeGroup > 20
>= - enum id greater or equal: AgeGroup >= 20
< - enum id less than: AgeGroup < 20
<= - enum id less or equal: AgeGroup <= 20
IN - in the list of id's: AgeGroup IN (20, 30, 40)
BETWEEN - between min and max: AgeGroup BETWEEN 20 AND 40
IN_AUTO - automatically choose most suitable: = or != or IN or BETWEEN

Order by specified by one-based column(s) index(es) in result. Columns always contain enum id's, not enum codes and therefore result ordered
by id's

In case of output table expressions columns are:

 SELECT expr_id, dim0, dim1, ..., expr_value FROM valueTable ORDER BY 1, 2,...

In case of output table accumulators columns are:

 SELECT acc_id, sub_id, dim0, dim1, ..., acc_value FROM accumulatorTable ORDER BY 1, 2,...

In case of "all accumulators" columns are:

 SELECT sub_id, dim0, dim1, ..., acc0, acc1,... FROM allAccumulatorsView ORDER BY 1, 2,...

Example 1:

JSON body:

{
 "Name": "salarySex"
}

Result:

< Access-Control-Allow-Origin: *
< Content-Type: application/json
< Date: Tue, 19 Dec 2017 19:04:15 GMT
< Transfer-Encoding: chunked
<
{"Layout":{"Offset":0,"Size":36,"IsFullPage":false,"IsLastPage":true}
,"Page":[{"DimIds":[100,0],"Value":50,"IsNull":false,"ExprId":0}
,{"DimIds":[100,1],"Value":60,"IsNull":false,"ExprId":0}
,{"DimIds":[100,800],"Value":1,"IsNull":false,"ExprId":0}
,{"DimIds":[200,0],"Value":51.599999999999994,"IsNull":false,"ExprId":0}
,{"DimIds":[200,1],"Value":62,"IsNull":false,"ExprId":0}
,{"DimIds":[200,800],"Value":2,"IsNull":false,"ExprId":0}
,{"DimIds":[300,0],"Value":53.2,"IsNull":false,"ExprId":0}
,{"DimIds":[300,1],"Value":64,"IsNull":false,"ExprId":0}
,{"DimIds":[300,800],"Value":3,"IsNull":false,"ExprId":0}
,{"DimIds":[100,0],"Value":1,"IsNull":false,"ExprId":1}
,{"DimIds":[100,1],"Value":2,"IsNull":false,"ExprId":1}
,{"DimIds":[100,800],"Value":801,"IsNull":false,"ExprId":1}
,{"DimIds":[200,0],"Value":3,"IsNull":false,"ExprId":1}
,{"DimIds":[200,1],"Value":4,"IsNull":false,"ExprId":1}
,{"DimIds":[200,800],"Value":803,"IsNull":false,"ExprId":1}
,{"DimIds":[300,0],"Value":4,"IsNull":false,"ExprId":1}
,{"DimIds":[300,1],"Value":5,"IsNull":false,"ExprId":1}
,{"DimIds":[300,800],"Value":804,"IsNull":false,"ExprId":1}
,{"DimIds":[100,0],"Value":50,"IsNull":false,"ExprId":2}
,{"DimIds":[100,1],"Value":60,"IsNull":false,"ExprId":2}
,{"DimIds":[100,800],"Value":1,"IsNull":false,"ExprId":2}
,{"DimIds":[200,0],"Value":51.599999999999994,"IsNull":false,"ExprId":2}
,{"DimIds":[200,1],"Value":62,"IsNull":false,"ExprId":2}
,{"DimIds":[200,800],"Value":2,"IsNull":false,"ExprId":2}
,{"DimIds":[300,0],"Value":53.2,"IsNull":false,"ExprId":2}
,{"DimIds":[300,1],"Value":64,"IsNull":false,"ExprId":2}
,{"DimIds":[300,800],"Value":3,"IsNull":false,"ExprId":2}
,{"DimIds":[100,0],"Value":50,"IsNull":false,"ExprId":3}
,{"DimIds":[100,1],"Value":120,"IsNull":false,"ExprId":3}
,{"DimIds":[100,800],"Value":801,"IsNull":false,"ExprId":3}
,{"DimIds":[200,0],"Value":154.79999999999998,"IsNull":false,"ExprId":3}
,{"DimIds":[200,1],"Value":248,"IsNull":false,"ExprId":3}
,{"DimIds":[200,800],"Value":1606,"IsNull":false,"ExprId":3}
,{"DimIds":[300,0],"Value":212.8,"IsNull":false,"ExprId":3}
,{"DimIds":[300,1],"Value":320,"IsNull":false,"ExprId":3}
,{"DimIds":[300,800],"Value":2412,"IsNull":false,"ExprId":3}
]}

Example 2:

JSON body:

{
 "Name": "salarySex",
 "Offset": 32,
 "Size": 8,
 "IsFullPage": true
}

Result:

{"Layout":{"Offset":32,"Size":4,"IsFullPage":true,"IsLastPage":true}
,"Page":[{"DimIds":[200,800],"Value":1606,"IsNull":false,"ExprId":3}
,{"DimIds":[300,0],"Value":212.8,"IsNull":false,"ExprId":3}
,{"DimIds":[300,1],"Value":320,"IsNull":false,"ExprId":3}
,{"DimIds":[300,800],"Value":2412,"IsNull":false,"ExprId":3}
]}

Example 3:

JSON body:

{
 "Name": "salarySex",
 "FilterById": [],
 "OrderBy": [{
 "IndexOne": 2,
 "IsDesc": true
 }, {
 "IndexOne": 3,
 "IsDesc": true
 }
],
 "IsAccum": true,
 "IsAllAccum": false
}

Result:

{"Layout":{"Offset":0,"Size":18,"IsFullPage":false,"IsLastPage":true}
,"Page":[{"DimIds":[300,0],"Value":53.2,"IsNull":false,"AccId":0,"SubId":0}
,{"DimIds":[300,1],"Value":64,"IsNull":false,"AccId":0,"SubId":0}
,{"DimIds":[300,800],"Value":3,"IsNull":false,"AccId":0,"SubId":0}
,{"DimIds":[300,0],"Value":4,"IsNull":false,"AccId":1,"SubId":0}
,{"DimIds":[300,1],"Value":5,"IsNull":false,"AccId":1,"SubId":0}
,{"DimIds":[300,800],"Value":804,"IsNull":false,"AccId":1,"SubId":0}
,{"DimIds":[200,0],"Value":51.599999999999994,"IsNull":false,"AccId":0,"SubId":0}
,{"DimIds":[200,1],"Value":62,"IsNull":false,"AccId":0,"SubId":0}
,{"DimIds":[200,800],"Value":2,"IsNull":false,"AccId":0,"SubId":0}
,{"DimIds":[200,0],"Value":3,"IsNull":false,"AccId":1,"SubId":0}
,{"DimIds":[200,1],"Value":4,"IsNull":false,"AccId":1,"SubId":0}
,{"DimIds":[200,800],"Value":803,"IsNull":false,"AccId":1,"SubId":0}
,{"DimIds":[100,0],"Value":50,"IsNull":false,"AccId":0,"SubId":0}
,{"DimIds":[100,1],"Value":60,"IsNull":false,"AccId":0,"SubId":0}
,{"DimIds":[100,800],"Value":1,"IsNull":false,"AccId":0,"SubId":0}
,{"DimIds":[100,0],"Value":1,"IsNull":false,"AccId":1,"SubId":0}
,{"DimIds":[100,1],"Value":2,"IsNull":false,"AccId":1,"SubId":0}
,{"DimIds":[100,800],"Value":801,"IsNull":false,"AccId":1,"SubId":0}
]}

Example 3:

JSON body:

{
 "Name": "salarySex",
 "Offset": 0,
 "Size": 0,
 "IsSubId": true,
 "SubId": 2,
 "FilterById": [{
 "Name": "dim0",
 "Op": "IN",
 "EnumIds": [100, 300]
 }, {
 "Name": "dim1",
 "Op": "BETWEEN",
 "EnumIds": [1, 800]
 }
],
 "OrderBy": [{
 "IndexOne": 2,
 "IsDesc": true
 }, {
 "IndexOne": 3,
 "IsDesc": true
 }
],
 "ValueName": "acc1",
 "IsAccum": true,
 "IsAllAccum": true
}

Result:

{
"Page":[
{"DimIds":[300,800],"SubId":2,"IsNull":[false],"Value":[804]}
,{"DimIds":[300,1],"SubId":2,"IsNull":[false],"Value":[5]}
,{"DimIds":[100,800],"SubId":2,"IsNull":[false],"Value":[802]}
,{"DimIds":[100,1],"SubId":2,"IsNull":[false],"Value":[3]}
],
"Layout":{"Offset":0,"Size":4,"IsLastPage":true,"IsFullPage":false}
}

Read a "page" of output table calculated values from model run.

Calculate one or more values from output table expressions or accumulators.

Page is part of output table values defined by zero-based "start" row number and row count. If row count <= 0 then all rows below start row
number returned.

Dimension(s) and enum-based parameters returned as enum codes. If dimension type or parameter type is simple (integer or boolean) then
string value used (ex.: "true", "1234").

Calculations are done either on output table expressions or aggregated accumulators (see example below).

Method verb must be POST and Content-Type header "application/json".

JSON body POSTed to specify output table name, page size, row count, filters and row order. It is expected to be JSON representation of
db.ReadCalculteTableLayout structure from Go library. See also: db.ReadLayout structure from Go library.

// ReadCalculteTableLayout describe table read layout and additional measures to calculte.
type ReadCalculteTableLayout struct {
 ReadLayout // output table name, run id, page size, where filters and order by
 Calculation []CalculateTableLayout // additional measures to calculate
}

// CalculateLayout describes calculation to output table values.
type CalculateTableLayout struct {
 CalculateLayout // expression to calculate and layout
 IsAggr bool // if true then select output table accumulator else expression
}

// CalculateLayout describes calculation to parameters or output table values.
type CalculateLayout struct {
 Calculate string // expression to calculate, ex.: Expr0[base] - Expr0[variant]
 CalcId int // calculated expression id, calc_id column in csv, ex.: 0, 1200, 2400
 Name string // calculated expression name, calc_name column in csv, ex.: Expr0, AVG_Expr0, RATIO_Expro0
}

// ReadLayout describes source and size of data page to read input parameter, output table values or microdata.
//
// Row filters combined by AND and allow to select dimension or attribute items,
// it can be enum codes or enum id's, ex.: dim0 = 'CA' AND dim1 IN (2010, 2011, 2012)
type ReadLayout struct {
 Name string // parameter name, output table name or entity microdata name
 FromId int // run id or set id to select input parameter, output table values or microdata from
 ReadPageLayout // read page first row offset, size and last page flag
 Filter []FilterColumn // dimension or attribute filters, final WHERE does join all filters by AND
 FilterById []FilterIdColumn // dimension or attribute filters by enum ids, final WHERE does join filters by AND
 OrderBy []OrderByColumn // order by columnns, if empty then dimension id ascending order is used
}

Method:

POST /api/model/:model/run/:run/table/calc

For example:

curl -v -X POST -H "Content-Type: application/json" http://localhost:4040/api/model/modelOne/run/Default/table/calc -d @test.json
curl -v -X POST -H "Content-Type: application/json" http://localhost:4040/api/model/modelOne/run/2019_01_17_19_59_52_998/table/calc -d @test.json

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

:run - (required) model run digest, run stamp or run name

Model run can be identified by run digest, run stamp or run name. It is recommended to use digest because it is uniquely identifies model run.

Read output table calculated values from model run

https://pkg.go.dev/github.com/openmpp/go/ompp/db#ReadCalculteTableLayout
https://pkg.go.dev/github.com/openmpp/go/ompp/db#ReadLayout

Run stamp, if not explicitly specified as model run option, automatically generated as timestamp string, ex.: 2016_08_17_21_07_55_123. It is
also possible to use name, which is more human readable than digest, but if there are multiple runs with same name in database than result is
undefined.

JSON body arguments:

Example 1. Calculate two values using modelOne output table salarySex :

ratio of expressions: expr1 / expr2

standard error of acc1 accumulator sub-values

{
"Name": "salarySex",
"Calculation": [
 {
 "Calculate": "expr1 / expr2",
 "CalcId": 201,
 "Name": "Expr1_div_expr2",
 "IsAggr": false
 },
 {
 "Calculate": "OM_SE(acc1)",
 "CalcId": 301,
 "Name": "Se_of_acc1",
 "IsAggr": true
 }
]
}

Calcultion can be done over output table expressions if IsAggr: false or over accumulators if IsAggr: true . You cannot mix expressions and
accumultors in the same calculation, it is mutually exclusive. Following aggregation functions avaliable for accumulators:

OM_AVG mean of accumulators sub-values

OM_SUM sum of accumulators sub-values

OM_COUNT count of accumulators sub-values (excluding NULL's)

OM_COUNT_IF count values matching condition

OM_MAX maximum of accumulators sub-values

OM_MIN minimum of accumulators sub-values

OM_VAR variance of accumulators sub-values

OM_SD standard deviation of accumulators sub-values

OM_SE standard error of accumulators sub-values

OM_CV coefficient of variation of accumulators sub-values

It is also possible to use parameter(s) in calculation, parameter must be a scalar of float or integer type. For example: OM_COUNT_IF(acc1 >

param.High) , where param.High is a value of scalar parameter High in that model run.

For more details please see: Model Output Expressions

Example 2.:

ratio of expressions: expr1 / expr2 , adjusted by using parameter StartingSeed values

standard error of acc1 accumulator sub-values, adjusted by using parameter StartingSeed values

read only first 100 rows: Offset: 0, Size: 100

apply WHERE filters and ORDER BY

https://github.com/openmpp/openmpp.github.io/wiki/Model-Output-Expressions

{
"Name": "salarySex",
"Calculation": [
 {
 "Calculate": "expr1 / expr2 + param.StartingSeed / 100",
 "CalcId": 201,
 "Name": "Expr1_div_expr2_adjusted",
 "IsAggr": false
 },
 {
 "Calculate": "OM_SE(acc1 - param.StartingSeed) + param.StartingSeed",
 "CalcId": 301,
 "Name": "Se_of_acc1_adjusted",
 "IsAggr": true
 }
],
"Offset": 0,
"Size": 100,
"IsFullPage": true,
"Filter": [{
 "Name": "dim0",
 "Op": "IN",
 "Values": ["L", "H"]
 }, {
 "Name": "dim1",
 "Op": "BETWEEN",
 "Values": ["F", "all"]
 }
],
"OrderBy": [{
 "IndexOne": 2,
 "IsDesc": true
 }, {
 "IndexOne": 3,
 "IsDesc": true
 }
]
}

Name - (required) output table name
Offset - (optional) zero-based start row to select output table values
Size - (optional) max row count to select output table values, if size <= 0 then all rows selected
IsFullPage - (optional) if true then always return non-empty last page of data
Filter - (optional) conditions to filter dimension enum id's
OrderBy - (optional) list of columns indexes (one based) to order by

Filter conditions joined by AND and can have following operations:

= - enum equal to: AgeGroup = "20-30"
!= - enum not equal to: AgeGroup <> "20-30"
> - enum greater than: AgeGroup > "20-30"
>= - enum greater or equal: AgeGroup >= "20-30"
< - enum less than: AgeGroup < "20-30"
<= - enum less or equal: AgeGroup <= "20-30"
IN - enum is in the list of: AgeGroup IN ("20-30", "30-40", "40+")
BETWEEN - between min and max: AgeGroup BETWEEN "30-40" AND "all"
IN_AUTO - automatically choose most suitable: = or != or IN or BETWEEN

Keep in mind: dimension enums are always ordered by id's, not by code and result of filter Sex < "M" may not be Sex = "F" .

Order by specified by one-based column(s) index(es) in result. Columns always contain enum id's, not enum codes and therefore result ordered
by id's. First two columns are run_id, calc_id :

 SELECT run_id, CalcId AS calc_id, dim0, dim1, ..., calc_value FROM ORDER BY 1, 2,...

JSON response:

{
 Layout: {
 Offset: actual first row number of the page data (zero-base),
 Size: actual data page row count,
 IsLastPage: true if this is last page of data
 },
 Page: [....page of data...]
}

Example:

JSON body:

{
 "Name": "salarySex",
 "Calculation": [
 {
 "Calculate": "expr1 / expr2",
 "CalcId": 201,
 "Name": "Expr1_div_expr2",
 "IsAggr": false
 },
 {
 "Calculate": "OM_AVG(acc1)",
 "CalcId": 301,
 "Name": "Se_of_acc1",
 "IsAggr": true
 }
]
}

Result:

* Trying 127.0.0.1:4040...
* Connected to localhost (127.0.0.1) port 4040 (#0)
> POST /api/model/modelOne/run/Default/table/calc HTTP/1.1
> Host: localhost:4040
> User-Agent: curl/8.0.1
> Accept: */*
> Content-Type: application/json
> Content-Length: 296
>
< HTTP/1.1 200 OK
< Content-Type: application/json
< Date: Thu, 26 Oct 2023 02:51:18 GMT
< Transfer-Encoding: chunked
<
{
 "Page": [{
 "Dims": ["L", "M"],
 "IsNull": false,
 "Value": 0,
 "CalcName": "Expr1_div_expr2",
 "RunDigest": "ca663651953bae94d0afdf71edba4c91"
 }, {
 "Dims": ["L", "F"],
 "IsNull": false,
 "Value": 0.01639344262295082,
 "CalcName": "Expr1_div_expr2",
 "RunDigest": "ca663651953bae94d0afdf71edba4c91"
 }, {
 "Dims": ["L", "all"],
 "IsNull": false,
 "Value": 0.9987515605493134,
 "CalcName": "Expr1_div_expr2",
 "RunDigest": "ca663651953bae94d0afdf71edba4c91"
 }, {
 "Dims": ["M", "M"],
 "IsNull": false,
 "Value": 0.019011406844106467,
 "CalcName": "Expr1_div_expr2",
 "RunDigest": "ca663651953bae94d0afdf71edba4c91"
 }, {
 "Dims": ["M", "F"],
 "IsNull": false,
 "Value": 0.03125,
 "CalcName": "Expr1_div_expr2",
 "RunDigest": "ca663651953bae94d0afdf71edba4c91"
 }, {
 "Dims": ["M", "all"],
 "IsNull": false,
 "Value": 0.9975093399750934,
 "CalcName": "Expr1_div_expr2",
 "RunDigest": "ca663651953bae94d0afdf71edba4c91"
 }, {
 "Dims": ["H", "M"],
 "IsNull": false,
 "Value": 0.036231884057971016,
 "CalcName": "Expr1_div_expr2",
 "RunDigest": "ca663651953bae94d0afdf71edba4c91"
 }, {
 "Dims": ["H", "F"],
 "IsNull": false,
 "Value": 0.04477611940298507,

 "CalcName": "Expr1_div_expr2",
 "RunDigest": "ca663651953bae94d0afdf71edba4c91"
 }, {
 "Dims": ["H", "all"],
 "IsNull": false,
 "Value": 0.9962732919254659,
 "CalcName": "Expr1_div_expr2",
 "RunDigest": "ca663651953bae94d0afdf71edba4c91"
 }, {
 "Dims": ["L", "M"],
 "IsNull": false,
 "Value": 0,
 "CalcName": "Se_of_acc1",
 "RunDigest": "ca663651953bae94d0afdf71edba4c91"
 }, {
 "Dims": ["L", "F"],
 "IsNull": false,
 "Value": 1,
 "CalcName": "Se_of_acc1",
 "RunDigest": "ca663651953bae94d0afdf71edba4c91"
 }, {
 "Dims": ["L", "all"],
 "IsNull": false,
 "Value": 800,
 "CalcName": "Se_of_acc1",
 "RunDigest": "ca663651953bae94d0afdf71edba4c91"
 }, {
 "Dims": ["M", "M"],
 "IsNull": false,
 "Value": 1,
 "CalcName": "Se_of_acc1",
 "RunDigest": "ca663651953bae94d0afdf71edba4c91"
 }, {
 "Dims": ["M", "F"],
 "IsNull": false,
 "Value": 2,
 "CalcName": "Se_of_acc1",
 "RunDigest": "ca663651953bae94d0afdf71edba4c91"
 }, {
 "Dims": ["M", "all"],
 "IsNull": false,
 "Value": 801,
 "CalcName": "Se_of_acc1",
 "RunDigest": "ca663651953bae94d0afdf71edba4c91"
 }, {
 "Dims": ["H", "M"],
 "IsNull": false,
 "Value": 2,
 "CalcName": "Se_of_acc1",
 "RunDigest": "ca663651953bae94d0afdf71edba4c91"
 }, {
 "Dims": ["H", "F"],
 "IsNull": false,
 "Value": 3,
 "CalcName": "Se_of_acc1",
 "RunDigest": "ca663651953bae94d0afdf71edba4c91"
 }, {
 "Dims": ["H", "all"],
 "IsNull": false,
 "Value": 802,
 "CalcName": "Se_of_acc1",
 "RunDigest": "ca663651953bae94d0afdf71edba4c91"
 }
],
 "Layout": {
 "Offset": 0,
 "Size": 18,
 "IsLastPage": true,
 "IsFullPage": false
 }
}

Read a "page" of output table calculated values from model run.

Calculate one or more values from output table expressions or accumulators.

Page is part of output table values defined by zero-based "start" row number and row count. If row count <= 0 then all rows below start row
number returned.

Dimension(s) returned as enum id, not enum codes.

Calculations are done either on output table expressions or aggregated accumulators (see example below).

Method verb must be POST and Content-Type header "application/json".

JSON body POSTed to specify output table name, page size, row count, filters and row order. It is expected to be JSON representation of
db.ReadCalculteTableLayout structure from Go library. See also: db.ReadLayout structure from Go library.

// ReadCalculteTableLayout describe table read layout and additional measures to calculte.
type ReadCalculteTableLayout struct {
 ReadLayout // output table name, run id, page size, where filters and order by
 Calculation []CalculateTableLayout // additional measures to calculate
}

// CalculateLayout describes calculation to output table values.
type CalculateTableLayout struct {
 CalculateLayout // expression to calculate and layout
 IsAggr bool // if true then select output table accumulator else expression
}

// CalculateLayout describes calculation to parameters or output table values.
type CalculateLayout struct {
 Calculate string // expression to calculate, ex.: Expr0[base] - Expr0[variant]
 CalcId int // calculated expression id, calc_id column in csv, ex.: 0, 1200, 2400
 Name string // calculated expression name, calc_name column in csv, ex.: Expr0, AVG_Expr0, RATIO_Expro0
}

// ReadLayout describes source and size of data page to read input parameter, output table values or microdata.
//
// Row filters combined by AND and allow to select dimension or attribute items,
// it can be enum codes or enum id's, ex.: dim0 = 'CA' AND dim1 IN (2010, 2011, 2012)
type ReadLayout struct {
 Name string // parameter name, output table name or entity microdata name
 FromId int // run id or set id to select input parameter, output table values or microdata from
 ReadPageLayout // read page first row offset, size and last page flag
 Filter []FilterColumn // dimension or attribute filters, final WHERE does join all filters by AND
 FilterById []FilterIdColumn // dimension or attribute filters by enum ids, final WHERE does join filters by AND
 OrderBy []OrderByColumn // order by columnns, if empty then dimension id ascending order is used
}

Method:

POST /api/model/:model/run/:run/table/calc-id

For example:

curl -v -X POST -H "Content-Type: application/json" http://localhost:4040/api/model/modelOne/run/Default/table/calc-id -d @test.json
curl -v -X POST -H "Content-Type: application/json" http://localhost:4040/api/model/modelOne/run/2019_01_17_19_59_52_998/table/calc-id -d @test.json

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

:run - (required) model run digest, run stamp or run name

Model run can be identified by run digest, run stamp or run name. It is recommended to use digest because it is uniquely identifies model run.
Run stamp, if not explicitly specified as model run option, automatically generated as timestamp string, ex.: 2016_08_17_21_07_55_123. It is

Read output table calculated values from model run (enum id's)

https://pkg.go.dev/github.com/openmpp/go/ompp/db#ReadCalculteTableLayout
https://pkg.go.dev/github.com/openmpp/go/ompp/db#ReadLayout

also possible to use name, which is more human readable than digest, but if there are multiple runs with same name in database than result is
undefined.

JSON body arguments:

Example 1. Calculate two values using modelOne output table salarySex :

ratio of expressions: expr1 / expr2

standard error of acc1 accumulator sub-values

{
"Name": "salarySex",
"Calculation": [
 {
 "Calculate": "expr1 / expr2",
 "CalcId": 201,
 "Name": "Expr1_div_expr2",
 "IsAggr": false
 },
 {
 "Calculate": "OM_SE(acc1)",
 "CalcId": 301,
 "Name": "Se_of_acc1",
 "IsAggr": true
 }
]
}

Calcultion can be done over output table expressions if IsAggr: false or over accumulators if IsAggr: true . You cannot mix expressions and
accumultors in the same calculation, it is mutually exclusive. Following aggregation functions avaliable for accumulators:

OM_AVG mean of accumulators sub-values

OM_SUM sum of accumulators sub-values

OM_COUNT count of accumulators sub-values (excluding NULL's)

OM_COUNT_IF count values matching condition

OM_MAX maximum of accumulators sub-values

OM_MIN minimum of accumulators sub-values

OM_VAR variance of accumulators sub-values

OM_SD standard deviation of accumulators sub-values

OM_SE standard error of accumulators sub-values

OM_CV coefficient of variation of accumulators sub-values

It is also possible to use parameter(s) in calculation, parameter must be a scalar of float or integer type. For example: OM_COUNT_IF(acc1 >

param.High) , where param.High is a value of scalar parameter High in that model run.

For more details please see: Model Output Expressions

Example 2:

ratio of expressions: expr1 / expr2 , adjusted by using parameter StartingSeed values

standard error of acc1 accumulator sub-values, adjusted by using parameter StartingSeed values

read only first 100 rows: Offset: 0, Size: 100

apply WHERE filters and ORDER BY

https://github.com/openmpp/openmpp.github.io/wiki/Model-Output-Expressions

{
"Name": "salarySex",
"Calculation": [
 {
 "Calculate": "expr1 / expr2 + param.StartingSeed / 100",
 "CalcId": 201,
 "Name": "Expr1_div_expr2_adjusted",
 "IsAggr": false
 },
 {
 "Calculate": "OM_SE(acc1 - param.StartingSeed) + param.StartingSeed",
 "CalcId": 301,
 "Name": "Se_of_acc1_adjusted",
 "IsAggr": true
 }
],
"Offset": 0,
"Size": 100,
"IsFullPage": true,
"IsSubId": true,
"SubId": 2,
"FilterById": [{
 "Name": "AgeGroup",
 "Op": "IN",
 "EnumIds": [100, 300]
 }, {
 "Name": "Province",
 "Op": "BETWEEN",
 "EnumIds": [1, 800]
 }
],
"OrderBy": [{
 "IndexOne": 2,
 "IsDesc": true
 }, {
 "IndexOne": 3,
 "IsDesc": true
 }
]
}

Name - (required) output table name
Offset - (optional) zero-based start row to select output table values
Size - (optional) max row count to select output table values, if size <= 0 then all rows selected
IsFullPage - (optional) if true then always return non-empty last page of data
IsSubId - (optional) if true then select only single sub-value, default: all sub-values
SubId - (optional) sub-value id to select if IsSubId is true
FilterById - (optional) conditions to filter dimension enum id's
OrderBy - (optional) list of columns indexes (one based) to order by

Filter conditions joined by AND and can have following operations:

= - enum id equal to: AgeGroup = 20
!= - enum id not equal to: AgeGroup <> 20
> - enum id greater than: AgeGroup > 20
>= - enum id greater or equal: AgeGroup >= 20
< - enum id less than: AgeGroup < 20
<= - enum id less or equal: AgeGroup <= 20
IN - in the list of id's: AgeGroup IN (20, 30, 40)
BETWEEN - between min and max: AgeGroup BETWEEN 20 AND 40
IN_AUTO - automatically choose most suitable: = or != or IN or BETWEEN

Order by specified by one-based column(s) index(es) in result. Columns always contain enum id's, not enum codes and therefore result ordered
by id's First two columns are run_id, calc_id :

 SELECT run_id, CalcId AS calc_id, dim0, dim1, ..., calc_value FROM ORDER BY 1, 2,...

Example 1:

JSON body:

{
 "Name": "salarySex",
 "Calculation": [
 {
 "Calculate": "expr1 / expr2",
 "CalcId": 201,
 "Name": "Expr1_div_expr2",
 "IsAggr": false
 },
 {
 "Calculate": "OM_AVG(acc1)",
 "CalcId": 301,
 "Name": "Se_of_acc1",
 "IsAggr": true
 }
]
}

Result:

> POST /api/model/modelOne/run/Default/table/calc-id HTTP/1.1
> Host: localhost:4040
> User-Agent: curl/8.0.1
> Accept: */*
> Content-Type: application/json
> Content-Length: 296
>
< HTTP/1.1 200 OK
< Content-Type: application/json
< Date: Thu, 26 Oct 2023 02:52:01 GMT
< Content-Length: 1489
<
{
 "Page": [{
 "DimIds": [100, 0],
 "IsNull": false,
 "Value": 0,
 "CalcId": 201,
 "RunId": 201
 }, {
 "DimIds": [100, 1],
 "IsNull": false,
 "Value": 0.01639344262295082,
 "CalcId": 201,
 "RunId": 201
 }, {
 "DimIds": [100, 800],
 "IsNull": false,
 "Value": 0.9987515605493134,
 "CalcId": 201,
 "RunId": 201
 }, {
 "DimIds": [200, 0],
 "IsNull": false,
 "Value": 0.019011406844106467,
 "CalcId": 201,
 "RunId": 201
 }, {
 "DimIds": [200, 1],
 "IsNull": false,
 "Value": 0.03125,
 "CalcId": 201,
 "RunId": 201
 }, {
 "DimIds": [200, 800],
 "IsNull": false,
 "Value": 0.9975093399750934,
 "CalcId": 201,
 "RunId": 201
 }, {
 "DimIds": [300, 0],
 "IsNull": false,
 "Value": 0.036231884057971016,
 "CalcId": 201,
 "RunId": 201
 }, {
 "DimIds": [300, 1],
 "IsNull": false,
 "Value": 0.04477611940298507,
 "CalcId": 201,
 "RunId": 201
 }, {
 "DimIds": [300, 800],
 "IsNull": false,
 "Value": 0.9962732919254659,

 "Value": 0.9962732919254659,
 "CalcId": 201,
 "RunId": 201
 }, {
 "DimIds": [100, 0],
 "IsNull": false,
 "Value": 0,
 "CalcId": 301,
 "RunId": 201
 }, {
 "DimIds": [100, 1],
 "IsNull": false,
 "Value": 1,
 "CalcId": 301,
 "RunId": 201
 }, {
 "DimIds": [100, 800],
 "IsNull": false,
 "Value": 800,
 "CalcId": 301,
 "RunId": 201
 }, {
 "DimIds": [200, 0],
 "IsNull": false,
 "Value": 1,
 "CalcId": 301,
 "RunId": 201
 }, {
 "DimIds": [200, 1],
 "IsNull": false,
 "Value": 2,
 "CalcId": 301,
 "RunId": 201
 }, {
 "DimIds": [200, 800],
 "IsNull": false,
 "Value": 801,
 "CalcId": 301,
 "RunId": 201
 }, {
 "DimIds": [300, 0],
 "IsNull": false,
 "Value": 2,
 "CalcId": 301,
 "RunId": 201
 }, {
 "DimIds": [300, 1],
 "IsNull": false,
 "Value": 3,
 "CalcId": 301,
 "RunId": 201
 }, {
 "DimIds": [300, 800],
 "IsNull": false,
 "Value": 802,
 "CalcId": 301,
 "RunId": 201
 }
],
 "Layout": {
 "Offset": 0,
 "Size": 18,
 "IsLastPage": true,
 "IsFullPage": false
 }
}

Read a "page" of output table values and compare model runs.

Compare output table expressions between multiple model runs.

Comparison typically is a calculation between [base] and [variant] model runs, for example: Expr0[variant] / Expr0[base] .

It is also posiible to include calculation results for each single run, for example: Expr0 or 100 * Expr0 / Expr1 .

Page is part of output table values defined by zero-based "start" row number and row count. If row count <= 0 then all rows below start row
number returned.

Dimension(s) and enum-based parameters returned as enum codes. If dimension type or parameter type is simple (integer or boolean) then
string value used (ex.: "true", "1234").

Method verb must be POST and Content-Type header "application/json".

JSON body POSTed to specify output table name, page size, row count, filters and row order. It is expected to be JSON representation of
db.ReadCompareTableLayout structure from Go library. See also: db.ReadLayout structure from Go library.

// ReadCompareTableLayout to compare output table runs with base run using multiple comparison expressions and/or calculation measures.
type ReadCompareTableLayout struct {
 ReadCalculteTableLayout // output table, base run and comparison expressions or calculations
 Runs []string // runs to compare: list of digest, stamp or name
}

// ReadCalculteTableLayout describe table read layout and additional measures to calculte.
type ReadCalculteTableLayout struct {
 ReadLayout // output table name, run id, page size, where filters and order by
 Calculation []CalculateTableLayout // additional measures to calculate
}

// CalculateLayout describes calculation to output table values.
type CalculateTableLayout struct {
 CalculateLayout // expression to calculate and layout
 IsAggr bool // if true then select output table accumulator else expression
}

// CalculateLayout describes calculation to parameters or output table values.
type CalculateLayout struct {
 Calculate string // expression to calculate, ex.: Expr0[base] - Expr0[variant]
 CalcId int // calculated expression id, calc_id column in csv, ex.: 0, 1200, 2400
 Name string // calculated expression name, calc_name column in csv, ex.: Expr0, AVG_Expr0, RATIO_Expro0
}

// ReadLayout describes source and size of data page to read input parameter, output table values or microdata.
//
// Row filters combined by AND and allow to select dimension or attribute items,
// it can be enum codes or enum id's, ex.: dim0 = 'CA' AND dim1 IN (2010, 2011, 2012)
type ReadLayout struct {
 Name string // parameter name, output table name or entity microdata name
 FromId int // run id or set id to select input parameter, output table values or microdata from
 ReadPageLayout // read page first row offset, size and last page flag
 Filter []FilterColumn // dimension or attribute filters, final WHERE does join all filters by AND
 FilterById []FilterIdColumn // dimension or attribute filters by enum ids, final WHERE does join filters by AND
 OrderBy []OrderByColumn // order by columnns, if empty then dimension id ascending order is used
}

Method:

POST /api/model/:model/run/:run/table/compare

For example:

curl -v -X POST -H "Content-Type: application/json" http://localhost:4040/api/model/modelOne/run/Default/table/compare -d @test.json
curl -v -X POST -H "Content-Type: application/json" http://localhost:4040/api/model/modelOne/run/2019_01_17_19_59_52_998/table/compare -d @test.json

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use

Read output table values and compare model runs

https://pkg.go.dev/github.com/openmpp/go/ompp/db#ReadCompareTableLayout
https://pkg.go.dev/github.com/openmpp/go/ompp/db#ReadLayout

model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

:run - (required) model run digest, run stamp or run name

Model run can be identified by run digest, run stamp or run name. It is recommended to use digest because it is uniquely identifies model run.
Run stamp, if not explicitly specified as model run option, automatically generated as timestamp string, ex.: 2016_08_17_21_07_55_123. It is
also possible to use name, which is more human readable than digest, but if there are multiple runs with same name in database than result is
undefined.

JSON body arguments:

Example 1. For modelOne output table salarySex :

read expr0 values from [base] run and from [variant] runs: "Default-4", "First Task Run_modelOne_other"

calculate difference of expr0 values between [variant] runs and [base]

{
"Name": "salarySex",
"Calculation": [
 {
 "Calculate": "expr0",
 "CalcId": 0,
 "Name": "expr0",
 "IsAggr": false
 },
 {
 "Calculate": "expr0[variant] - expr0[base]",
 "CalcId": 1200,
 "Name": "Diff_of_expr0",
 "IsAggr": false
 }
],
"Runs": [
 "Default-4",
 "First Task Run_modelOne_other"
]
}

Calculation must be done over output table expressions and can NOT include table accumulators. Output table expression can be from
[base] or from [variant] model run, e.g.: expr0[variant] - expr0[base] . It is also possible to use to do a calcultion for each single (not between two

runs), e.g.: expr0 , or 100 * expr0 / expr1 . Calcultion must be a comparison formula between two runs [base] and [variant] or done on single run.
You cannot mix comparison and sincle run calcultion, it is mutually exclusive, for exampel: thisi is an error: expr1 + expr0[variant] - expr0[base] .
Calculation can include expression names, + - * / operators and following functions:

SQRT square root

ABS absolute value

OM_IF equivalent of if then else

OM_DIV_BY wrap denominator

It is also possible to use parameter(s) in calculation, parameter must be a scalar of float or integer type. For example: (Expr1[variant] - Expr1[base]) *

param.Scale[base] , where param.Scale is a value of scalar parameter Scale in [base] model run.

For more details please see: Model Output Expressions

Example 2.:

read expr0 values from [base] run and from [variant] runs: "Default-4", "First Task Run_modelOne_other"

calculate difference of expr0 values between [variant] runs and [base] , adjusted by using parameter StartingSeed value from base run

read only first 100 rows: Offset: 0, Size: 100

apply WHERE filters and ORDER BY

https://github.com/openmpp/openmpp.github.io/wiki/Model-Output-Expressions

{
"Name": "salarySex",
"Calculation": [
 {
 "Calculate": "expr0",
 "CalcId": 0,
 "Name": "expr0",
 "IsAggr": false
 },
 {
 "Calculate": "(expr0[variant] - expr0[base]) + param.StartingSeed[base] / 100",
 "CalcId": 1200,
 "Name": "Diff_of_expr0_adjusted",
 "IsAggr": false
 }
],
"Runs": [
 "Default-4",
 "First Task Run_modelOne_other"
],
"Offset": 0,
"Size": 100,
"IsFullPage": true,
"Filter": [{
 "Name": "dim0",
 "Op": "IN",
 "Values": ["L", "H"]
 }, {
 "Name": "dim1",
 "Op": "BETWEEN",
 "Values": ["F", "all"]
 }
],
"OrderBy": [{
 "IndexOne": 2,
 "IsDesc": true
 }, {
 "IndexOne": 3,
 "IsDesc": true
 }
]
}

Name - (required) output table name
Offset - (optional) zero-based start row to select output table values
Size - (optional) max row count to select output table values, if size <= 0 then all rows selected
IsFullPage - (optional) if true then always return non-empty last page of data
Filter - (optional) conditions to filter dimension enum id's
OrderBy - (optional) list of columns indexes (one based) to order by

Filter conditions joined by AND and can have following operations:

= - enum equal to: AgeGroup = "20-30"
!= - enum not equal to: AgeGroup <> "20-30"
> - enum greater than: AgeGroup > "20-30"
>= - enum greater or equal: AgeGroup >= "20-30"
< - enum less than: AgeGroup < "20-30"
<= - enum less or equal: AgeGroup <= "20-30"
IN - enum is in the list of: AgeGroup IN ("20-30", "30-40", "40+")
BETWEEN - between min and max: AgeGroup BETWEEN "30-40" AND "all"
IN_AUTO - automatically choose most suitable: = or != or IN or BETWEEN

Keep in mind: dimension enums are always ordered by id's, not by code and result of filter Sex < "M" may not be Sex = "F" .

Order by specified by one-based column(s) index(es) in result. Columns always contain enum id's, not enum codes and therefore result ordered
by id's. First two columns are run_id, calc_id :

 SELECT run_id, CalcId AS calc_id, dim0, dim1, ..., calc_value FROM ORDER BY 1, 2,...

JSON response:

{
 Layout: {
 Offset: actual first row number of the page data (zero-base),
 Size: actual data page row count,
 IsLastPage: true if this is last page of data
 },
 Page: [....page of data...]
}

Example:

curl -v -X POST -H "Content-Type: application/json" http://localhost:4040/api/model/modelOne/run/Default/table/compare -d @test.json

JSON body (test.json):

{
 "Name": "salarySex",
 "Calculation": [
 {
 "Calculate": "expr0",
 "CalcId": 0,
 "Name": "expr0",
 "IsAggr": false
 },
 {
 "Calculate": "expr0[variant] - expr0[base]",
 "CalcId": 1200,
 "Name": "Diff_of_expr0",
 "IsAggr": false
 }
],
 "Runs": [
 "Default-4",
 "First Task Run_modelOne_other"
]
}

Result:

> POST /api/model/modelOne/run/Default/table/compare HTTP/1.1
> Host: localhost:4040
> User-Agent: curl/8.0.1
> Accept: */*
> Content-Type: application/json
> Content-Length: 363
>
< HTTP/1.1 200 OK
< Content-Type: application/json
< Date: Thu, 26 Oct 2023 02:53:46 GMT
< Transfer-Encoding: chunked
<
{
 "Page": [{
 "Dims": ["L", "M"],
 "IsNull": false,
 "Value": 50,
 "CalcName": "expr0",
 "RunDigest": "ca663651953bae94d0afdf71edba4c91"
 }, {
 "Dims": ["L", "F"],
 "IsNull": false,
 "Value": 60,
 "CalcName": "expr0",
 "RunDigest": "ca663651953bae94d0afdf71edba4c91"
 }, {
 "Dims": ["L", "all"],
 "IsNull": false,
 "Value": 1,
 "CalcName": "expr0",
 "RunDigest": "ca663651953bae94d0afdf71edba4c91"
 }, {
 "Dims": ["M", "M"],
 "IsNull": false,
 "Value": 51.599999999999994,
 "CalcName": "expr0",
 "RunDigest": "ca663651953bae94d0afdf71edba4c91"
 }, {
 "Dims": ["M", "F"],
 "IsNull": false,
 "Value": 62,
 "CalcName": "expr0",

 "CalcName": "expr0",
 "RunDigest": "ca663651953bae94d0afdf71edba4c91"
 }, {
 "Dims": ["M", "all"],
 "IsNull": false,
 "Value": 2,
 "CalcName": "expr0",
 "RunDigest": "ca663651953bae94d0afdf71edba4c91"
 }, {
 "Dims": ["H", "M"],
 "IsNull": false,
 "Value": 53.2,
 "CalcName": "expr0",
 "RunDigest": "ca663651953bae94d0afdf71edba4c91"
 }, {
 "Dims": ["H", "F"],
 "IsNull": false,
 "Value": 64,
 "CalcName": "expr0",
 "RunDigest": "ca663651953bae94d0afdf71edba4c91"
 }, {
 "Dims": ["H", "all"],
 "IsNull": false,
 "Value": 3,
 "CalcName": "expr0",
 "RunDigest": "ca663651953bae94d0afdf71edba4c91"
 }, {
 "Dims": ["L", "M"],
 "IsNull": false,
 "Value": 50,
 "CalcName": "expr0",
 "RunDigest": "c519fc5869f244ac4c80ae44695a4272"
 }, {
 "Dims": ["L", "F"],
 "IsNull": false,
 "Value": 60,
 "CalcName": "expr0",
 "RunDigest": "c519fc5869f244ac4c80ae44695a4272"
 }, {
 "Dims": ["L", "all"],
 "IsNull": false,
 "Value": 1201,
 "CalcName": "expr0",
 "RunDigest": "c519fc5869f244ac4c80ae44695a4272"
 }, {
 "Dims": ["M", "M"],
 "IsNull": false,
 "Value": 51.599999999999994,
 "CalcName": "expr0",
 "RunDigest": "c519fc5869f244ac4c80ae44695a4272"
 }, {
 "Dims": ["M", "F"],
 "IsNull": false,
 "Value": 62,
 "CalcName": "expr0",
 "RunDigest": "c519fc5869f244ac4c80ae44695a4272"
 }, {
 "Dims": ["M", "all"],
 "IsNull": false,
 "Value": 1202,
 "CalcName": "expr0",
 "RunDigest": "c519fc5869f244ac4c80ae44695a4272"
 }, {
 "Dims": ["H", "M"],
 "IsNull": false,
 "Value": 53.2,
 "CalcName": "expr0",
 "RunDigest": "c519fc5869f244ac4c80ae44695a4272"
 }, {
 "Dims": ["H", "F"],
 "IsNull": false,
 "Value": 64,
 "CalcName": "expr0",
 "RunDigest": "c519fc5869f244ac4c80ae44695a4272"
 }, {
 "Dims": ["H", "all"],
 "IsNull": false,
 "Value": 1203,
 "CalcName": "expr0",
 "RunDigest": "c519fc5869f244ac4c80ae44695a4272"
 }, {
 "Dims": ["L", "M"],
 "IsNull": false,
 "Value": 0,
 "CalcName": "Diff_of_expr0",
 "RunDigest": "c519fc5869f244ac4c80ae44695a4272"
 }, {
 "Dims": ["L", "F"],
 "IsNull": false,

 "IsNull": false,
 "Value": 0,
 "CalcName": "Diff_of_expr0",
 "RunDigest": "c519fc5869f244ac4c80ae44695a4272"
 }, {
 "Dims": ["L", "all"],
 "IsNull": false,
 "Value": 1200,
 "CalcName": "Diff_of_expr0",
 "RunDigest": "c519fc5869f244ac4c80ae44695a4272"
 }, {
 "Dims": ["M", "M"],
 "IsNull": false,
 "Value": 0,
 "CalcName": "Diff_of_expr0",
 "RunDigest": "c519fc5869f244ac4c80ae44695a4272"
 }, {
 "Dims": ["M", "F"],
 "IsNull": false,
 "Value": 0,
 "CalcName": "Diff_of_expr0",
 "RunDigest": "c519fc5869f244ac4c80ae44695a4272"
 }, {
 "Dims": ["M", "all"],
 "IsNull": false,
 "Value": 1200,
 "CalcName": "Diff_of_expr0",
 "RunDigest": "c519fc5869f244ac4c80ae44695a4272"
 }, {
 "Dims": ["H", "M"],
 "IsNull": false,
 "Value": 0,
 "CalcName": "Diff_of_expr0",
 "RunDigest": "c519fc5869f244ac4c80ae44695a4272"
 }, {
 "Dims": ["H", "F"],
 "IsNull": false,
 "Value": 0,
 "CalcName": "Diff_of_expr0",
 "RunDigest": "c519fc5869f244ac4c80ae44695a4272"
 }, {
 "Dims": ["H", "all"],
 "IsNull": false,
 "Value": 1200,
 "CalcName": "Diff_of_expr0",
 "RunDigest": "c519fc5869f244ac4c80ae44695a4272"
 }, {
 "Dims": ["L", "M"],
 "IsNull": false,
 "Value": 225.6,
 "CalcName": "expr0",
 "RunDigest": "9a1121a0392aa3eddd0932d269838e2d"
 }, {
 "Dims": ["L", "F"],
 "IsNull": false,
 "Value": 272,
 "CalcName": "expr0",
 "RunDigest": "9a1121a0392aa3eddd0932d269838e2d"
 }, {
 "Dims": ["L", "all"],
 "IsNull": false,
 "Value": 1,
 "CalcName": "expr0",
 "RunDigest": "9a1121a0392aa3eddd0932d269838e2d"
 }, {
 "Dims": ["M", "M"],
 "IsNull": false,
 "Value": 232,
 "CalcName": "expr0",
 "RunDigest": "9a1121a0392aa3eddd0932d269838e2d"
 }, {
 "Dims": ["M", "F"],
 "IsNull": false,
 "Value": 280,
 "CalcName": "expr0",
 "RunDigest": "9a1121a0392aa3eddd0932d269838e2d"
 }, {
 "Dims": ["M", "all"],
 "IsNull": false,
 "Value": 2,
 "CalcName": "expr0",
 "RunDigest": "9a1121a0392aa3eddd0932d269838e2d"
 }, {
 "Dims": ["H", "M"],
 "IsNull": false,
 "Value": 238.39999999999998,
 "CalcName": "expr0",
 "RunDigest": "9a1121a0392aa3eddd0932d269838e2d"

 "RunDigest": "9a1121a0392aa3eddd0932d269838e2d"
 }, {
 "Dims": ["H", "F"],
 "IsNull": false,
 "Value": 288,
 "CalcName": "expr0",
 "RunDigest": "9a1121a0392aa3eddd0932d269838e2d"
 }, {
 "Dims": ["H", "all"],
 "IsNull": false,
 "Value": 3,
 "CalcName": "expr0",
 "RunDigest": "9a1121a0392aa3eddd0932d269838e2d"
 }, {
 "Dims": ["L", "M"],
 "IsNull": false,
 "Value": 175.6,
 "CalcName": "Diff_of_expr0",
 "RunDigest": "9a1121a0392aa3eddd0932d269838e2d"
 }, {
 "Dims": ["L", "F"],
 "IsNull": false,
 "Value": 212,
 "CalcName": "Diff_of_expr0",
 "RunDigest": "9a1121a0392aa3eddd0932d269838e2d"
 }, {
 "Dims": ["L", "all"],
 "IsNull": false,
 "Value": 0,
 "CalcName": "Diff_of_expr0",
 "RunDigest": "9a1121a0392aa3eddd0932d269838e2d"
 }, {
 "Dims": ["M", "M"],
 "IsNull": false,
 "Value": 180.4,
 "CalcName": "Diff_of_expr0",
 "RunDigest": "9a1121a0392aa3eddd0932d269838e2d"
 }, {
 "Dims": ["M", "F"],
 "IsNull": false,
 "Value": 218,
 "CalcName": "Diff_of_expr0",
 "RunDigest": "9a1121a0392aa3eddd0932d269838e2d"
 }, {
 "Dims": ["M", "all"],
 "IsNull": false,
 "Value": 0,
 "CalcName": "Diff_of_expr0",
 "RunDigest": "9a1121a0392aa3eddd0932d269838e2d"
 }, {
 "Dims": ["H", "M"],
 "IsNull": false,
 "Value": 185.2,
 "CalcName": "Diff_of_expr0",
 "RunDigest": "9a1121a0392aa3eddd0932d269838e2d"
 }, {
 "Dims": ["H", "F"],
 "IsNull": false,
 "Value": 224,
 "CalcName": "Diff_of_expr0",
 "RunDigest": "9a1121a0392aa3eddd0932d269838e2d"
 }, {
 "Dims": ["H", "all"],
 "IsNull": false,
 "Value": 0,
 "CalcName": "Diff_of_expr0",
 "RunDigest": "9a1121a0392aa3eddd0932d269838e2d"
 }
],
 "Layout": {
 "Offset": 0,
 "Size": 45,
 "IsLastPage": true,
 "IsFullPage": false
 }
}

Read a "page" of output table values and compare model runs.

Compare output table expressions between multiple model runs.

Comparison typically is a calculation between [base] and [variant] model runs, for example: Expr0[variant] / Expr0[base] .

It is also posiible to include calculation results for each single run, for example: Expr0 or 100 * Expr0 / Expr1 .

Page is part of output table values defined by zero-based "start" row number and row count. If row count <= 0 then all rows below start row
number returned.

Dimension(s) returned as enum id, not enum codes.

Method verb must be POST and Content-Type header "application/json".

JSON body POSTed to specify output table name, page size, row count, filters and row order. It is expected to be JSON representation of
db.ReadCompareTableLayout structure from Go library. See also: db.ReadLayout structure from Go library.

// ReadCompareTableLayout to compare output table runs with base run using multiple comparison expressions and/or calculation measures.
type ReadCompareTableLayout struct {
 ReadCalculteTableLayout // output table, base run and comparison expressions or calculations
 Runs []string // runs to compare: list of digest, stamp or name
}

// ReadCalculteTableLayout describe table read layout and additional measures to calculte.
type ReadCalculteTableLayout struct {
 ReadLayout // output table name, run id, page size, where filters and order by
 Calculation []CalculateTableLayout // additional measures to calculate
}

// CalculateLayout describes calculation to output table values.
type CalculateTableLayout struct {
 CalculateLayout // expression to calculate and layout
 IsAggr bool // if true then select output table accumulator else expression
}

// CalculateLayout describes calculation to parameters or output table values.
type CalculateLayout struct {
 Calculate string // expression to calculate, ex.: Expr0[base] - Expr0[variant]
 CalcId int // calculated expression id, calc_id column in csv, ex.: 0, 1200, 2400
 Name string // calculated expression name, calc_name column in csv, ex.: Expr0, AVG_Expr0, RATIO_Expro0
}

// ReadLayout describes source and size of data page to read input parameter, output table values or microdata.
//
// Row filters combined by AND and allow to select dimension or attribute items,
// it can be enum codes or enum id's, ex.: dim0 = 'CA' AND dim1 IN (2010, 2011, 2012)
type ReadLayout struct {
 Name string // parameter name, output table name or entity microdata name
 FromId int // run id or set id to select input parameter, output table values or microdata from
 ReadPageLayout // read page first row offset, size and last page flag
 Filter []FilterColumn // dimension or attribute filters, final WHERE does join all filters by AND
 FilterById []FilterIdColumn // dimension or attribute filters by enum ids, final WHERE does join filters by AND
 OrderBy []OrderByColumn // order by columnns, if empty then dimension id ascending order is used
}

Method:

POST /api/model/:model/run/:run/table/compare-id

For example:

curl -v -X POST -H "Content-Type: application/json" http://localhost:4040/api/model/modelOne/run/Default/table/compare-id -d @test.json
curl -v -X POST -H "Content-Type: application/json" http://localhost:4040/api/model/modelOne/run/2019_01_17_19_59_52_998/table/compare-id -d @test.json

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

Read output table values and compare model runs (enun id's)

https://pkg.go.dev/github.com/openmpp/go/ompp/db#ReadCompareTableLayout
https://pkg.go.dev/github.com/openmpp/go/ompp/db#ReadLayout

:run - (required) model run digest, run stamp or run name

Model run can be identified by run digest, run stamp or run name. It is recommended to use digest because it is uniquely identifies model run.
Run stamp, if not explicitly specified as model run option, automatically generated as timestamp string, ex.: 2016_08_17_21_07_55_123. It is
also possible to use name, which is more human readable than digest, but if there are multiple runs with same name in database than result is
undefined.

JSON body arguments:

Example 1. For modelOne output table salarySex :

read expr0 values from [base] run and from [variant] runs: "Default-4", "First Task Run_modelOne_other"

calculate difference of expr0 values between [variant] runs and [base] run

{
"Name": "salarySex",
"Calculation": [
 {
 "Calculate": "expr0",
 "CalcId": 0,
 "Name": "expr0",
 "IsAggr": false
 },
 {
 "Calculate": "expr0[variant] - expr0[base]",
 "CalcId": 1200,
 "Name": "Diff_of_expr0",
 "IsAggr": false
 }
],
"Runs": [
 "Default-4",
 "First Task Run_modelOne_other"
]
}

Calculation must be done over output table expressions and can NOT include table accumulators. Output table expression can be from
[base] or from [variant] model run, e.g.: expr0[variant] - expr0[base] . It is also possible to use to do a calcultion for each single (not between two

runs), e.g.: expr0 , or 100 * expr0 / expr1 . Calcultion must be a comparison formula between two runs [base] and [variant] or done on single run.
You cannot mix comparison and sincle run calcultion, it is mutually exclusive, for exampel: thisi is an error: expr1 + expr0[variant] - expr0[base] .
Calculation can include expression names, + - * / operators and following functions:

SQRT square root

ABS absolute value

OM_IF equivalent of if then else

OM_DIV_BY wrap denominator

It is also possible to use parameter(s) in calculation, parameter must be a scalar of float or integer type. For example: (Expr1[variant] - Expr1[base]) *

param.Scale[base] , where param.Scale is a value of scalar parameter Scale in [base] model run.

For more details please see: Model Output Expressions

Example 2:

read expr0 values from [base] run and from [variant] runs: "Default-4", "First Task Run_modelOne_other"

calculate difference of expr0 values between [variant] runs and [base] , adjusted by using parameter StartingSeed value from base run

read only first 100 rows: Offset: 0, Size: 100

apply WHERE filters and ORDER BY

https://github.com/openmpp/openmpp.github.io/wiki/Model-Output-Expressions

{
"Name": "salarySex",
"Calculation": [
 {
 "Calculate": "expr0",
 "CalcId": 0,
 "Name": "expr0",
 "IsAggr": false
 },
 {
 "Calculate": "(expr0[variant] - expr0[base]) + param.StartingSeed[base] / 100",
 "CalcId": 1200,
 "Name": "Diff_of_expr0_adjusted",
 "IsAggr": false
 }
],
"Runs": [
 "Default-4",
 "First Task Run_modelOne_other"
],
"Offset": 0,
"Size": 100,
"IsFullPage": true,
"IsSubId": true,
"SubId": 2,
"FilterById": [{
 "Name": "AgeGroup",
 "Op": "IN",
 "EnumIds": [100, 300]
 }, {
 "Name": "Province",
 "Op": "BETWEEN",
 "EnumIds": [1, 800]
 }
],
"OrderBy": [{
 "IndexOne": 2,
 "IsDesc": true
 }, {
 "IndexOne": 3,
 "IsDesc": true
 }
]
}

Name - (required) output table name
Offset - (optional) zero-based start row to select output table values
Size - (optional) max row count to select output table values, if size <= 0 then all rows selected
IsFullPage - (optional) if true then always return non-empty last page of data
IsSubId - (optional) if true then select only single sub-value, default: all sub-values
SubId - (optional) sub-value id to select if IsSubId is true
FilterById - (optional) conditions to filter dimension enum id's
OrderBy - (optional) list of columns indexes (one based) to order by

Filter conditions joined by AND and can have following operations:

= - enum id equal to: AgeGroup = 20
!= - enum id not equal to: AgeGroup <> 20
> - enum id greater than: AgeGroup > 20
>= - enum id greater or equal: AgeGroup >= 20
< - enum id less than: AgeGroup < 20
<= - enum id less or equal: AgeGroup <= 20
IN - in the list of id's: AgeGroup IN (20, 30, 40)
BETWEEN - between min and max: AgeGroup BETWEEN 20 AND 40
IN_AUTO - automatically choose most suitable: = or != or IN or BETWEEN

Order by specified by one-based column(s) index(es) in result. Columns always contain enum id's, not enum codes and therefore result ordered
by id's Order by specified by one-based column(s) index(es) in result. Columns always contain enum id's, not enum codes and therefore result
ordered by id's. First two columns are run_id, calc_id :

 SELECT run_id, CalcId AS calc_id, dim0, dim1, ..., calc_value FROM ORDER BY 1, 2,...

Example:

curl -v -X POST -H "Content-Type: application/json" http://localhost:4040/api/model/modelOne/run/Default/table/compare-id -d @test.json

JSON body (test.json):

{
 "Name": "salarySex",
 "Calculation": [
 {
 "Calculate": "expr0",
 "CalcId": 0,
 "Name": "expr0",
 "IsAggr": false
 },
 {
 "Calculate": "expr0[variant] - expr0[base]",
 "CalcId": 1200,
 "Name": "Diff_of_expr0",
 "IsAggr": false
 }
],
 "Runs": [
 "Default-4",
 "First Task Run_modelOne_other"
]
}

Result:

> POST /api/model/modelOne/run/Default/table/compare-id HTTP/1.1
> Host: localhost:4040
> User-Agent: curl/8.0.1
> Accept: */*
> Content-Type: application/json
> Content-Length: 363
>
< HTTP/1.1 200 OK
< Content-Type: application/json
< Date: Thu, 26 Oct 2023 02:55:09 GMT
< Transfer-Encoding: chunked
<
{
 "Page": [{
 "DimIds": [100, 0],
 "IsNull": false,
 "Value": 50,
 "CalcId": 0,
 "RunId": 201
 }, {
 "DimIds": [100, 1],
 "IsNull": false,
 "Value": 60,
 "CalcId": 0,
 "RunId": 201
 }, {
 "DimIds": [100, 800],
 "IsNull": false,
 "Value": 1,
 "CalcId": 0,
 "RunId": 201
 }, {
 "DimIds": [200, 0],
 "IsNull": false,
 "Value": 51.599999999999994,
 "CalcId": 0,
 "RunId": 201
 }, {
 "DimIds": [200, 1],
 "IsNull": false,
 "Value": 62,
 "CalcId": 0,
 "RunId": 201
 }, {
 "DimIds": [200, 800],
 "IsNull": false,
 "Value": 2,
 "CalcId": 0,
 "RunId": 201
 }, {
 "DimIds": [300, 0],
 "IsNull": false,
 "Value": 53.2,
 "CalcId": 0,
 "RunId": 201
 }, {
 "DimIds": [300, 1],
 "IsNull": false,
 "Value": 64,
 "CalcId": 0,

 "CalcId": 0,
 "RunId": 201
 }, {
 "DimIds": [300, 800],
 "IsNull": false,
 "Value": 3,
 "CalcId": 0,
 "RunId": 201
 }, {
 "DimIds": [100, 0],
 "IsNull": false,
 "Value": 50,
 "CalcId": 0,
 "RunId": 202
 }, {
 "DimIds": [100, 1],
 "IsNull": false,
 "Value": 60,
 "CalcId": 0,
 "RunId": 202
 }, {
 "DimIds": [100, 800],
 "IsNull": false,
 "Value": 1201,
 "CalcId": 0,
 "RunId": 202
 }, {
 "DimIds": [200, 0],
 "IsNull": false,
 "Value": 51.599999999999994,
 "CalcId": 0,
 "RunId": 202
 }, {
 "DimIds": [200, 1],
 "IsNull": false,
 "Value": 62,
 "CalcId": 0,
 "RunId": 202
 }, {
 "DimIds": [200, 800],
 "IsNull": false,
 "Value": 1202,
 "CalcId": 0,
 "RunId": 202
 }, {
 "DimIds": [300, 0],
 "IsNull": false,
 "Value": 53.2,
 "CalcId": 0,
 "RunId": 202
 }, {
 "DimIds": [300, 1],
 "IsNull": false,
 "Value": 64,
 "CalcId": 0,
 "RunId": 202
 }, {
 "DimIds": [300, 800],
 "IsNull": false,
 "Value": 1203,
 "CalcId": 0,
 "RunId": 202
 }, {
 "DimIds": [100, 0],
 "IsNull": false,
 "Value": 0,
 "CalcId": 1200,
 "RunId": 202
 }, {
 "DimIds": [100, 1],
 "IsNull": false,
 "Value": 0,
 "CalcId": 1200,
 "RunId": 202
 }, {
 "DimIds": [100, 800],
 "IsNull": false,
 "Value": 1200,
 "CalcId": 1200,
 "RunId": 202
 }, {
 "DimIds": [200, 0],
 "IsNull": false,
 "Value": 0,
 "CalcId": 1200,
 "RunId": 202
 }, {
 "DimIds": [200, 1],
 "IsNull": false,

 "IsNull": false,
 "Value": 0,
 "CalcId": 1200,
 "RunId": 202
 }, {
 "DimIds": [200, 800],
 "IsNull": false,
 "Value": 1200,
 "CalcId": 1200,
 "RunId": 202
 }, {
 "DimIds": [300, 0],
 "IsNull": false,
 "Value": 0,
 "CalcId": 1200,
 "RunId": 202
 }, {
 "DimIds": [300, 1],
 "IsNull": false,
 "Value": 0,
 "CalcId": 1200,
 "RunId": 202
 }, {
 "DimIds": [300, 800],
 "IsNull": false,
 "Value": 1200,
 "CalcId": 1200,
 "RunId": 202
 }, {
 "DimIds": [100, 0],
 "IsNull": false,
 "Value": 225.6,
 "CalcId": 0,
 "RunId": 205
 }, {
 "DimIds": [100, 1],
 "IsNull": false,
 "Value": 272,
 "CalcId": 0,
 "RunId": 205
 }, {
 "DimIds": [100, 800],
 "IsNull": false,
 "Value": 1,
 "CalcId": 0,
 "RunId": 205
 }, {
 "DimIds": [200, 0],
 "IsNull": false,
 "Value": 232,
 "CalcId": 0,
 "RunId": 205
 }, {
 "DimIds": [200, 1],
 "IsNull": false,
 "Value": 280,
 "CalcId": 0,
 "RunId": 205
 }, {
 "DimIds": [200, 800],
 "IsNull": false,
 "Value": 2,
 "CalcId": 0,
 "RunId": 205
 }, {
 "DimIds": [300, 0],
 "IsNull": false,
 "Value": 238.39999999999998,
 "CalcId": 0,
 "RunId": 205
 }, {
 "DimIds": [300, 1],
 "IsNull": false,
 "Value": 288,
 "CalcId": 0,
 "RunId": 205
 }, {
 "DimIds": [300, 800],
 "IsNull": false,
 "Value": 3,
 "CalcId": 0,
 "RunId": 205
 }, {
 "DimIds": [100, 0],
 "IsNull": false,
 "Value": 175.6,
 "CalcId": 1200,
 "RunId": 205

 "RunId": 205
 }, {
 "DimIds": [100, 1],
 "IsNull": false,
 "Value": 212,
 "CalcId": 1200,
 "RunId": 205
 }, {
 "DimIds": [100, 800],
 "IsNull": false,
 "Value": 0,
 "CalcId": 1200,
 "RunId": 205
 }, {
 "DimIds": [200, 0],
 "IsNull": false,
 "Value": 180.4,
 "CalcId": 1200,
 "RunId": 205
 }, {
 "DimIds": [200, 1],
 "IsNull": false,
 "Value": 218,
 "CalcId": 1200,
 "RunId": 205
 }, {
 "DimIds": [200, 800],
 "IsNull": false,
 "Value": 0,
 "CalcId": 1200,
 "RunId": 205
 }, {
 "DimIds": [300, 0],
 "IsNull": false,
 "Value": 185.2,
 "CalcId": 1200,
 "RunId": 205
 }, {
 "DimIds": [300, 1],
 "IsNull": false,
 "Value": 224,
 "CalcId": 1200,
 "RunId": 205
 }, {
 "DimIds": [300, 800],
 "IsNull": false,
 "Value": 0,
 "CalcId": 1200,
 "RunId": 205
 }
],
 "Layout": {
 "Offset": 0,
 "Size": 45,
 "IsLastPage": true,
 "IsFullPage": false
 }
}

Read a "page" of microdata values from model run.

Page is part of microdata values defined by zero-based "start" row number and row count. If row count <= 0 then all rows below start row number
returned.

Enum-based microdata attributes returned as enum codes.

Method verb must be POST and Content-Type header "application/json". JSON body POSTed to specify microdata name, page size, row count,
filters and row order. It is expected to be JSON representation of db.ReadLayout structure from Go library.

Method:

POST /api/model/:model/run/:run/microdata/value

For example:

curl -v -X POST -H "Content-Type: application/json" http://localhost:4040/api/model/modelOne/run/Microdata%20in%20database/microdata/value -d @test.json
curl -v -X POST -H "Content-Type: application/json" http://localhost:4040/api/model/modelOne/run/2016_08_17_21_07_55_123/microdata/value -d @test.json

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

:run - (required) model run digest, run stamp or run name

Model run can be identified by run digest, run stamp or run name. It is recommended to use digest because it is uniquely identifies model run.
Run stamp, if not explicitly specified as model run option, automatically generated as timestamp string, ex.: 2016_08_17_21_07_55_123. It is
also possible to use name, which is more human readable than digest, but if there are multiple runs with same name in database than result is
undefined.

JSON body arguments:

For example:

{
 "Name": "Person",
 "Offset": 8,
 "Size": 16,
 "IsFullPage": true,
 "Filter": [{
 "Name": "Age",
 "Op": "BETWEEN",
 "Values": ["21", "65"]
 }, {
 "Name": "Province",
 "Op": "IN",
 "Values": ["BC", "QC"]
 }, {
 "Name": "Sex",
 "Op": "=",
 "Values": ["F"]
 }
],
 "OrderBy": [{
 "IndexOne": 5
 }, {
 "IndexOne": 6,
 "IsDesc": true
 }
]
}

Read microdata values from model run

https://pkg.go.dev/github.com/openmpp/go/ompp/db#ReadLayout

Name - (required) microdata name
Offset - (optional) zero-based start row to select microdata values
Size - (optional) max row count to select microdata values, if size <= 0 then all rows selected
IsFullPage - (optional) if true then always return non-empty last page of data.
Filter - (optional) conditions to filter attribute values, if attribute is enum-based then filter by enum code(s).
OrderBy - (optional) list of columns indexes (one based) to order by

Filter conditions joined by AND and can have following operations:

= - value equal to: Age = 20
!= - value not equal to: Age <> 20
> - value greater than: Age > 20
>= - value greater or equal: Age >= 20
< - value less than: Age < 20
<= - value less or equal: Age <= 20
IN - in the list of codes: Province IN ("BC", "QC", "ON")
BETWEEN - between min and max: Age BETWEEN 20 AND 40
IN_AUTO - automatically choose most suitable: = or != or IN or BETWEEN

Order by specified by one-based column(s) index(es) in result. In case of microdata columns are:

 SELECT entity_key, attr0, attr1, ..., value FROM microdataTable ORDER BY 1, 2,...

For enum-based attribute column always contain enum id's, not enum codes and therefore result ordered by id's

JSON response:

{
 Layout: {
 Offset: actual first row number of the page data (zero-base),
 Size: actual data page row count,
 IsLastPage: true if this is last page of data
 },
 Page: [....page of data...]
}

Example 1:

JSON body:

{
 "Name": "Person",
 "Offset": 8,
 "Size": 2
}

Result:

< HTTP/1.1 200 OK
< Content-Type: application/json
< Date: Fri, 13 Jan 2023 22:25:27 GMT
< Content-Length: 1299
<
{
 "Page": [{
 "Key": 8,
 "Attr": [{
 "IsNull": false,
 "Value": "39"
 }, {
 "IsNull": false,
 "Value": "30-40"
 }, {
 "IsNull": false,
 "Value": "237539"
 }
]
 }, {
 "Key": 9,
 "Attr": [{
 "IsNull": false,
 "Value": "30"
 }, {
 "IsNull": false,
 "Value": "30-40"
 }, {
 "IsNull": false,
 "Value": "245730"
 }
]
 }
],
 "Layout": {
 "Offset": 8,
 "Size": 2,
 "IsFullPage":false,
 "IsLastPage": false
 }
}

Example 2:

JSON body:

{
 "Name": "Person",
 "Offset": 0,
 "Size": 3,
 "Filter": [{
 "Name": "AgeGroup",
 "Op": "IN",
 "Values": ["20-30", "40+"]
 }, {
 "Name": "Sex",
 "Op": "=",
 "Values": ["F"]
 }
],
 "OrderBy": [{
 "IndexOne": 5
 }, {
 "IndexOne": 6,
 "IsDesc": true
 }
]
}

Result:

< HTTP/1.1 200 OK
< Content-Type: application/json
< Date: Fri, 13 Jan 2023 22:49:06 GMT
< Content-Length: 1000
<
{
 "Page": [{
 "Key": 844424930131977,
 "Attr": [{
 "IsNull": false,
 "Value": "83"
 }, {

 }, {
 "IsNull": false,
 "Value": "40+"
 }, {
 "IsNull": false,
 "Value": "F"
 }, {
 "IsNull": false,
 "Value": "23000"
 }, {
 "IsNull": false,
 "Value": "0"
 }, {
 "IsNull": false,
 "Value": "L"
 }, {
 "IsNull": false,
 "Value": "Part"
 }, {
 "IsNull": false,
 "Value": "true"
 }, {
 "IsNull": false,
 "Value": "23000"
 }
]
 }, {
 "Key": 562949953421322,
 "Attr": [{
 "IsNull": false,
 "Value": "83"
 }, {
 "IsNull": false,
 "Value": "40+"
 }, {
 "IsNull": false,
 "Value": "F"
 }, {
 "IsNull": false,
 "Value": "23000"
 }, {
 "IsNull": false,
 "Value": "0"
 }, {
 "IsNull": false,
 "Value": "L"
 }, {
 "IsNull": false,
 "Value": "Part"
 }, {
 "IsNull": false,
 "Value": "true"
 }, {
 "IsNull": false,
 "Value": "23000"
 }
]
 }, {
 "Key": 281474976710667,
 "Attr": [{
 "IsNull": false,
 "Value": "83"
 }, {
 "IsNull": false,
 "Value": "40+"
 }, {
 "IsNull": false,
 "Value": "F"
 }, {
 "IsNull": false,
 "Value": "23000"
 }, {
 "IsNull": false,
 "Value": "0"
 }, {
 "IsNull": false,
 "Value": "L"
 }, {
 "IsNull": false,
 "Value": "Part"
 }, {
 "IsNull": false,
 "Value": "true"
 }, {
 "IsNull": false,
 "Value": "23000"
 }
]

]
 }
],
 "Layout": {
 "Offset": 0,
 "Size": 3,
 "IsFullPage":false,
 "IsLastPage": false
 }
}

Read a "page" of microdata values from model run.

Page is part of microdata values defined by zero-based "start" row number and row count. If row count <= 0 then all rows below start row number
returned.

Enum-based microdata attributes returned as enum id, not enum codes.

Method verb must be POST and Content-Type header "application/json". JSON body POSTed to specify microdata name, page size, row count,
filters and row order. It is expected to be JSON representation of db.ReadLayout structure from Go library.

Method:

POST /api/model/:model/run/:run/microdata/value-id

For example:

curl -v -X POST -H "Content-Type: application/json" http://localhost:4040/api/model/modelOne/run/Microdata%20in%20database/microdata/value-id -d @test.json
curl -v -X POST -H "Content-Type: application/json" http://localhost:4040/api/model/modelOne/run/2016_08_17_21_07_55_123/microdata/value-id -d @test.json

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

:run - (required) model run digest, run stamp or run name

Model run can be identified by run digest, run stamp or run name. It is recommended to use digest because it is uniquely identifies model run.
Run stamp, if not explicitly specified as model run option, automatically generated as timestamp string, ex.: 2016_08_17_21_07_55_123. It is
also possible to use name, which is more human readable than digest, but if there are multiple runs with same name in database than result is
undefined.

JSON body arguments:

For example:

{
 "Name": "Person",
 "Offset": 8,
 "Size": 16,
 "IsFullPage": true,
 "FilterById": [{
 "Name": "AgeGroup",
 "Op": "IN",
 "EnumIds": [20, 40]
 }, {
 "Name": "Sex",
 "Op": "=",
 "EnumIds": [1]
 }
],
 "OrderBy": [{
 "IndexOne": 5
 }, {
 "IndexOne": 6,
 "IsDesc": true
 }
]
}

Name - (required) microdata name
Offset - (optional) zero-based start row to select microdata values
Size - (optional) max row count to select microdata values, if size <= 0 then all rows selected
IsFullPage - (optional) if true then always return non-empty last page of data.
FilterById - (optional) conditions to filter attribute values, if attribute is enum-based then filter by enum id(s).
OrderBy - (optional) list of columns indexes (one based) to order by

Read microdata values from model run (enum id's)

https://pkg.go.dev/github.com/openmpp/go/ompp/db#ReadLayout

Filter conditions joined by AND and can have following operations:

= - value equal to: Age = 20
!= - value not equal to: Age <> 20
> - value greater than: Age > 20
>= - value greater or equal: Age >= 20
< - value less than: Age < 20
<= - value less or equal: Age <= 20
IN - in the list of id's: Age IN (20, 30, 40)
BETWEEN - between min and max: Age BETWEEN 20 AND 40
IN_AUTO - automatically choose most suitable: = or != or IN or BETWEEN

Order by specified by one-based column(s) index(es) in result. In case of microdata columns are:

 SELECT entity_key, attr0, attr1, ..., value FROM microdataTable ORDER BY 1, 2,...

For enum-based attribute column always contain enum id's, not enum codes and therefore result ordered by id's

JSON response:

{
 Layout: {
 Offset: actual first row number of the page data (zero-base),
 Size: actual data page row count,
 IsLastPage: true if this is last page of data
 },
 Page: [....page of data...]
}

Example 1:

JSON body:

{
 "Name": "Other",
 "Offset": 8,
 "Size": 2
}

Result:

< HTTP/1.1 200 OK
< Content-Type: application/json
< Date: Fri, 13 Jan 2023 22:41:11 GMT
< Content-Length: 279
<
{
 "Page": [{
 "Key": 8,
 "Attr": [{
 "IsNull": false,
 "Value": 39
 }, {
 "IsNull": false,
 "Value": 30
 }, {
 "IsNull": false,
 "Value": 237539
 }
]
 }, {
 "Key": 9,
 "Attr": [{
 "IsNull": false,
 "Value": 30
 }, {
 "IsNull": false,
 "Value": 30
 }, {
 "IsNull": false,
 "Value": 245730
 }
]
 }
],
 "Layout": {
 "Offset": 8,
 "Size": 2,
 "IsFullPage":false,
 "IsLastPage": false
 }
}

Example 2:

JSON body:

{
 "Name": "Person",
 "Offset": 0,
 "Size": 3,
 "FilterById": [{
 "Name": "AgeGroup",
 "Op": "IN",
 "EnumIds": [20, 40]
 }, {
 "Name": "Sex",
 "Op": "=",
 "EnumIds": [1]
 }
],
 "OrderBy": [{
 "IndexOne": 5
 }, {
 "IndexOne": 6,
 "IsDesc": true
 }
]
}

Result:

< HTTP/1.1 200 OK
< Content-Type: application/json
< Date: Fri, 13 Jan 2023 22:52:12 GMT
< Content-Length: 943
<
{
 "Page": [{
 "Key": 844424930131977,
 "Attr": [{
 "IsNull": false,
 "Value": 83
 }, {

 }, {
 "IsNull": false,
 "Value": 40
 }, {
 "IsNull": false,
 "Value": 1
 }, {
 "IsNull": false,
 "Value": 23000
 }, {
 "IsNull": false,
 "Value": 0
 }, {
 "IsNull": false,
 "Value": 100
 }, {
 "IsNull": false,
 "Value": 33
 }, {
 "IsNull": false,
 "Value": true
 }, {
 "IsNull": false,
 "Value": 23000
 }
]
 }, {
 "Key": 562949953421322,
 "Attr": [{
 "IsNull": false,
 "Value": 83
 }, {
 "IsNull": false,
 "Value": 40
 }, {
 "IsNull": false,
 "Value": 1
 }, {
 "IsNull": false,
 "Value": 23000
 }, {
 "IsNull": false,
 "Value": 0
 }, {
 "IsNull": false,
 "Value": 100
 }, {
 "IsNull": false,
 "Value": 33
 }, {
 "IsNull": false,
 "Value": true
 }, {
 "IsNull": false,
 "Value": 23000
 }
]
 }, {
 "Key": 281474976710667,
 "Attr": [{
 "IsNull": false,
 "Value": 83
 }, {
 "IsNull": false,
 "Value": 40
 }, {
 "IsNull": false,
 "Value": 1
 }, {
 "IsNull": false,
 "Value": 23000
 }, {
 "IsNull": false,
 "Value": 0
 }, {
 "IsNull": false,
 "Value": 100
 }, {
 "IsNull": false,
 "Value": 33
 }, {
 "IsNull": false,
 "Value": true
 }, {
 "IsNull": false,
 "Value": 23000
 }
]

]
 }
],
 "Layout": {
 "Offset": 0,
 "Size": 3,
 "IsFullPage":false,
 "IsLastPage": false
 }
}

Read a "page" of aggregated microdata values from model run.

Aggregate one or more microdata value attribute (float of integer type attribute). For example, two aggregations: OM_AVG(Income) ,

OM_MAX(Salary + Pension) .

Group by one or more dimension attributes (enum-based or bool type attribute). For example, group by two dimension attributes: AgeGroup ,

Sex .

Page is part of output table values defined by zero-based "start" row number and row count. If row count <= 0 then all rows below start row
number returned.

Dimension attribute(s) returned as enum codes. For boolean dimensions string value used, e.g.: "true".

Method verb must be POST and Content-Type header "application/json".

Following aggregation functions avaliable:

OM_AVG mean of accumulators sub-values

OM_SUM sum of accumulators sub-values

OM_COUNT count of accumulators sub-values (excluding NULL's)

OM_COUNT_IF count values matching condition

OM_MAX maximum of accumulators sub-values

OM_MIN minimum of accumulators sub-values

OM_VAR variance of accumulators sub-values

OM_SD standard deviation of accumulators sub-values

OM_SE standard error of accumulators sub-values

OM_CV coefficient of variation of accumulators sub-values

It is also possible to use parameter(s) in calculation, parameter must be a scalar of float or integer type. For example: OM_COUNT_IF(Income >

param.High) , where param.High is a value of scalar parameter High in that model run.

For more details please see: Model Output Expressions

JSON body POSTed to specify entity name, page size, row count, filters and row order. It is expected to be JSON representation of
db.ReadCalculteMicroLayout structure from Go library. See also: db.ReadLayout structure from Go library.

Read aggregated microdata from model run

https://github.com/openmpp/openmpp.github.io/wiki/Model-Output-Expressions
https://pkg.go.dev/github.com/openmpp/go/ompp/db#ReadCalculteMicroLayout
https://pkg.go.dev/github.com/openmpp/go/ompp/db#ReadLayout

// ReadCalculteMicroLayout describe microdata generation read layout, aggregation measures and group by attributes.
type ReadCalculteMicroLayout struct {
 ReadLayout // entity name, run id, page size, where filters and order by
 CalculateMicroLayout // microdata aggregations
}

// CalculateMicroLayout describes aggregations of microdata.
//
// It can be comparison aggregations and/or calculation aggregations.
// Comparison aggregation must contain [base] and [variant] attribute(s), ex.: OM_AVG(Income[base] - Income[variant]).
// Calculation aggregation is attribute(s) aggregation expression, ex.: OM_MAX(Income) / OM_MIN(Salary).
type CalculateMicroLayout struct {
 Calculation []CalculateLayout // aggregation measures, ex.: OM_MIN(Salary), OM_AVG(Income[base] - Income[variant])
 GroupBy []string // attributes to group by
}

// CalculateLayout describes calculation expression for parameters, output table values or microdata entity.
// It can be comparison calculation for multiple model runs, ex.: Expr0[base] - Expr0[variant].
type CalculateLayout struct {
 Calculate string // expression to calculate, ex.: Expr0[base] - Expr0[variant]
 CalcId int // calculated expression id, calc_id column in csv, ex.: 0, 1200, 2400
 Name string // calculated expression name, calc_name column in csv, ex.: Expr0, AVG_Expr0, RATIO_Expro0
}

// ReadLayout describes source and size of data page to read input parameter, output table values or microdata.
//
// Row filters combined by AND and allow to select dimension or attribute items,
// it can be enum codes or enum id's, ex.: dim0 = 'CA' AND dim1 IN (2010, 2011, 2012)
type ReadLayout struct {
 Name string // parameter name, output table name or entity microdata name
 FromId int // run id or set id to select input parameter, output table values or microdata from
 ReadPageLayout // read page first row offset, size and last page flag
 Filter []FilterColumn // dimension or attribute filters, final WHERE does join all filters by AND
 FilterById []FilterIdColumn // dimension or attribute filters by enum ids, final WHERE does join filters by AND
 OrderBy []OrderByColumn // order by columnns, if empty then dimension id ascending order is used
}

Methods:

POST /api/model/:model/run/:run/microdata/calc

For example:

curl -v -X POST -H "Content-Type: application/json" http://localhost:4040/api/model/modelOne/run/Microdata%20in%20database/microdata/calc -d @read_m1_person_calc_1.json

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

:run - (required) model run digest, run stamp or run name

Model run can be identified by run digest, run stamp or run name. It is recommended to use digest because it is uniquely identifies model run.
Run stamp, if not explicitly specified as model run option, automatically generated as timestamp string, ex.: 2016_08_17_21_07_55_123. It is
also possible to use name, which is more human readable than digest, but if there are multiple runs with same name in database than result is
undefined.

JSON body arguments:

Example 1: Aggregate Person entity to get OM_AVG() average Income value and group it by AgeGroup , Sex dimension attributes.

{
 "Name": "Person",
 "Calculation": [{
 "Calculate": "OM_AVG(Income)",
 "CalcId": 2401,
 "Name": "Avg_Income"
 }
],
 "GroupBy": [
 "AgeGroup",
 "Sex"
]
}

Example 2.

aggregate Person entity

calculate two values:
OM_AVG() average of Income value, adjusted by using parameter StartingSeed values

OM_AVG() average of Salary + Pension value, adjusted by using parameter StartingSeed values

and group it by AgeGroup , Sex dimension attributes

filter only rows where:
dimension AgeGroup IN ["20-30", "40+"]

and dimension Sex = "F"

{
"Name": "Person",
"Calculation": [{
 "Calculate": "OM_AVG(Income) * (param.StartingSeed / 100)",
 "CalcId": 2401,
 "Name": "Avg_Income_adjusted"
 }, {
 "Calculate": "OM_AVG(Salary + Pension + param.StartingSeed)",
 "CalcId": 2404,
 "Name": "Avg_Salary_Pension_adjusted"
 }
],
"GroupBy": [
 "AgeGroup",
 "Sex"
],
"Offset": 0,
"Size": 100,
"IsFullPage": true,
"Filter": [{
 "Name": "AgeGroup",
 "Op": "IN",
 "Values": ["20-30", "40+"]
 }, {
 "Name": "Sex",
 "Op": "=",
 "Values": ["F"]
 }
],
"OrderBy": [{
 "IndexOne": 2,
 "IsDesc": true
 }, {
 "IndexOne": 3,
 "IsDesc": true
 }
]
}

Name - (required) entity name
Offset - (optional) zero-based start row to select aggreagted microdata values
Size - (optional) max row count to select rows, if size <= 0 then all rows selected
IsFullPage - (optional) if true then always return non-empty last page of data
Filter - (optional) conditions to filter dimension attributes
OrderBy - (optional) list of columns indexes (one based) to order by

Filter conditions joined by AND and can have following operations:

= - enum equal to: AgeGroup = "20-30"
!= - enum not equal to: AgeGroup <> "20-30"
> - enum greater than: AgeGroup > "20-30"
>= - enum greater or equal: AgeGroup >= "20-30"
< - enum less than: AgeGroup < "20-30"
<= - enum less or equal: AgeGroup <= "20-30"
IN - enum is in the list of: AgeGroup IN ("20-30", "30-40", "40+")
BETWEEN - between min and max: AgeGroup BETWEEN "30-40" AND "all"
IN_AUTO - automatically choose most suitable: = or != or IN or BETWEEN

Keep in mind: dimension enums are always ordered by id's, not by code and result of filter Sex < "M" may not be Sex = "F" .

Order by specified by one-based column(s) index(es) in result. Columns always contain enum id's, not enum codes and therefore result ordered
by id's. First two columns are run_id, calc_id :

 SELECT run_id, CalcId AS calc_id, AgeGroup, Sex, ..., calc_value FROM ORDER BY 1, 2,...

JSON response:

{
 Layout: {
 Offset: actual first row number of the page data (zero-base),
 Size: actual data page row count,
 IsLastPage: true if this is last page of data
 },
 Page: [....page of data...]
}

Result:

* Trying [::1]:4040...
* Connected to localhost (::1) port 4040
> POST /api/model/modelOne/run/Microdata%20in%20database/microdata/calc HTTP/1.1
> Host: localhost:4040
> User-Agent: curl/8.4.0
> Accept: */*
> Content-Type: application/json
> Content-Length: 702
>
< HTTP/1.1 200 OK
< Content-Type: application/json
< Date: Fri, 29 Dec 2023 03:36:38 GMT
< Content-Length: 830
<
{
 "Page": [{
 "Attr": [{
 "IsNull": false,
 "Value": "40+"
 }, {
 "IsNull": false,
 "Value": "F"
 }, {
 "IsNull": false,
 "Value": 57665830.54215979
 }
],
 "CalcName": "Avg_Salary_Pension",
 "RunDigest": "a59c91359c4cd98f6275529c798d2485"
 }, {
 "Attr": [{
 "IsNull": false,
 "Value": "20-30"
 }, {
 "IsNull": false,
 "Value": "F"
 }, {
 "IsNull": false,
 "Value": 100657151.25
 }
],
 "CalcName": "Avg_Salary_Pension",
 "RunDigest": "a59c91359c4cd98f6275529c798d2485"
 }, {
 "Attr": [{
 "IsNull": false,
 "Value": "40+"
 }, {
 "IsNull": false,
 "Value": "F"
 }, {
 "IsNull": false,
 "Value": 71069306.57187325
 }
],
 "CalcName": "Avg_Income",
 "RunDigest": "a59c91359c4cd98f6275529c798d2485"
 }, {
 "Attr": [{
 "IsNull": false,
 "Value": "20-30"
 }, {
 "IsNull": false,
 "Value": "F"
 }, {
 "IsNull": false,
 "Value": 134209535
 }
],
 "CalcName": "Avg_Income",
 "RunDigest": "a59c91359c4cd98f6275529c798d2485"
 }
],
 "Layout": {
 "Offset": 0,
 "Size": 4,
 "IsLastPage": true,
 "IsFullPage": false
 }
}

Read a "page" of aggregated microdata values from model run.

Aggregate one or more microdata value attribute (float of integer type attribute). For example, two aggregations: OM_AVG(Income) ,

OM_MAX(Salary + Pension) .

Group by one or more dimension attributes (enum-based or bool type attribute). For example, group by two dimension attributes: AgeGroup ,

Sex .

Page is part of output table values defined by zero-based "start" row number and row count. If row count <= 0 then all rows below start row
number returned.

Dimension(s) returned as enum id, not enum codes.

Method verb must be POST and Content-Type header "application/json".

Following aggregation functions avaliable:

OM_AVG mean of accumulators sub-values

OM_SUM sum of accumulators sub-values

OM_COUNT count of accumulators sub-values (excluding NULL's)

OM_COUNT_IF count values matching condition

OM_MAX maximum of accumulators sub-values

OM_MIN minimum of accumulators sub-values

OM_VAR variance of accumulators sub-values

OM_SD standard deviation of accumulators sub-values

OM_SE standard error of accumulators sub-values

OM_CV coefficient of variation of accumulators sub-values

It is also possible to use parameter(s) in calculation, parameter must be a scalar of float or integer type. For example: OM_COUNT_IF(Income >

param.High) , where param.High is a value of scalar parameter High in that model run.

For more details please see: Model Output Expressions

JSON body POSTed to specify entity name, page size, row count, filters and row order. It is expected to be JSON representation of
db.ReadCalculteMicroLayout structure from Go library. See also: db.ReadLayout structure from Go library.

Read aggregated microdata from model run (enum id's)

https://github.com/openmpp/openmpp.github.io/wiki/Model-Output-Expressions
https://pkg.go.dev/github.com/openmpp/go/ompp/db#ReadCalculteMicroLayout
https://pkg.go.dev/github.com/openmpp/go/ompp/db#ReadLayout

// ReadCalculteMicroLayout describe microdata generation read layout, aggregation measures and group by attributes.
type ReadCalculteMicroLayout struct {
 ReadLayout // entity name, run id, page size, where filters and order by
 CalculateMicroLayout // microdata aggregations
}

// CalculateMicroLayout describes aggregations of microdata.
//
// It can be comparison aggregations and/or calculation aggregations.
// Comparison aggregation must contain [base] and [variant] attribute(s), ex.: OM_AVG(Income[base] - Income[variant]).
// Calculation aggregation is attribute(s) aggregation expression, ex.: OM_MAX(Income) / OM_MIN(Salary).
type CalculateMicroLayout struct {
 Calculation []CalculateLayout // aggregation measures, ex.: OM_MIN(Salary), OM_AVG(Income[base] - Income[variant])
 GroupBy []string // attributes to group by
}

// CalculateLayout describes calculation expression for parameters, output table values or microdata entity.
// It can be comparison calculation for multiple model runs, ex.: Expr0[base] - Expr0[variant].
type CalculateLayout struct {
 Calculate string // expression to calculate, ex.: Expr0[base] - Expr0[variant]
 CalcId int // calculated expression id, calc_id column in csv, ex.: 0, 1200, 2400
 Name string // calculated expression name, calc_name column in csv, ex.: Expr0, AVG_Expr0, RATIO_Expro0
}

// ReadLayout describes source and size of data page to read input parameter, output table values or microdata.
//
// Row filters combined by AND and allow to select dimension or attribute items,
// it can be enum codes or enum id's, ex.: dim0 = 'CA' AND dim1 IN (2010, 2011, 2012)
type ReadLayout struct {
 Name string // parameter name, output table name or entity microdata name
 FromId int // run id or set id to select input parameter, output table values or microdata from
 ReadPageLayout // read page first row offset, size and last page flag
 Filter []FilterColumn // dimension or attribute filters, final WHERE does join all filters by AND
 FilterById []FilterIdColumn // dimension or attribute filters by enum ids, final WHERE does join filters by AND
 OrderBy []OrderByColumn // order by columnns, if empty then dimension id ascending order is used
}

Methods:

POST /api/model/:model/run/:run/microdata/calc-id

For example:

curl -v -X POST -H "Content-Type: application/json" http://localhost:4040/api/model/modelOne/run/Microdata%20in%20database/microdata/calc-id -d @read_m1_person_calc_1.jso
n

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

:run - (required) model run digest, run stamp or run name

Model run can be identified by run digest, run stamp or run name. It is recommended to use digest because it is uniquely identifies model run.
Run stamp, if not explicitly specified as model run option, automatically generated as timestamp string, ex.: 2016_08_17_21_07_55_123. It is
also possible to use name, which is more human readable than digest, but if there are multiple runs with same name in database than result is
undefined.

JSON body arguments:

Example 1: Aggregate Person entity to get OM_AVG() average Income value and group it by AgeGroup , Sex dimension attributes.

{
 "Name": "Person",
 "Calculation": [{
 "Calculate": "OM_AVG(Income)",
 "CalcId": 2401,
 "Name": "Avg_Income"
 }
],
 "GroupBy": [
 "AgeGroup",
 "Sex"
]
}

Example 2.

aggregate Person entity

calculate two values:
OM_AVG() average of Income value, adjusted by using parameter StartingSeed values

OM_AVG() average of Salary + Pension value, adjusted by using parameter StartingSeed values

and group it by AgeGroup , Sex dimension attributes

filter only rows where:
enum id's of dimension AgeGroup IN [20, 40]

and enum id's of dimension Sex = 1

{
"Name": "Person",
"Calculation": [{
 "Calculate": "OM_AVG(Income) * (param.StartingSeed / 100)",
 "CalcId": 2401,
 "Name": "Avg_Income_adjusted"
 }, {
 "Calculate": "OM_AVG(Salary + Pension + param.StartingSeed)",
 "CalcId": 2404,
 "Name": "Avg_Salary_Pension_adjusted"
 }
],
"GroupBy": [
 "AgeGroup",
 "Sex"
],
"Offset": 0,
"Size": 100,
"IsFullPage": true,
"FilterById": [{
 "Name": "AgeGroup",
 "Op": "IN",
 "EnumIds": [20, 40]
 }, {
 "Name": "Sex",
 "Op": "=",
 "EnumIds": [1]
 }
],
"OrderBy": [{
 "IndexOne": 2,
 "IsDesc": true
 }, {
 "IndexOne": 3,
 "IsDesc": true
 }
]
}

Name - (required) entity name
Offset - (optional) zero-based start row to select aggreagted microdata values
Size - (optional) max row count to select rows, if size <= 0 then all rows selected
IsFullPage - (optional) if true then always return non-empty last page of data
FilterById - (optional) conditions to filter enum id's of dimension attributes
OrderBy - (optional) list of columns indexes (one based) to order by

Filter conditions joined by AND and can have following operations:

= - enum id equal to: AgeGroup = 20
!= - enum id not equal to: AgeGroup <> 20
> - enum id greater than: AgeGroup > 20
>= - enum id greater or equal: AgeGroup >= 20
< - enum id less than: AgeGroup < 20
<= - enum id less or equal: AgeGroup <= 20
IN - in the list of id's: AgeGroup IN (20, 30, 40)
BETWEEN - between min and max: AgeGroup BETWEEN 20 AND 40
IN_AUTO - automatically choose most suitable: = or != or IN or BETWEEN

Order by specified by one-based column(s) index(es) in result. Columns always contain enum id's, not enum codes and therefore result ordered
by id's. First two columns are run_id, calc_id :

 SELECT run_id, CalcId AS calc_id, AgeGroup, Sex, ..., calc_value FROM ORDER BY 1, 2,...

JSON response:

{
 Layout: {
 Offset: actual first row number of the page data (zero-base),
 Size: actual data page row count,
 IsLastPage: true if this is last page of data
 },
 Page: [....page of data...]
}

Result:

* Trying [::1]:4040...
* Connected to localhost (::1) port 4040
> POST /api/model/modelOne/run/Microdata%20in%20database/microdata/calc-id HTTP/1.1
> Host: localhost:4040
> User-Agent: curl/8.4.0
> Accept: */*
> Content-Type: application/json
> Content-Length: 753
>
< HTTP/1.1 200 OK
< Content-Type: application/json
< Date: Fri, 29 Dec 2023 03:53:37 GMT
< Content-Length: 609
<
{
 "Page": [{
 "Attr": [{
 "IsNull": false,
 "Value": 40
 }, {
 "IsNull": false,
 "Value": 1
 }, {
 "IsNull": false,
 "Value": 57665830.54215979
 }
],
 "CalcId": 2404,
 "RunId": 219
 }, {
 "Attr": [{
 "IsNull": false,
 "Value": 20
 }, {
 "IsNull": false,
 "Value": 1
 }, {
 "IsNull": false,
 "Value": 100657151.25
 }
],
 "CalcId": 2404,
 "RunId": 219
 }, {
 "Attr": [{
 "IsNull": false,
 "Value": 40
 }, {
 "IsNull": false,
 "Value": 1
 }, {
 "IsNull": false,
 "Value": 71069306.57187325
 }
],
 "CalcId": 2401,
 "RunId": 219
 }, {
 "Attr": [{
 "IsNull": false,
 "Value": 20
 }, {
 "IsNull": false,
 "Value": 1
 }, {
 "IsNull": false,
 "Value": 134209535
 }
],
 "CalcId": 2401,
 "RunId": 219
 }
],
 "Layout": {
 "Offset": 0,
 "Size": 4,
 "IsLastPage": true,
 "IsFullPage": true
 }
}

Read a "page" of microdata values and compare model runs.

Compare [base] and [variant] model runs microdata value attributes (float of integer type attributes), group it by dimension attributes (enum-based
or bool type attributes).

Compare one or more microdata value attributes (float of integer type attribute). For example, two comparisons: OM_AVG(Income[variant] -

Income[base]) , OM_MAX(100 * (Salary[variant] + Pension[variant]) / Income[base]) .

It is also posiible to include aggreagted value attribute(s) for each single run, for example: OM_MAX(Salary) , OM_MIN(Pension) .

Group by one or more dimension attributes (enum-based or bool type attribute). For example, group by two dimension attributes: AgeGroup ,

Sex .

Page is part of output table values defined by zero-based "start" row number and row count. If row count <= 0 then all rows below start row
number returned.

Dimension attribute(s) returned as enum codes. For boolean dimensions string value used, e.g.: "true".

Method verb must be POST and Content-Type header "application/json".

Following aggregation functions avaliable:

OM_AVG mean of accumulators sub-values

OM_SUM sum of accumulators sub-values

OM_COUNT count of accumulators sub-values (excluding NULL's)

OM_COUNT_IF count values matching condition

OM_MAX maximum of accumulators sub-values

OM_MIN minimum of accumulators sub-values

OM_VAR variance of accumulators sub-values

OM_SD standard deviation of accumulators sub-values

OM_SE standard error of accumulators sub-values

OM_CV coefficient of variation of accumulators sub-values

It is also possible to use parameter(s) in calculation, parameter must be a scalar of float or integer type. For example: OM_COUNT_IF((Income[variant -

Income[base]) > param.High[base]) , where param.High[base] is a value of scalar parameter High in [base] model run.

For more details please see: Model Output Expressions

JSON body POSTed to specify entity name, page size, row count, filters and row order. It is expected to be JSON representation of
db.ReadCompareMicroLayout structure from Go library. See also: db.ReadLayout structure from Go library.

Read microdata run comparison

https://github.com/openmpp/openmpp.github.io/wiki/Model-Output-Expressions
https://pkg.go.dev/github.com/openmpp/go/ompp/db#ReadCompareMicroLayout
https://pkg.go.dev/github.com/openmpp/go/ompp/db#ReadLayout

// ReadCompareMicroLayout to compare microdata runs with base run using multiple comparison aggregations and/or calculation aggregations.
//
// Comparison aggregation must contain [base] and [variant] attribute(s), ex.: OM_AVG(Income[base] - Income[variant]).
// Calculation aggregation is attribute(s) aggregation expression, ex.: OM_MAX(Income) / OM_MIN(Salary).
type ReadCompareMicroLayout struct {
 ReadCalculteMicroLayout // aggregation measures and group by attributes
 Runs []string // runs to compare: list of digest, stamp or name
}

// ReadCalculteMicroLayout describe microdata generation read layout, aggregation measures and group by attributes.
type ReadCalculteMicroLayout struct {
 ReadLayout // entity name, run id, page size, where filters and order by
 CalculateMicroLayout // microdata aggregations
}

// CalculateMicroLayout describes aggregations of microdata.
//
// It can be comparison aggregations and/or calculation aggregations.
// Comparison aggregation must contain [base] and [variant] attribute(s), ex.: OM_AVG(Income[base] - Income[variant]).
// Calculation aggregation is attribute(s) aggregation expression, ex.: OM_MAX(Income) / OM_MIN(Salary).
type CalculateMicroLayout struct {
 Calculation []CalculateLayout // aggregation measures, ex.: OM_MIN(Salary), OM_AVG(Income[base] - Income[variant])
 GroupBy []string // attributes to group by
}

// CalculateLayout describes calculation expression for parameters, output table values or microdata entity.
// It can be comparison calculation for multiple model runs, ex.: Expr0[base] - Expr0[variant].
type CalculateLayout struct {
 Calculate string // expression to calculate, ex.: Expr0[base] - Expr0[variant]
 CalcId int // calculated expression id, calc_id column in csv, ex.: 0, 1200, 2400
 Name string // calculated expression name, calc_name column in csv, ex.: Expr0, AVG_Expr0, RATIO_Expro0
}

// ReadLayout describes source and size of data page to read input parameter, output table values or microdata.
//
// Row filters combined by AND and allow to select dimension or attribute items,
// it can be enum codes or enum id's, ex.: dim0 = 'CA' AND dim1 IN (2010, 2011, 2012)
type ReadLayout struct {
 Name string // parameter name, output table name or entity microdata name
 FromId int // run id or set id to select input parameter, output table values or microdata from
 ReadPageLayout // read page first row offset, size and last page flag
 Filter []FilterColumn // dimension or attribute filters, final WHERE does join all filters by AND
 FilterById []FilterIdColumn // dimension or attribute filters by enum ids, final WHERE does join filters by AND
 OrderBy []OrderByColumn // order by columnns, if empty then dimension id ascending order is used
}

Methods:

POST /api/model/:model/run/:run/microdata/compare

For example:

curl -v -X POST -H "Content-Type: application/json" http://localhost:4040/api/model/modelOne/run/Microdata%20in%20database/microdata/compare -d @read_m1_person_cmp_1.j
son

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

:run - (required) model run digest, run stamp or run name

Model run can be identified by run digest, run stamp or run name. It is recommended to use digest because it is uniquely identifies model run.
Run stamp, if not explicitly specified as model run option, automatically generated as timestamp string, ex.: 2016_08_17_21_07_55_123. It is
also possible to use name, which is more human readable than digest, but if there are multiple runs with same name in database than result is
undefined.

JSON body arguments:

Example 1: Compare Person entity between [base] model run and [variant] model run: Microdata other in database by OM_AVG() average Income[variant]

- Income[base] value and group it by AgeGroup , Sex dimension attributes.

{
 "Name": "Person",
 "Calculation": [{
 "Calculate": "OM_AVG(Income[variant] - Income[base])",
 "CalcId": 2401,
 "Name": "Avg_Income"
 }
],
 "GroupBy": [
 "AgeGroup",
 "Sex"
],
 "Runs": [
 "Microdata other in database"
]
}

Example 2.

compare Person entity

between [base] model run and [variant] model run: Microdata other in database

calculate two values:
OM_AVG() average of Income[variant] - Income[base] value, adjusted by using parameter StartingSeed values

OM_AVG() average of Salary + Pension value, adjusted by using parameter StartingSeed values

and group it by AgeGroup , Sex dimension attributes

filter only rows where:
dimension AgeGroup IN ["20-30", "40+"]

and dimension Sex = "F"

{
"Name": "Person",
"Calculation": [{
 "Calculate": "OM_AVG((Income[variant] - Income[base]) * (param.StartingSeed[variant] - param.StartingSeed[base]))",
 "CalcId": 2401,
 "Name": "Avg_Income_adjusted"
 }, {
 "Calculate": "param.StartingSeed + OM_AVG(Salary + Pension)",
 "CalcId": 2408,
 "Name": "Avg_Salary_Pension_adjusted"
 }
],
"GroupBy": [
 "AgeGroup",
 "Sex"
],
"Runs": [
 "Microdata other in database"
],
"Offset": 0,
"Size": 100,
"IsFullPage": true,
"Filter": [{
 "Name": "AgeGroup",
 "Op": "IN",
 "Values": ["20-30", "40+"]
 }, {
 "Name": "Sex",
 "Op": "=",
 "Values": ["F"]
 }
]
}

Name - (required) entity name
Offset - (optional) zero-based start row to select aggreagted microdata values
Size - (optional) max row count to select rows, if size <= 0 then all rows selected
IsFullPage - (optional) if true then always return non-empty last page of data
Filter - (optional) conditions to filter dimension attributes
OrderBy - (optional) list of columns indexes (one based) to order by

Filter conditions joined by AND and can have following operations:

= - enum equal to: AgeGroup = "20-30"
!= - enum not equal to: AgeGroup <> "20-30"
> - enum greater than: AgeGroup > "20-30"
>= - enum greater or equal: AgeGroup >= "20-30"
< - enum less than: AgeGroup < "20-30"
<= - enum less or equal: AgeGroup <= "20-30"
IN - enum is in the list of: AgeGroup IN ("20-30", "30-40", "40+")
BETWEEN - between min and max: AgeGroup BETWEEN "30-40" AND "all"
IN_AUTO - automatically choose most suitable: = or != or IN or BETWEEN

Keep in mind: dimension enums are always ordered by id's, not by code and result of filter Sex < "M" may not be Sex = "F" .

Order by specified by one-based column(s) index(es) in result. Columns always contain enum id's, not enum codes and therefore result ordered
by id's. First two columns are run_id, calc_id :

 SELECT run_id, CalcId AS calc_id, AgeGroup, Sex, ..., calc_value FROM ORDER BY 1, 2,...

JSON response:

{
 Layout: {
 Offset: actual first row number of the page data (zero-base),
 Size: actual data page row count,
 IsLastPage: true if this is last page of data
 },
 Page: [....page of data...]
}

Result:

* Trying [::1]:4040...
* Connected to localhost (::1) port 4040
> POST /api/model/modelOne/run/Microdata%20in%20database/microdata/compare HTTP/1.1
> Host: localhost:4040
> User-Agent: curl/8.4.0
> Accept: */*
> Content-Type: application/json
> Content-Length: 689
>
< HTTP/1.1 200 OK
< Content-Type: application/json
< Date: Fri, 29 Dec 2023 04:20:36 GMT
< Content-Length: 1214
<
{
 "Page": [{
 "Attr": [{
 "IsNull": false,
 "Value": "20-30"
 }, {
 "IsNull": false,
 "Value": "F"
 }, {
 "IsNull": false,
 "Value": 100657151.25
 }
],
 "CalcName": "Avg_Salary_Pension",
 "RunDigest": "a59c91359c4cd98f6275529c798d2485"
 }, {
 "Attr": [{
 "IsNull": false,
 "Value": "40+"
 }, {
 "IsNull": false,
 "Value": "F"
 }, {
 "IsNull": false,
 "Value": 57665830.54215979
 }
],
 "CalcName": "Avg_Salary_Pension",
 "RunDigest": "a59c91359c4cd98f6275529c798d2485"
 }, {
 "Attr": [{
 "IsNull": false,
 "Value": "20-30"
 }, {
 "IsNull": false,
 "Value": "F"

 "Value": "F"
 }, {
 "IsNull": false,
 "Value": -67112960
 }
],
 "CalcName": "Avg_Income",
 "RunDigest": "86135ceed94d1239937a42e088a7fcb7"
 }, {
 "Attr": [{
 "IsNull": false,
 "Value": "40+"
 }, {
 "IsNull": false,
 "Value": "F"
 }, {
 "IsNull": false,
 "Value": -35538991.09092548
 }
],
 "CalcName": "Avg_Income",
 "RunDigest": "86135ceed94d1239937a42e088a7fcb7"
 }, {
 "Attr": [{
 "IsNull": false,
 "Value": "20-30"
 }, {
 "IsNull": false,
 "Value": "F"
 }, {
 "IsNull": false,
 "Value": 50322431.25
 }
],
 "CalcName": "Avg_Salary_Pension",
 "RunDigest": "86135ceed94d1239937a42e088a7fcb7"
 }, {
 "Attr": [{
 "IsNull": false,
 "Value": "40+"
 }, {
 "IsNull": false,
 "Value": "F"
 }, {
 "IsNull": false,
 "Value": 28829395.64922502
 }
],
 "CalcName": "Avg_Salary_Pension",
 "RunDigest": "86135ceed94d1239937a42e088a7fcb7"
 }
],
 "Layout": {
 "Offset": 0,
 "Size": 6,
 "IsLastPage": true,
 "IsFullPage": true
 }
}

Read a "page" of microdata values and compare model runs.

Compare [base] and [variant] model runs microdata value attributes (float of integer type attributes), group it by dimension attributes (enum-based
or bool type attributes).

Compare one or more microdata value attributes (float of integer type attribute). For example, two comparisons: OM_AVG(Income[variant] -

Income[base]) , OM_MAX(100 * (Salary[variant] + Pension[variant]) / Income[base]) .

It is also posiible to include aggreagted value attribute(s) for each single run, for example: OM_MAX(Salary) , OM_MIN(Pension) .

Group by one or more dimension attributes (enum-based or bool type attribute). For example, group by two dimension attributes: AgeGroup ,

Sex .

Page is part of output table values defined by zero-based "start" row number and row count. If row count <= 0 then all rows below start row
number returned.

Dimension(s) returned as enum id, not enum codes.

Method verb must be POST and Content-Type header "application/json".

Following aggregation functions avaliable:

OM_AVG mean of accumulators sub-values

OM_SUM sum of accumulators sub-values

OM_COUNT count of accumulators sub-values (excluding NULL's)

OM_COUNT_IF count values matching condition

OM_MAX maximum of accumulators sub-values

OM_MIN minimum of accumulators sub-values

OM_VAR variance of accumulators sub-values

OM_SD standard deviation of accumulators sub-values

OM_SE standard error of accumulators sub-values

OM_CV coefficient of variation of accumulators sub-values

It is also possible to use parameter(s) in calculation, parameter must be a scalar of float or integer type. For example: OM_COUNT_IF((Income[variant -

Income[base]) > param.High[base]) , where param.High[base] is a value of scalar parameter High in [base] model run.

For more details please see: Model Output Expressions

JSON body POSTed to specify entity name, page size, row count, filters and row order. It is expected to be JSON representation of
db.ReadCompareMicroLayout structure from Go library. See also: db.ReadLayout structure from Go library.

Read microdata run comparison (enum id's)

https://github.com/openmpp/openmpp.github.io/wiki/Model-Output-Expressions
https://pkg.go.dev/github.com/openmpp/go/ompp/db#ReadCompareMicroLayout
https://pkg.go.dev/github.com/openmpp/go/ompp/db#ReadLayout

// ReadCompareMicroLayout to compare microdata runs with base run using multiple comparison aggregations and/or calculation aggregations.
//
// Comparison aggregation must contain [base] and [variant] attribute(s), ex.: OM_AVG(Income[base] - Income[variant]).
// Calculation aggregation is attribute(s) aggregation expression, ex.: OM_MAX(Income) / OM_MIN(Salary).
type ReadCompareMicroLayout struct {
 ReadCalculteMicroLayout // aggregation measures and group by attributes
 Runs []string // runs to compare: list of digest, stamp or name
}

// ReadCalculteMicroLayout describe microdata generation read layout, aggregation measures and group by attributes.
type ReadCalculteMicroLayout struct {
 ReadLayout // entity name, run id, page size, where filters and order by
 CalculateMicroLayout // microdata aggregations
}

// CalculateMicroLayout describes aggregations of microdata.
//
// It can be comparison aggregations and/or calculation aggregations.
// Comparison aggregation must contain [base] and [variant] attribute(s), ex.: OM_AVG(Income[base] - Income[variant]).
// Calculation aggregation is attribute(s) aggregation expression, ex.: OM_MAX(Income) / OM_MIN(Salary).
type CalculateMicroLayout struct {
 Calculation []CalculateLayout // aggregation measures, ex.: OM_MIN(Salary), OM_AVG(Income[base] - Income[variant])
 GroupBy []string // attributes to group by
}

// CalculateLayout describes calculation expression for parameters, output table values or microdata entity.
// It can be comparison calculation for multiple model runs, ex.: Expr0[base] - Expr0[variant].
type CalculateLayout struct {
 Calculate string // expression to calculate, ex.: Expr0[base] - Expr0[variant]
 CalcId int // calculated expression id, calc_id column in csv, ex.: 0, 1200, 2400
 Name string // calculated expression name, calc_name column in csv, ex.: Expr0, AVG_Expr0, RATIO_Expro0
}

// ReadLayout describes source and size of data page to read input parameter, output table values or microdata.
//
// Row filters combined by AND and allow to select dimension or attribute items,
// it can be enum codes or enum id's, ex.: dim0 = 'CA' AND dim1 IN (2010, 2011, 2012)
type ReadLayout struct {
 Name string // parameter name, output table name or entity microdata name
 FromId int // run id or set id to select input parameter, output table values or microdata from
 ReadPageLayout // read page first row offset, size and last page flag
 Filter []FilterColumn // dimension or attribute filters, final WHERE does join all filters by AND
 FilterById []FilterIdColumn // dimension or attribute filters by enum ids, final WHERE does join filters by AND
 OrderBy []OrderByColumn // order by columnns, if empty then dimension id ascending order is used
}

Methods:

POST /api/model/:model/run/:run/microdata/compare-id

For example:

curl -v -X POST -H "Content-Type: application/json" http://localhost:4040/api/model/modelOne/run/Microdata%20in%20database/microdata/compare-id -d @read_m1_person_cmp
_1.json

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

:run - (required) model run digest, run stamp or run name

Model run can be identified by run digest, run stamp or run name. It is recommended to use digest because it is uniquely identifies model run.
Run stamp, if not explicitly specified as model run option, automatically generated as timestamp string, ex.: 2016_08_17_21_07_55_123. It is
also possible to use name, which is more human readable than digest, but if there are multiple runs with same name in database than result is
undefined.

JSON body arguments:

Example 1: Compare Person entity between [base] model run and [variant] model run: Microdata other in database by OM_AVG() average Income[variant]

- Income[base] value and group it by AgeGroup , Sex dimension attributes.

{
 "Name": "Person",
 "Calculation": [{
 "Calculate": "OM_AVG(Income[variant] - Income[base])",
 "CalcId": 2401,
 "Name": "Avg_Income"
 }
],
 "GroupBy": [
 "AgeGroup",
 "Sex"
],
 "Runs": [
 "Microdata other in database"
]
}

Example 2.

compare Person entity

between [base] model run and [variant] model run: Microdata other in database

calculate two values:
OM_AVG() average of Income[variant] - Income[base] value, adjusted by using parameter StartingSeed values

OM_AVG() average of Salary + Pension value, adjusted by using parameter StartingSeed values

and group it by AgeGroup , Sex dimension attributes

filter only rows where:
enum id's of dimension AgeGroup IN [20, 40]

and enum id's of dimension Sex = 1

{
"Name": "Person",
"Calculation": [{
 "Calculate": "OM_AVG((Income[variant] - Income[base]) * (param.StartingSeed[variant] - param.StartingSeed[base]))",
 "CalcId": 2401,
 "Name": "Avg_Income_adjusted"
 }, {
 "Calculate": "param.StartingSeed + OM_AVG(Salary + Pension)",
 "CalcId": 2408,
 "Name": "Avg_Salary_Pension_adjusted"
 }
],
"GroupBy": [
 "AgeGroup",
 "Sex"
],
"Runs": [
 "Microdata other in database"
],
"Offset": 0,
"Size": 100,
"IsFullPage": true,
"FilterById": [{
 "Name": "AgeGroup",
 "Op": "IN",
 "EnumIds": [20, 40]
 }, {
 "Name": "Sex",
 "Op": "=",
 "EnumIds": [1]
 }
]
}

Name - (required) entity name
Offset - (optional) zero-based start row to select aggreagted microdata values
Size - (optional) max row count to select rows, if size <= 0 then all rows selected
IsFullPage - (optional) if true then always return non-empty last page of data
FilterById - (optional) conditions to filter enum id's of dimension attributes
OrderBy - (optional) list of columns indexes (one based) to order by

Filter conditions joined by AND and can have following operations:

= - enum equal to: AgeGroup = "20-30"
!= - enum not equal to: AgeGroup <> "20-30"
> - enum greater than: AgeGroup > "20-30"
>= - enum greater or equal: AgeGroup >= "20-30"
< - enum less than: AgeGroup < "20-30"
<= - enum less or equal: AgeGroup <= "20-30"
IN - enum is in the list of: AgeGroup IN ("20-30", "30-40", "40+")
BETWEEN - between min and max: AgeGroup BETWEEN "30-40" AND "all"
IN_AUTO - automatically choose most suitable: = or != or IN or BETWEEN

Order by specified by one-based column(s) index(es) in result. Columns always contain enum id's, not enum codes and therefore result ordered
by id's. First two columns are run_id, calc_id :

 SELECT run_id, CalcId AS calc_id, AgeGroup, Sex, ..., calc_value FROM ORDER BY 1, 2,...

JSON response:

{
 Layout: {
 Offset: actual first row number of the page data (zero-base),
 Size: actual data page row count,
 IsLastPage: true if this is last page of data
 },
 Page: [....page of data...]
}

Result:

* Trying [::1]:4040...
* Connected to localhost (::1) port 4040
> POST /api/model/modelOne/run/Microdata%20in%20database/microdata/compare-id HTTP/1.1
> Host: localhost:4040
> User-Agent: curl/8.4.0
> Accept: */*
> Content-Type: application/json
> Content-Length: 685
>
< HTTP/1.1 200 OK
< Content-Type: application/json
< Date: Fri, 29 Dec 2023 04:28:01 GMT
< Content-Length: 876
<
{
 "Page": [{
 "Attr": [{
 "IsNull": false,
 "Value": 20
 }, {
 "IsNull": false,
 "Value": 1
 }, {
 "IsNull": false,
 "Value": 100657151.25
 }
],
 "CalcId": 2408,
 "RunId": 219
 }, {
 "Attr": [{
 "IsNull": false,
 "Value": 40
 }, {
 "IsNull": false,
 "Value": 1
 }, {
 "IsNull": false,
 "Value": 57665830.54215979
 }
],
 "CalcId": 2408,
 "RunId": 219
 }, {
 "Attr": [{
 "IsNull": false,
 "Value": 20
 }, {
 "IsNull": false,
 "Value": 1
 }, {
 "IsNull": false,
 "Value": -67112960

 "Value": -67112960
 }
],
 "CalcId": 2401,
 "RunId": 221
 }, {
 "Attr": [{
 "IsNull": false,
 "Value": 40
 }, {
 "IsNull": false,
 "Value": 1
 }, {
 "IsNull": false,
 "Value": -35538991.09092548
 }
],
 "CalcId": 2401,
 "RunId": 221
 }, {
 "Attr": [{
 "IsNull": false,
 "Value": 20
 }, {
 "IsNull": false,
 "Value": 1
 }, {
 "IsNull": false,
 "Value": 50322431.25
 }
],
 "CalcId": 2408,
 "RunId": 221
 }, {
 "Attr": [{
 "IsNull": false,
 "Value": 40
 }, {
 "IsNull": false,
 "Value": 1
 }, {
 "IsNull": false,
 "Value": 28829395.64922502
 }
],
 "CalcId": 2408,
 "RunId": 221
 }
],
 "Layout": {
 "Offset": 0,
 "Size": 6,
 "IsLastPage": true,
 "IsFullPage": true
 }
}

Read a "page" of parameter values from workset.

Page is part of parameter values defined by zero-based "start" row number and row count. If row count <= 0 then all rows returned.

Dimension(s) and enum-based parameters returned as enum codes.

Methods:

GET /api/model/:model/workset/:set/parameter/:name/value
GET /api/model/:model/workset/:set/parameter/:name/value/start/:start
GET /api/model/:model/workset/:set/parameter/:name/value/start/:start/count/:count

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

:set - (required) workset name

Workset is uniquely identified by name (inside the model). Different models can have worksets with same name, i.e. each model can have
workset with name "Default".

:name - (required) parameter name

:start - (optional) start "page" row number, zero-based.
:count - (optional) "page" size, number of rows to select, if count <= 0 then all rows selected.

Call examples:

http://localhost:4040/api/model/modelOne/workset/modelOne_other/parameter/ageSex/value
http://localhost:4040/api/model/modelOne/workset/modelOne_other/parameter/ageSex/value/start/2
http://localhost:4040/api/model/modelOne/workset/modelOne_other/parameter/ageSex/value/start/2/count/4
http://localhost:4040/api/model/_201208171604590148_/workset/modelOne_set/parameter/ageSex/value

Return example:

[{"Dims":["10-20","M"],"IsNull":false,"Value":1.1,"SubId":0}
,{"Dims":["10-20","F"],"IsNull":false,"Value":1.2,"SubId":0}
,{"Dims":["20-30","M"],"IsNull":false,"Value":1.3,"SubId":0}
,{"Dims":["20-30","F"],"IsNull":false,"Value":1.4,"SubId":0}
,{"Dims":["30-40","M"],"IsNull":false,"Value":1.5,"SubId":0}
,{"Dims":["30-40","F"],"IsNull":false,"Value":1.6,"SubId":0}
,{"Dims":["40+","M"],"IsNull":false,"Value":1.7,"SubId":0}
,{"Dims":["40+","F"],"IsNull":false,"Value":1.8,"SubId":0}
]

GET parameter values from workset

Read a "page" of parameter values from model run.

Page is part of parameter values defined by zero-based "start" row number and row count. If row count <= 0 then all rows returned.

Dimension(s) and enum-based parameters returned as enum codes.

Methods:

GET /api/model/:model/run/:run/parameter/:name/value
GET /api/model/:model/run/:run/parameter/:name/value/start/:start
GET /api/model/:model/run/:run/parameter/:name/value/start/:start/count/:count

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

:run - (required) model run digest, run stamp or run name

Model run can be identified by run digest, run stamp or run name. It is recommended to use digest because it is uniquely identifies model run.
Run stamp, if not explicitly specified as model run option, automatically generated as timestamp string, ex.: 2016_08_17_21_07_55_123. It is
also possible to use name, which is more human readable than digest, but if there are multiple runs with same name in database than result is
undefined.

:name - (required) parameter name

:start - (optional) start "page" row number, zero-based.
:count - (optional) "page" size, number of rows to select, if count <= 0 then all rows selected.

Call examples:

http://localhost:4040/api/model/modelOne/run/Default/parameter/ageSex/value
http://localhost:4040/api/model/modelOne/run/Default/parameter/ageSex/value/start/2
http://localhost:4040/api/model/modelOne/run/Default/parameter/ageSex/value/start/2/count/4
http://localhost:4040/api/model/_201208171604590148_/run/f172e98da17beb058f30f11768053456/parameter/ageSex/value
http://localhost:4040/api/model/_201208171604590148_/run/2019_01_17_19_59_52_998/parameter/ageSex/value

Return example:

[{"Dims":["10-20","M"],"IsNull":false,"Value":0.1,"SubId":0}
,{"Dims":["10-20","F"],"IsNull":false,"Value":0.2,"SubId":0}
,{"Dims":["20-30","M"],"IsNull":false,"Value":0.3,"SubId":0}
,{"Dims":["20-30","F"],"IsNull":false,"Value":0.4,"SubId":0}
,{"Dims":["30-40","M"],"IsNull":false,"Value":0.5,"SubId":0}
,{"Dims":["30-40","F"],"IsNull":false,"Value":0.6,"SubId":0}
,{"Dims":["40+","M"],"IsNull":false,"Value":0.7,"SubId":0}
,{"Dims":["40+","F"],"IsNull":false,"Value":0.8,"SubId":0}
]

GET parameter values from model run

Read a "page" of output table expression(s) values from model run.

Page is part of output table values defined by zero-based "start" row number and row count. If row count <= 0 then all rows returned.

Dimension(s) returned as enum codes or as string values if dimension type is simple (integer or boolean).

Methods:

GET /api/model/:model/run/:run/table/:name/expr
GET /api/model/:model/run/:run/table/:name/expr/start/:start
GET /api/model/:model/run/:run/table/:name/expr/start/:start/count/:count

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

:run - (required) model run digest, run stamp or run name

Model run can be identified by run digest, run stamp or run name. It is recommended to use digest because it is uniquely identifies model run.
Run stamp, if not explicitly specified as model run option, automatically generated as timestamp string, ex.: 2016_08_17_21_07_55_123. It is
also possible to use name, which is more human readable than digest, but if there are multiple runs with same name in database than result is
undefined.

:name - (required) output table name

:start - (optional) start "page" row number, zero-based.
:count - (optional) "page" size, number of rows to select, if count <= 0 then all rows selected.

Call examples:

http://localhost:4040/api/model/modelOne/run/Default/table/salarySex/expr
http://localhost:4040/api/model/modelOne/run/Default/table/salarySex/expr/start/2
http://localhost:4040/api/model/modelOne/run/Default/table/salarySex/expr/start/2/count/4
http://localhost:4040/api/model/_201208171604590148_/run/f172e98da17beb058f30f11768053456/table/salarySex/expr
http://localhost:4040/api/model/_201208171604590148_/run/2019_01_17_19_59_52_998/table/salarySex/expr

Return example:

GET output table expression(s) from model run

[{"Dims":["L","M"],"Value":50,"IsNull":false,"ExprId":0}
,{"Dims":["L","F"],"Value":60,"IsNull":false,"ExprId":0}
,{"Dims":["L","all"],"Value":1,"IsNull":false,"ExprId":0}
,{"Dims":["M","M"],"Value":51.599999999999994,"IsNull":false,"ExprId":0}
,{"Dims":["M","F"],"Value":62,"IsNull":false,"ExprId":0}
,{"Dims":["M","all"],"Value":2,"IsNull":false,"ExprId":0}
,{"Dims":["H","M"],"Value":53.2,"IsNull":false,"ExprId":0}
,{"Dims":["H","F"],"Value":64,"IsNull":false,"ExprId":0}
,{"Dims":["H","all"],"Value":3,"IsNull":false,"ExprId":0}
,{"Dims":["L","M"],"Value":1,"IsNull":false,"ExprId":1}
,{"Dims":["L","F"],"Value":2,"IsNull":false,"ExprId":1}
,{"Dims":["L","all"],"Value":801,"IsNull":false,"ExprId":1}
,{"Dims":["M","M"],"Value":3,"IsNull":false,"ExprId":1}
,{"Dims":["M","F"],"Value":4,"IsNull":false,"ExprId":1}
,{"Dims":["M","all"],"Value":803,"IsNull":false,"ExprId":1}
,{"Dims":["H","M"],"Value":4,"IsNull":false,"ExprId":1}
,{"Dims":["H","F"],"Value":5,"IsNull":false,"ExprId":1}
,{"Dims":["H","all"],"Value":804,"IsNull":false,"ExprId":1}
,{"Dims":["L","M"],"Value":50,"IsNull":false,"ExprId":2}
,{"Dims":["L","F"],"Value":60,"IsNull":false,"ExprId":2}
,{"Dims":["L","all"],"Value":1,"IsNull":false,"ExprId":2}
,{"Dims":["M","M"],"Value":51.599999999999994,"IsNull":false,"ExprId":2}
,{"Dims":["M","F"],"Value":62,"IsNull":false,"ExprId":2}
,{"Dims":["M","all"],"Value":2,"IsNull":false,"ExprId":2}
,{"Dims":["H","M"],"Value":53.2,"IsNull":false,"ExprId":2}
,{"Dims":["H","F"],"Value":64,"IsNull":false,"ExprId":2}
,{"Dims":["H","all"],"Value":3,"IsNull":false,"ExprId":2}
,{"Dims":["L","M"],"Value":50,"IsNull":false,"ExprId":3}
,{"Dims":["L","F"],"Value":120,"IsNull":false,"ExprId":3}
,{"Dims":["L","all"],"Value":801,"IsNull":false,"ExprId":3}
,{"Dims":["M","M"],"Value":154.79999999999998,"IsNull":false,"ExprId":3}
,{"Dims":["M","F"],"Value":248,"IsNull":false,"ExprId":3}
,{"Dims":["M","all"],"Value":1606,"IsNull":false,"ExprId":3}
,{"Dims":["H","M"],"Value":212.8,"IsNull":false,"ExprId":3}
,{"Dims":["H","F"],"Value":320,"IsNull":false,"ExprId":3}
,{"Dims":["H","all"],"Value":2412,"IsNull":false,"ExprId":3}
]

Read a "page" of output table calculated expression(s) values from model run.

Read output table expression(s) and calculate additrional measures. Measures calculated as one of the following:

for each table expression calculate one of: avg, sum, count, max, min, var, sd, se, cv

as arbitrary aggreagated expressions provided as comma separated list

Page is part of output table values defined by zero-based "start" row number and row count. If row count <= 0 then all rows returned.

Dimension(s) returned as enum codes or as string values if dimension type is simple (integer or boolean).

Methods:

GET /api/model/:model/run/:run/table/:name/calc/:calc
GET /api/model/:model/run/:run/table/:name/calc/:calc/start/:start
GET /api/model/:model/run/:run/table/:name/calc/:calc/start/:start/count/:count

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

:run - (required) model run digest, run stamp or run name

Model run can be identified by run digest, run stamp or run name. It is recommended to use digest because it is uniquely identifies model run.
Run stamp, if not explicitly specified as model run option, automatically generated as timestamp string, ex.: 2016_08_17_21_07_55_123. It is
also possible to use name, which is more human readable than digest, but if there are multiple runs with same name in database than result is
undefined.

:name - (required) output table name

:calc - (required) name of additional measure to calculate

Additional measure must be one of:

avg mean of expression sub-values

sum sum of expression sub-values

count count of expression sub-values (excluding NULL's)

max maximum of expression sub-values

min minimum of expression sub-values

var variance of expression sub-values

sd standard deviation of expression sub-values

se standard error of expression sub-values

cv coefficient of variation of expression sub-values

Or a list of comma-separated aggreagated expressions, for example: OM_AVG(acc0) , 2 * SQRT(OM_SUM(acc1) - OM_SD(acc0))

It is also possible to use parameter(s) in calculation, parameter must be a scalar of float or integer type. For example: OM_COUNT_IF(acc1 >

param.High) , where param.High is a value of scalar parameter High in that model run.

Following aggregation functions avaliable:

GET output table calculated expression(s) from model run

OM_AVG mean of accumulators sub-values

OM_SUM sum of accumulators sub-values

OM_COUNT count of accumulators sub-values (excluding NULL's)

OM_COUNT_IF count values matching condition

OM_MAX maximum of accumulators sub-values

OM_MIN minimum of accumulators sub-values

OM_VAR variance of accumulators sub-values

OM_SD standard deviation of accumulators sub-values

OM_SE standard error of accumulators sub-values

OM_CV coefficient of variation of accumulators sub-values

For more details please see: Model Output Expressions

:start - (optional) start "page" row number, zero-based.
:count - (optional) "page" size, number of rows to select, if count <= 0 then all rows selected.

Call examples:

http://localhost:4040/api/model/RiskPaths/run/RiskPaths_Default/table/T04_FertilityRatesByAgeGroup/calc/se
http://localhost:4040/api/model/_201208171604590148_/run/f172e98da17beb058f30f11768053456/table/salarySex/calc/se/start/2
http://localhost:4040/api/model/_201208171604590148_/run/f172e98da17beb058f30f11768053456/table/salarySex/calc/se/start/2/count/4

http://localhost:4040/api/model/_201208171604590148_/run/2019_01_17_19_59_52_998/table/salarySex/calc/se

http://localhost:4040/api/model/modelOne/run/Default/table/salarySex/calc/avg
http://localhost:4040/api/model/modelOne/run/Default/table/salarySex/calc/sum
http://localhost:4040/api/model/modelOne/run/Default/table/salarySex/calc/count
http://localhost:4040/api/model/modelOne/run/Default/table/salarySex/calc/min
http://localhost:4040/api/model/modelOne/run/Default/table/salarySex/calc/max
http://localhost:4040/api/model/modelOne/run/Default/table/salarySex/calc/var
http://localhost:4040/api/model/modelOne/run/Default/table/salarySex/calc/sd
http://localhost:4040/api/model/modelOne/run/Default/table/salarySex/calc/se
http://localhost:4040/api/model/modelOne/run/Default/table/salarySex/calc/cv

http://localhost:4040/api/model/modelOne/run/Default-4/table/salarySex/calc/OM_AVG(acc0),2*SQRT(OM_SUM(acc1)-OM_SD(acc0))
http://localhost:4040/api/model/modelOne/run/Default-4/table/salarySex/calc/OM_COUNT_IF(acc0%3Cparam.StartingSeed)

Note: OM_COUNT_IF(acc0%3Cparam.StartingSeed) is URL encoded: OM_COUNT_IF(acc0<param.StartingSeed)

Example:

http://localhost:4040/api/model/RiskPaths/run/RiskPaths_Default_4/table/T04_FertilityRatesByAgeGroup/calc/se

[
 {
 "Dims": [
 "(-∞,15)",
 "US_NEVER_IN_UNION"
],
 "IsNull": false,
 "Value": 0,
 "CalcName": "Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "(-∞,15)",
 "US_FIRST_UNION_PERIOD1"
],
 "IsNull": true,
 "Value": 0,
 "CalcName": "Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "(-∞,15)",

https://github.com/openmpp/openmpp.github.io/wiki/Model-Output-Expressions

 "(-∞,15)",
 "US_FIRST_UNION_PERIOD2"
],
 "IsNull": true,
 "Value": 0,
 "CalcName": "Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "(-∞,15)",
 "US_AFTER_FIRST_UNION"
],
 "IsNull": true,
 "Value": 0,
 "CalcName": "Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "(-∞,15)",
 "US_SECOND_UNION"
],
 "IsNull": true,
 "Value": 0,
 "CalcName": "Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "(-∞,15)",
 "US_AFTER_SECOND_UNION"
],
 "IsNull": true,
 "Value": 0,
 "CalcName": "Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[15,17.5)",
 "US_NEVER_IN_UNION"
],
 "IsNull": false,
 "Value": 0.01831399787736417,
 "CalcName": "Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[15,17.5)",
 "US_FIRST_UNION_PERIOD1"
],
 "IsNull": false,
 "Value": 0.31524674743336684,
 "CalcName": "Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[15,17.5)",
 "US_FIRST_UNION_PERIOD2"
],
 "IsNull": true,
 "Value": 0,
 "CalcName": "Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[15,17.5)",
 "US_AFTER_FIRST_UNION"
],
 "IsNull": false,
 "Value": 0,
 "CalcName": "Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[15,17.5)",
 "US_SECOND_UNION"
],
 "IsNull": false,
 "Value": 0,
 "CalcName": "Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },

 {
 "Dims": [
 "[15,17.5)",
 "US_AFTER_SECOND_UNION"
],
 "IsNull": true,
 "Value": 0,
 "CalcName": "Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[17.5,20)",
 "US_NEVER_IN_UNION"
],
 "IsNull": false,
 "Value": 0.05375412945398035,
 "CalcName": "Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[17.5,20)",
 "US_FIRST_UNION_PERIOD1"
],
 "IsNull": false,
 "Value": 0.7131296479419359,
 "CalcName": "Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[17.5,20)",
 "US_FIRST_UNION_PERIOD2"
],
 "IsNull": false,
 "Value": 0.27913884088946966,
 "CalcName": "Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[17.5,20)",
 "US_AFTER_FIRST_UNION"
],
 "IsNull": false,
 "Value": 0.03403061129977049,
 "CalcName": "Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[17.5,20)",
 "US_SECOND_UNION"
],
 "IsNull": false,
 "Value": 0.6313567713962284,
 "CalcName": "Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[17.5,20)",
 "US_AFTER_SECOND_UNION"
],
 "IsNull": true,
 "Value": 0,
 "CalcName": "Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[20,22.5)",
 "US_NEVER_IN_UNION"
],
 "IsNull": false,
 "Value": 0.054454055397003744,
 "CalcName": "Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[20,22.5)",
 "US_FIRST_UNION_PERIOD1"
],
 "IsNull": false,
 "Value": 0.8142261153929924,
 "CalcName": "Expr0",

 "CalcName": "Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[20,22.5)",
 "US_FIRST_UNION_PERIOD2"
],
 "IsNull": false,
 "Value": 0.22599976710820624,
 "CalcName": "Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[20,22.5)",
 "US_AFTER_FIRST_UNION"
],
 "IsNull": false,
 "Value": 0.02252894224790954,
 "CalcName": "Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[20,22.5)",
 "US_SECOND_UNION"
],
 "IsNull": false,
 "Value": 0.552801004995511,
 "CalcName": "Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[20,22.5)",
 "US_AFTER_SECOND_UNION"
],
 "IsNull": false,
 "Value": 0,
 "CalcName": "Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[22.5,25)",
 "US_NEVER_IN_UNION"
],
 "IsNull": false,
 "Value": 0.053909930664369304,
 "CalcName": "Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[22.5,25)",
 "US_FIRST_UNION_PERIOD1"
],
 "IsNull": false,
 "Value": 0.8095822302661376,
 "CalcName": "Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[22.5,25)",
 "US_FIRST_UNION_PERIOD2"
],
 "IsNull": false,
 "Value": 0.19515570806104682,
 "CalcName": "Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[22.5,25)",
 "US_AFTER_FIRST_UNION"
],
 "IsNull": false,
 "Value": 0.04149012389398613,
 "CalcName": "Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[22.5,25)",
 "US_SECOND_UNION"
],
 "IsNull": false,

 "IsNull": false,
 "Value": 0.5994579474940404,
 "CalcName": "Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[22.5,25)",
 "US_AFTER_SECOND_UNION"
],
 "IsNull": false,
 "Value": 0,
 "CalcName": "Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[25,27.5)",
 "US_NEVER_IN_UNION"
],
 "IsNull": false,
 "Value": 0.041598506770988926,
 "CalcName": "Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[25,27.5)",
 "US_FIRST_UNION_PERIOD1"
],
 "IsNull": false,
 "Value": 0.6024591444120154,
 "CalcName": "Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[25,27.5)",
 "US_FIRST_UNION_PERIOD2"
],
 "IsNull": false,
 "Value": 0.18708044915078834,
 "CalcName": "Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[25,27.5)",
 "US_AFTER_FIRST_UNION"
],
 "IsNull": false,
 "Value": 0.020349606948328054,
 "CalcName": "Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[25,27.5)",
 "US_SECOND_UNION"
],
 "IsNull": false,
 "Value": 1.0090672465971064,
 "CalcName": "Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[25,27.5)",
 "US_AFTER_SECOND_UNION"
],
 "IsNull": false,
 "Value": 0,
 "CalcName": "Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[27.5,30)",
 "US_NEVER_IN_UNION"
],
 "IsNull": false,
 "Value": 0.03146736899461647,
 "CalcName": "Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[27.5,30)",

 "[27.5,30)",
 "US_FIRST_UNION_PERIOD1"
],
 "IsNull": false,
 "Value": 0.4621989244428227,
 "CalcName": "Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[27.5,30)",
 "US_FIRST_UNION_PERIOD2"
],
 "IsNull": false,
 "Value": 0.1378516298224034,
 "CalcName": "Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[27.5,30)",
 "US_AFTER_FIRST_UNION"
],
 "IsNull": false,
 "Value": 0.022982490984116696,
 "CalcName": "Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[27.5,30)",
 "US_SECOND_UNION"
],
 "IsNull": false,
 "Value": 0.3622228137167969,
 "CalcName": "Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[27.5,30)",
 "US_AFTER_SECOND_UNION"
],
 "IsNull": false,
 "Value": 0.057202677626031914,
 "CalcName": "Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[30,32.5)",
 "US_NEVER_IN_UNION"
],
 "IsNull": false,
 "Value": 0.041649739660050096,
 "CalcName": "Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[30,32.5)",
 "US_FIRST_UNION_PERIOD1"
],
 "IsNull": false,
 "Value": 0.549536875782365,
 "CalcName": "Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[30,32.5)",
 "US_FIRST_UNION_PERIOD2"
],
 "IsNull": false,
 "Value": 0.1100888012811952,
 "CalcName": "Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[30,32.5)",
 "US_AFTER_FIRST_UNION"
],
 "IsNull": false,
 "Value": 0.04683269746871016,
 "CalcName": "Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {

 {
 "Dims": [
 "[30,32.5)",
 "US_SECOND_UNION"
],
 "IsNull": false,
 "Value": 0.33029219738801313,
 "CalcName": "Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[30,32.5)",
 "US_AFTER_SECOND_UNION"
],
 "IsNull": false,
 "Value": 0,
 "CalcName": "Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[32.5,35)",
 "US_NEVER_IN_UNION"
],
 "IsNull": false,
 "Value": 0.022147682759750396,
 "CalcName": "Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[32.5,35)",
 "US_FIRST_UNION_PERIOD1"
],
 "IsNull": false,
 "Value": 0.24011920351426697,
 "CalcName": "Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[32.5,35)",
 "US_FIRST_UNION_PERIOD2"
],
 "IsNull": false,
 "Value": 0.07322050511146887,
 "CalcName": "Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[32.5,35)",
 "US_AFTER_FIRST_UNION"
],
 "IsNull": false,
 "Value": 0,
 "CalcName": "Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[32.5,35)",
 "US_SECOND_UNION"
],
 "IsNull": false,
 "Value": 0.3916092867847636,
 "CalcName": "Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[32.5,35)",
 "US_AFTER_SECOND_UNION"
],
 "IsNull": false,
 "Value": 0,
 "CalcName": "Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[35,37.5)",
 "US_NEVER_IN_UNION"
],
 "IsNull": false,
 "Value": 0.011848889031140083,
 "CalcName": "Expr0",

 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[35,37.5)",
 "US_FIRST_UNION_PERIOD1"
],
 "IsNull": false,
 "Value": 0.13186273037645685,
 "CalcName": "Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[35,37.5)",
 "US_FIRST_UNION_PERIOD2"
],
 "IsNull": false,
 "Value": 0.08309987275700664,
 "CalcName": "Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[35,37.5)",
 "US_AFTER_FIRST_UNION"
],
 "IsNull": false,
 "Value": 0.022104741738314906,
 "CalcName": "Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[35,37.5)",
 "US_SECOND_UNION"
],
 "IsNull": false,
 "Value": 0.27986398799940426,
 "CalcName": "Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[35,37.5)",
 "US_AFTER_SECOND_UNION"
],
 "IsNull": false,
 "Value": 0.11444275060810742,
 "CalcName": "Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[37.5,40)",
 "US_NEVER_IN_UNION"
],
 "IsNull": false,
 "Value": 0.017525081049451968,
 "CalcName": "Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[37.5,40)",
 "US_FIRST_UNION_PERIOD1"
],
 "IsNull": false,
 "Value": 0.1577477795548111,
 "CalcName": "Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[37.5,40)",
 "US_FIRST_UNION_PERIOD2"
],
 "IsNull": false,
 "Value": 0.05727119253571546,
 "CalcName": "Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[37.5,40)",
 "US_AFTER_FIRST_UNION"
],
 "IsNull": false,

 "IsNull": false,
 "Value": 0,
 "CalcName": "Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[37.5,40)",
 "US_SECOND_UNION"
],
 "IsNull": false,
 "Value": 0.16945519905993123,
 "CalcName": "Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[37.5,40)",
 "US_AFTER_SECOND_UNION"
],
 "IsNull": false,
 "Value": 0,
 "CalcName": "Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[40,∞)",
 "US_NEVER_IN_UNION"
],
 "IsNull": false,
 "Value": 0,
 "CalcName": "Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[40,∞)",
 "US_FIRST_UNION_PERIOD1"
],
 "IsNull": false,
 "Value": 0,
 "CalcName": "Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[40,∞)",
 "US_FIRST_UNION_PERIOD2"
],
 "IsNull": false,
 "Value": 0,
 "CalcName": "Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[40,∞)",
 "US_AFTER_FIRST_UNION"
],
 "IsNull": false,
 "Value": 0,
 "CalcName": "Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[40,∞)",
 "US_SECOND_UNION"
],
 "IsNull": false,
 "Value": 0,
 "CalcName": "Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[40,∞)",
 "US_AFTER_SECOND_UNION"
],
 "IsNull": false,
 "Value": 0,
 "CalcName": "Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "(-∞,15)",
 "US_NEVER_IN_UNION"

 "US_NEVER_IN_UNION"
],
 "IsNull": false,
 "Value": 0,
 "CalcName": "OM_SE_Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "(-∞,15)",
 "US_FIRST_UNION_PERIOD1"
],
 "IsNull": true,
 "Value": 0,
 "CalcName": "OM_SE_Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "(-∞,15)",
 "US_FIRST_UNION_PERIOD2"
],
 "IsNull": true,
 "Value": 0,
 "CalcName": "OM_SE_Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "(-∞,15)",
 "US_AFTER_FIRST_UNION"
],
 "IsNull": true,
 "Value": 0,
 "CalcName": "OM_SE_Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "(-∞,15)",
 "US_SECOND_UNION"
],
 "IsNull": true,
 "Value": 0,
 "CalcName": "OM_SE_Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "(-∞,15)",
 "US_AFTER_SECOND_UNION"
],
 "IsNull": true,
 "Value": 0,
 "CalcName": "OM_SE_Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[15,17.5)",
 "US_NEVER_IN_UNION"
],
 "IsNull": false,
 "Value": 0.000973984611518573,
 "CalcName": "OM_SE_Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[15,17.5)",
 "US_FIRST_UNION_PERIOD1"
],
 "IsNull": false,
 "Value": 0.024860412545759547,
 "CalcName": "OM_SE_Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[15,17.5)",
 "US_FIRST_UNION_PERIOD2"
],
 "IsNull": true,
 "Value": 0,
 "CalcName": "OM_SE_Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {

 {
 "Dims": [
 "[15,17.5)",
 "US_AFTER_FIRST_UNION"
],
 "IsNull": false,
 "Value": 0,
 "CalcName": "OM_SE_Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[15,17.5)",
 "US_SECOND_UNION"
],
 "IsNull": true,
 "Value": 0,
 "CalcName": "OM_SE_Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[15,17.5)",
 "US_AFTER_SECOND_UNION"
],
 "IsNull": true,
 "Value": 0,
 "CalcName": "OM_SE_Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[17.5,20)",
 "US_NEVER_IN_UNION"
],
 "IsNull": false,
 "Value": 0.0021489962375885207,
 "CalcName": "OM_SE_Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[17.5,20)",
 "US_FIRST_UNION_PERIOD1"
],
 "IsNull": false,
 "Value": 0.016185741408360488,
 "CalcName": "OM_SE_Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[17.5,20)",
 "US_FIRST_UNION_PERIOD2"
],
 "IsNull": false,
 "Value": 0.04582070104311915,
 "CalcName": "OM_SE_Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[17.5,20)",
 "US_AFTER_FIRST_UNION"
],
 "IsNull": false,
 "Value": 0.025795347742306313,
 "CalcName": "OM_SE_Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[17.5,20)",
 "US_SECOND_UNION"
],
 "IsNull": false,
 "Value": 0.7869023105120465,
 "CalcName": "OM_SE_Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[17.5,20)",
 "US_AFTER_SECOND_UNION"
],
 "IsNull": true,
 "Value": 0,
 "CalcName": "OM_SE_Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"

 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[20,22.5)",
 "US_NEVER_IN_UNION"
],
 "IsNull": false,
 "Value": 0.004127288570814012,
 "CalcName": "OM_SE_Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[20,22.5)",
 "US_FIRST_UNION_PERIOD1"
],
 "IsNull": false,
 "Value": 0.02043658375123932,
 "CalcName": "OM_SE_Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[20,22.5)",
 "US_FIRST_UNION_PERIOD2"
],
 "IsNull": false,
 "Value": 0.041408824916237076,
 "CalcName": "OM_SE_Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[20,22.5)",
 "US_AFTER_FIRST_UNION"
],
 "IsNull": false,
 "Value": 0.012711616731356437,
 "CalcName": "OM_SE_Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[20,22.5)",
 "US_SECOND_UNION"
],
 "IsNull": false,
 "Value": 0.17542003779519497,
 "CalcName": "OM_SE_Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[20,22.5)",
 "US_AFTER_SECOND_UNION"
],
 "IsNull": true,
 "Value": 0,
 "CalcName": "OM_SE_Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[22.5,25)",
 "US_NEVER_IN_UNION"
],
 "IsNull": false,
 "Value": 0.003881467816107038,
 "CalcName": "OM_SE_Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[22.5,25)",
 "US_FIRST_UNION_PERIOD1"
],
 "IsNull": false,
 "Value": 0.016193285699936572,
 "CalcName": "OM_SE_Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[22.5,25)",
 "US_FIRST_UNION_PERIOD2"
],
 "IsNull": false,

 "Value": 0.026391425572356776,
 "CalcName": "OM_SE_Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[22.5,25)",
 "US_AFTER_FIRST_UNION"
],
 "IsNull": false,
 "Value": 0.024820325593176193,
 "CalcName": "OM_SE_Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[22.5,25)",
 "US_SECOND_UNION"
],
 "IsNull": false,
 "Value": 0.3528132665325038,
 "CalcName": "OM_SE_Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[22.5,25)",
 "US_AFTER_SECOND_UNION"
],
 "IsNull": true,
 "Value": 0,
 "CalcName": "OM_SE_Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[25,27.5)",
 "US_NEVER_IN_UNION"
],
 "IsNull": false,
 "Value": 0.0036557290231329803,
 "CalcName": "OM_SE_Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[25,27.5)",
 "US_FIRST_UNION_PERIOD1"
],
 "IsNull": false,
 "Value": 0.01959960089317563,
 "CalcName": "OM_SE_Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[25,27.5)",
 "US_FIRST_UNION_PERIOD2"
],
 "IsNull": false,
 "Value": 0.02072720867372254,
 "CalcName": "OM_SE_Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[25,27.5)",
 "US_AFTER_FIRST_UNION"
],
 "IsNull": false,
 "Value": 0.03151338138462493,
 "CalcName": "OM_SE_Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[25,27.5)",
 "US_SECOND_UNION"
],
 "IsNull": false,
 "Value": 0.5935067944778238,
 "CalcName": "OM_SE_Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[25,27.5)",
 "US_AFTER_SECOND_UNION"

 "US_AFTER_SECOND_UNION"
],
 "IsNull": false,
 "Value": 0,
 "CalcName": "OM_SE_Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[27.5,30)",
 "US_NEVER_IN_UNION"
],
 "IsNull": false,
 "Value": 0.005196619763242931,
 "CalcName": "OM_SE_Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[27.5,30)",
 "US_FIRST_UNION_PERIOD1"
],
 "IsNull": false,
 "Value": 0.011665634117207072,
 "CalcName": "OM_SE_Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[27.5,30)",
 "US_FIRST_UNION_PERIOD2"
],
 "IsNull": false,
 "Value": 0.01945905164366974,
 "CalcName": "OM_SE_Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[27.5,30)",
 "US_AFTER_FIRST_UNION"
],
 "IsNull": false,
 "Value": 0.029555729394609345,
 "CalcName": "OM_SE_Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[27.5,30)",
 "US_SECOND_UNION"
],
 "IsNull": false,
 "Value": 0.10422127860974977,
 "CalcName": "OM_SE_Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[27.5,30)",
 "US_AFTER_SECOND_UNION"
],
 "IsNull": false,
 "Value": 0.02670576575482527,
 "CalcName": "OM_SE_Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[30,32.5)",
 "US_NEVER_IN_UNION"
],
 "IsNull": false,
 "Value": 0.004163546631457847,
 "CalcName": "OM_SE_Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[30,32.5)",
 "US_FIRST_UNION_PERIOD1"
],
 "IsNull": false,
 "Value": 0.07776769082434758,
 "CalcName": "OM_SE_Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [

 "Dims": [
 "[30,32.5)",
 "US_FIRST_UNION_PERIOD2"
],
 "IsNull": false,
 "Value": 0.00807157824867373,
 "CalcName": "OM_SE_Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[30,32.5)",
 "US_AFTER_FIRST_UNION"
],
 "IsNull": false,
 "Value": 0.04520648331822375,
 "CalcName": "OM_SE_Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[30,32.5)",
 "US_SECOND_UNION"
],
 "IsNull": false,
 "Value": 0.23240410935784928,
 "CalcName": "OM_SE_Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[30,32.5)",
 "US_AFTER_SECOND_UNION"
],
 "IsNull": false,
 "Value": 0,
 "CalcName": "OM_SE_Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[32.5,35)",
 "US_NEVER_IN_UNION"
],
 "IsNull": false,
 "Value": 0.002133413207162846,
 "CalcName": "OM_SE_Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[32.5,35)",
 "US_FIRST_UNION_PERIOD1"
],
 "IsNull": false,
 "Value": 0.0522818322110285,
 "CalcName": "OM_SE_Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[32.5,35)",
 "US_FIRST_UNION_PERIOD2"
],
 "IsNull": false,
 "Value": 0.01949087594847643,
 "CalcName": "OM_SE_Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[32.5,35)",
 "US_AFTER_FIRST_UNION"
],
 "IsNull": false,
 "Value": 0,
 "CalcName": "OM_SE_Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[32.5,35)",
 "US_SECOND_UNION"
],
 "IsNull": false,
 "Value": 0.4087021371108991,
 "CalcName": "OM_SE_Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"

 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[32.5,35)",
 "US_AFTER_SECOND_UNION"
],
 "IsNull": false,
 "Value": 0,
 "CalcName": "OM_SE_Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[35,37.5)",
 "US_NEVER_IN_UNION"
],
 "IsNull": false,
 "Value": 0.004685194405920375,
 "CalcName": "OM_SE_Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[35,37.5)",
 "US_FIRST_UNION_PERIOD1"
],
 "IsNull": false,
 "Value": 0.03917868926846236,
 "CalcName": "OM_SE_Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[35,37.5)",
 "US_FIRST_UNION_PERIOD2"
],
 "IsNull": false,
 "Value": 0.012717967350323902,
 "CalcName": "OM_SE_Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[35,37.5)",
 "US_AFTER_FIRST_UNION"
],
 "IsNull": false,
 "Value": 0.012339858333394415,
 "CalcName": "OM_SE_Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[35,37.5)",
 "US_SECOND_UNION"
],
 "IsNull": false,
 "Value": 0.14037654439621916,
 "CalcName": "OM_SE_Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[35,37.5)",
 "US_AFTER_SECOND_UNION"
],
 "IsNull": false,
 "Value": 0.05343598681843709,
 "CalcName": "OM_SE_Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[37.5,40)",
 "US_NEVER_IN_UNION"
],
 "IsNull": false,
 "Value": 0.003295964388970783,
 "CalcName": "OM_SE_Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[37.5,40)",
 "US_FIRST_UNION_PERIOD1"
],
 "IsNull": false,
 "Value": 0.019743934009037976,

 "Value": 0.019743934009037976,
 "CalcName": "OM_SE_Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[37.5,40)",
 "US_FIRST_UNION_PERIOD2"
],
 "IsNull": false,
 "Value": 0.01043050794857122,
 "CalcName": "OM_SE_Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[37.5,40)",
 "US_AFTER_FIRST_UNION"
],
 "IsNull": false,
 "Value": 0,
 "CalcName": "OM_SE_Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[37.5,40)",
 "US_SECOND_UNION"
],
 "IsNull": false,
 "Value": 0.11795500304906231,
 "CalcName": "OM_SE_Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[37.5,40)",
 "US_AFTER_SECOND_UNION"
],
 "IsNull": false,
 "Value": 0,
 "CalcName": "OM_SE_Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[40,∞)",
 "US_NEVER_IN_UNION"
],
 "IsNull": false,
 "Value": 0,
 "CalcName": "OM_SE_Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[40,∞)",
 "US_FIRST_UNION_PERIOD1"
],
 "IsNull": false,
 "Value": 0,
 "CalcName": "OM_SE_Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[40,∞)",
 "US_FIRST_UNION_PERIOD2"
],
 "IsNull": false,
 "Value": 0,
 "CalcName": "OM_SE_Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[40,∞)",
 "US_AFTER_FIRST_UNION"
],
 "IsNull": false,
 "Value": 0,
 "CalcName": "OM_SE_Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[40,∞)",
 "US_SECOND_UNION"

],
 "IsNull": false,
 "Value": 0,
 "CalcName": "OM_SE_Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 },
 {
 "Dims": [
 "[40,∞)",
 "US_AFTER_SECOND_UNION"
],
 "IsNull": false,
 "Value": 0,
 "CalcName": "OM_SE_Expr0",
 "RunDigest": "b794d3399099035740e117378c523feb"
 }
]

Read a "page" of output table values and compare model runs.

Comparison can be calculated as one of the following:

for each table expression use one of: diff , ratio or percent comparison between [base] and [variant] model runs.

use comma separated list of comparison expressions between [base] and [variant] or simple expression for each run.

It is also possible to use parameter(s) in calculation, parameter must be a scalar of float or integer type. For example: (Expr1[variant] - Expr1[base]) *

param.Scale[base] , where param.Scale is a value of scalar parameter Scale in [base] model run.

Page is part of output table values defined by zero-based "start" row number and row count. If row count <= 0 then all rows returned.

Dimension(s) returned as enum codes or as string values if dimension type is simple (integer or boolean).

Methods:

GET /api/model/:model/run/:run/table/:name/compare/:compare/variant/:variant
GET /api/model/:model/run/:run/table/:name/compare/:compare/variant/:variant/start/:start
GET /api/model/:model/run/:run/table/:name/compare/:compare/variant/:variant/start/:start/count/:count

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

:run - (required) base model run digest, run stamp or run name
:variant - (required) variant model run(s): comma-separated list of digests, run stamps or run names

Model run can be identified by run digest, run stamp or run name. It is recommended to use digest because it is uniquely identifies model run.
Run stamp, if not explicitly specified as model run option, automatically generated as timestamp string, ex.: 2016_08_17_21_07_55_123. It is
also possible to use name, which is more human readable than digest, but if there are multiple runs with same name in database than result is
undefined.

:name - (required) output table name

:compare - (required) comparison to calculate

diff differenece of values between variant and base run, e.g.: Expr0[variant] - Expr0[base]

ratio ratio of values between variant and base run, e.g.: Expr0[variant] / Expr0[base]

percent proportional difference multipled by 100, e.g.: 100 * (Expr0[variant] - Expr0[base]) / Expr0[base]

Or a list of comma-separated expressions, for example: expr0, expr1[variant] + expr2[base]

:start - (optional) start "page" row number, zero-based.
:count - (optional) "page" size, number of rows to select, if count <= 0 then all rows selected.

Call examples:

http://localhost:4040/api/model/modelOne/run/Default/table/salarySex/compare/diff/variant/Default-4
http://localhost:4040/api/model/modelOne/run/Default/table/salarySex/compare/ratio/variant/Default-4
http://localhost:4040/api/model/modelOne/run/Default/table/salarySex/compare/percent/variant/Default-4

http://localhost:4040/api/model/modelOne/run/Default/table/salarySex/compare/ratio/variant/Default-4/start/2
http://localhost:4040/api/model/modelOne/run/Default/table/salarySex/compare/ratio/variant/Default-4/start/2/count/4

http://localhost:4040/api/model/modelOne/run/Default/table/salarySex/compare/expr0%2Cexpr1%5Bvariant%5D%2Bexpr2%5Bbase%5D/variant/Default-4
http://localhost:4040/api/model/modelOne/run/Default/table/salarySex/compare/%28expr1%5Bvariant%5D-expr1%5Bbase%5D%29%2Bparam.StartingSeed%5Bbase%5D/variant/
Default-4

GET output table values and compare model runs

Note:

expr0%2Cexpr1%5Bvariant%5D%2Bexpr2%5Bbase%5D is URL encoded: expr0,expr1[variant]+expr2[base] .

%28expr1%5Bvariant%5D-expr1%5Bbase%5D%29%2Bparam.StartingSeed%5Bbase%5D is URL encoded: (expr1[variant]-expr1[base])+param.StartingSeed[base] .

Example:

http://localhost:4040/api/model/modelOne/run/Default/table/salarySex/compare/percent/variant/Default-4,Sub-values_4

[
 {
 "Dims": [
 "L",
 "M"
],
 "IsNull": false,
 "Value": 50,
 "CalcName": "expr0",
 "RunDigest": "ca663651953bae94d0afdf71edba4c91"
 },
 {
 "Dims": [
 "L",
 "F"
],
 "IsNull": false,
 "Value": 60,
 "CalcName": "expr0",
 "RunDigest": "ca663651953bae94d0afdf71edba4c91"
 },
 {
 "Dims": [
 "L",
 "all"
],
 "IsNull": false,
 "Value": 1,
 "CalcName": "expr0",
 "RunDigest": "ca663651953bae94d0afdf71edba4c91"
 },
 {
 "Dims": [
 "M",
 "M"
],
 "IsNull": false,
 "Value": 51.599999999999994,
 "CalcName": "expr0",
 "RunDigest": "ca663651953bae94d0afdf71edba4c91"
 },
 {
 "Dims": [
 "M",
 "F"
],
 "IsNull": false,
 "Value": 62,
 "CalcName": "expr0",
 "RunDigest": "ca663651953bae94d0afdf71edba4c91"
 },
 {
 "Dims": [
 "M",
 "all"
],
 "IsNull": false,
 "Value": 2,
 "CalcName": "expr0",
 "RunDigest": "ca663651953bae94d0afdf71edba4c91"
 },
 {
 "Dims": [
 "H",
 "M"
],
 "IsNull": false,
 "Value": 53.2,
 "CalcName": "expr0",
 "RunDigest": "ca663651953bae94d0afdf71edba4c91"
 },
 {
 "Dims": [
 "H",

 "H",
 "F"
],
 "IsNull": false,
 "Value": 64,
 "CalcName": "expr0",
 "RunDigest": "ca663651953bae94d0afdf71edba4c91"
 },
 {
 "Dims": [
 "H",
 "all"
],
 "IsNull": false,
 "Value": 3,
 "CalcName": "expr0",
 "RunDigest": "ca663651953bae94d0afdf71edba4c91"
 },
 {
 "Dims": [
 "L",
 "M"
],
 "IsNull": false,
 "Value": 0,
 "CalcName": "expr1",
 "RunDigest": "ca663651953bae94d0afdf71edba4c91"
 },
 {
 "Dims": [
 "L",
 "F"
],
 "IsNull": false,
 "Value": 1,
 "CalcName": "expr1",
 "RunDigest": "ca663651953bae94d0afdf71edba4c91"
 },
 {
 "Dims": [
 "L",
 "all"
],
 "IsNull": false,
 "Value": 800,
 "CalcName": "expr1",
 "RunDigest": "ca663651953bae94d0afdf71edba4c91"
 },
 {
 "Dims": [
 "M",
 "M"
],
 "IsNull": false,
 "Value": 1,
 "CalcName": "expr1",
 "RunDigest": "ca663651953bae94d0afdf71edba4c91"
 },
 {
 "Dims": [
 "M",
 "F"
],
 "IsNull": false,
 "Value": 2,
 "CalcName": "expr1",
 "RunDigest": "ca663651953bae94d0afdf71edba4c91"
 },
 {
 "Dims": [
 "M",
 "all"
],
 "IsNull": false,
 "Value": 801,
 "CalcName": "expr1",
 "RunDigest": "ca663651953bae94d0afdf71edba4c91"
 },
 {
 "Dims": [
 "H",
 "M"
],
 "IsNull": false,
 "Value": 2,
 "CalcName": "expr1",
 "RunDigest": "ca663651953bae94d0afdf71edba4c91"
 },

 {
 "Dims": [
 "H",
 "F"
],
 "IsNull": false,
 "Value": 3,
 "CalcName": "expr1",
 "RunDigest": "ca663651953bae94d0afdf71edba4c91"
 },
 {
 "Dims": [
 "H",
 "all"
],
 "IsNull": false,
 "Value": 802,
 "CalcName": "expr1",
 "RunDigest": "ca663651953bae94d0afdf71edba4c91"
 },
 {
 "Dims": [
 "L",
 "M"
],
 "IsNull": false,
 "Value": 50,
 "CalcName": "expr2",
 "RunDigest": "ca663651953bae94d0afdf71edba4c91"
 },
 {
 "Dims": [
 "L",
 "F"
],
 "IsNull": false,
 "Value": 61,
 "CalcName": "expr2",
 "RunDigest": "ca663651953bae94d0afdf71edba4c91"
 },
 {
 "Dims": [
 "L",
 "all"
],
 "IsNull": false,
 "Value": 801,
 "CalcName": "expr2",
 "RunDigest": "ca663651953bae94d0afdf71edba4c91"
 },
 {
 "Dims": [
 "M",
 "M"
],
 "IsNull": false,
 "Value": 52.599999999999994,
 "CalcName": "expr2",
 "RunDigest": "ca663651953bae94d0afdf71edba4c91"
 },
 {
 "Dims": [
 "M",
 "F"
],
 "IsNull": false,
 "Value": 64,
 "CalcName": "expr2",
 "RunDigest": "ca663651953bae94d0afdf71edba4c91"
 },
 {
 "Dims": [
 "M",
 "all"
],
 "IsNull": false,
 "Value": 803,
 "CalcName": "expr2",
 "RunDigest": "ca663651953bae94d0afdf71edba4c91"
 },
 {
 "Dims": [
 "H",
 "M"
],
 "IsNull": false,
 "Value": 55.2,
 "CalcName": "expr2",

 "CalcName": "expr2",
 "RunDigest": "ca663651953bae94d0afdf71edba4c91"
 },
 {
 "Dims": [
 "H",
 "F"
],
 "IsNull": false,
 "Value": 67,
 "CalcName": "expr2",
 "RunDigest": "ca663651953bae94d0afdf71edba4c91"
 },
 {
 "Dims": [
 "H",
 "all"
],
 "IsNull": false,
 "Value": 805,
 "CalcName": "expr2",
 "RunDigest": "ca663651953bae94d0afdf71edba4c91"
 },
 {
 "Dims": [
 "L",
 "M"
],
 "IsNull": false,
 "Value": 0,
 "CalcName": "expr3",
 "RunDigest": "ca663651953bae94d0afdf71edba4c91"
 },
 {
 "Dims": [
 "L",
 "F"
],
 "IsNull": false,
 "Value": 60,
 "CalcName": "expr3",
 "RunDigest": "ca663651953bae94d0afdf71edba4c91"
 },
 {
 "Dims": [
 "L",
 "all"
],
 "IsNull": false,
 "Value": 800,
 "CalcName": "expr3",
 "RunDigest": "ca663651953bae94d0afdf71edba4c91"
 },
 {
 "Dims": [
 "M",
 "M"
],
 "IsNull": false,
 "Value": 51.599999999999994,
 "CalcName": "expr3",
 "RunDigest": "ca663651953bae94d0afdf71edba4c91"
 },
 {
 "Dims": [
 "M",
 "F"
],
 "IsNull": false,
 "Value": 124,
 "CalcName": "expr3",
 "RunDigest": "ca663651953bae94d0afdf71edba4c91"
 },
 {
 "Dims": [
 "M",
 "all"
],
 "IsNull": false,
 "Value": 1602,
 "CalcName": "expr3",
 "RunDigest": "ca663651953bae94d0afdf71edba4c91"
 },
 {
 "Dims": [
 "H",
 "M"
],
 "IsNull": false,

 "IsNull": false,
 "Value": 106.4,
 "CalcName": "expr3",
 "RunDigest": "ca663651953bae94d0afdf71edba4c91"
 },
 {
 "Dims": [
 "H",
 "F"
],
 "IsNull": false,
 "Value": 192,
 "CalcName": "expr3",
 "RunDigest": "ca663651953bae94d0afdf71edba4c91"
 },
 {
 "Dims": [
 "H",
 "all"
],
 "IsNull": false,
 "Value": 2406,
 "CalcName": "expr3",
 "RunDigest": "ca663651953bae94d0afdf71edba4c91"
 },
 {
 "Dims": [
 "L",
 "M"
],
 "IsNull": false,
 "Value": 50,
 "CalcName": "expr0",
 "RunDigest": "c519fc5869f244ac4c80ae44695a4272"
 },
 {
 "Dims": [
 "L",
 "F"
],
 "IsNull": false,
 "Value": 60,
 "CalcName": "expr0",
 "RunDigest": "c519fc5869f244ac4c80ae44695a4272"
 },
 {
 "Dims": [
 "L",
 "all"
],
 "IsNull": false,
 "Value": 1201,
 "CalcName": "expr0",
 "RunDigest": "c519fc5869f244ac4c80ae44695a4272"
 },
 {
 "Dims": [
 "M",
 "M"
],
 "IsNull": false,
 "Value": 51.599999999999994,
 "CalcName": "expr0",
 "RunDigest": "c519fc5869f244ac4c80ae44695a4272"
 },
 {
 "Dims": [
 "M",
 "F"
],
 "IsNull": false,
 "Value": 62,
 "CalcName": "expr0",
 "RunDigest": "c519fc5869f244ac4c80ae44695a4272"
 },
 {
 "Dims": [
 "M",
 "all"
],
 "IsNull": false,
 "Value": 1202,
 "CalcName": "expr0",
 "RunDigest": "c519fc5869f244ac4c80ae44695a4272"
 },
 {
 "Dims": [
 "H",

 "H",
 "M"
],
 "IsNull": false,
 "Value": 53.2,
 "CalcName": "expr0",
 "RunDigest": "c519fc5869f244ac4c80ae44695a4272"
 },
 {
 "Dims": [
 "H",
 "F"
],
 "IsNull": false,
 "Value": 64,
 "CalcName": "expr0",
 "RunDigest": "c519fc5869f244ac4c80ae44695a4272"
 },
 {
 "Dims": [
 "H",
 "all"
],
 "IsNull": false,
 "Value": 1203,
 "CalcName": "expr0",
 "RunDigest": "c519fc5869f244ac4c80ae44695a4272"
 },
 {
 "Dims": [
 "L",
 "M"
],
 "IsNull": false,
 "Value": 6,
 "CalcName": "expr1",
 "RunDigest": "c519fc5869f244ac4c80ae44695a4272"
 },
 {
 "Dims": [
 "L",
 "F"
],
 "IsNull": false,
 "Value": 10,
 "CalcName": "expr1",
 "RunDigest": "c519fc5869f244ac4c80ae44695a4272"
 },
 {
 "Dims": [
 "L",
 "all"
],
 "IsNull": false,
 "Value": 3206,
 "CalcName": "expr1",
 "RunDigest": "c519fc5869f244ac4c80ae44695a4272"
 },
 {
 "Dims": [
 "M",
 "M"
],
 "IsNull": false,
 "Value": 10,
 "CalcName": "expr1",
 "RunDigest": "c519fc5869f244ac4c80ae44695a4272"
 },
 {
 "Dims": [
 "M",
 "F"
],
 "IsNull": false,
 "Value": 14,
 "CalcName": "expr1",
 "RunDigest": "c519fc5869f244ac4c80ae44695a4272"
 },
 {
 "Dims": [
 "M",
 "all"
],
 "IsNull": false,
 "Value": 3210,
 "CalcName": "expr1",
 "RunDigest": "c519fc5869f244ac4c80ae44695a4272"
 },
 {

 {
 "Dims": [
 "H",
 "M"
],
 "IsNull": false,
 "Value": 14,
 "CalcName": "expr1",
 "RunDigest": "c519fc5869f244ac4c80ae44695a4272"
 },
 {
 "Dims": [
 "H",
 "F"
],
 "IsNull": false,
 "Value": 18,
 "CalcName": "expr1",
 "RunDigest": "c519fc5869f244ac4c80ae44695a4272"
 },
 {
 "Dims": [
 "H",
 "all"
],
 "IsNull": false,
 "Value": 3214,
 "CalcName": "expr1",
 "RunDigest": "c519fc5869f244ac4c80ae44695a4272"
 },
 {
 "Dims": [
 "L",
 "M"
],
 "IsNull": false,
 "Value": 51.5,
 "CalcName": "expr2",
 "RunDigest": "c519fc5869f244ac4c80ae44695a4272"
 },
 {
 "Dims": [
 "L",
 "F"
],
 "IsNull": false,
 "Value": 62.5,
 "CalcName": "expr2",
 "RunDigest": "c519fc5869f244ac4c80ae44695a4272"
 },
 {
 "Dims": [
 "L",
 "all"
],
 "IsNull": false,
 "Value": 2002.5,
 "CalcName": "expr2",
 "RunDigest": "c519fc5869f244ac4c80ae44695a4272"
 },
 {
 "Dims": [
 "M",
 "M"
],
 "IsNull": false,
 "Value": 54.099999999999994,
 "CalcName": "expr2",
 "RunDigest": "c519fc5869f244ac4c80ae44695a4272"
 },
 {
 "Dims": [
 "M",
 "F"
],
 "IsNull": false,
 "Value": 65.5,
 "CalcName": "expr2",
 "RunDigest": "c519fc5869f244ac4c80ae44695a4272"
 },
 {
 "Dims": [
 "M",
 "all"
],
 "IsNull": false,
 "Value": 2004.5,
 "CalcName": "expr2",

 "RunDigest": "c519fc5869f244ac4c80ae44695a4272"
 },
 {
 "Dims": [
 "H",
 "M"
],
 "IsNull": false,
 "Value": 56.7,
 "CalcName": "expr2",
 "RunDigest": "c519fc5869f244ac4c80ae44695a4272"
 },
 {
 "Dims": [
 "H",
 "F"
],
 "IsNull": false,
 "Value": 68.5,
 "CalcName": "expr2",
 "RunDigest": "c519fc5869f244ac4c80ae44695a4272"
 },
 {
 "Dims": [
 "H",
 "all"
],
 "IsNull": false,
 "Value": 2006.5,
 "CalcName": "expr2",
 "RunDigest": "c519fc5869f244ac4c80ae44695a4272"
 },
 {
 "Dims": [
 "L",
 "M"
],
 "IsNull": false,
 "Value": 75,
 "CalcName": "expr3",
 "RunDigest": "c519fc5869f244ac4c80ae44695a4272"
 },
 {
 "Dims": [
 "L",
 "F"
],
 "IsNull": false,
 "Value": 150,
 "CalcName": "expr3",
 "RunDigest": "c519fc5869f244ac4c80ae44695a4272"
 },
 {
 "Dims": [
 "L",
 "all"
],
 "IsNull": false,
 "Value": 963601.5,
 "CalcName": "expr3",
 "RunDigest": "c519fc5869f244ac4c80ae44695a4272"
 },
 {
 "Dims": [
 "M",
 "M"
],
 "IsNull": false,
 "Value": 129,
 "CalcName": "expr3",
 "RunDigest": "c519fc5869f244ac4c80ae44695a4272"
 },
 {
 "Dims": [
 "M",
 "F"
],
 "IsNull": false,
 "Value": 217,
 "CalcName": "expr3",
 "RunDigest": "c519fc5869f244ac4c80ae44695a4272"
 },
 {
 "Dims": [
 "M",
 "all"
],
 "IsNull": false,

 "IsNull": false,
 "Value": 965605,
 "CalcName": "expr3",
 "RunDigest": "c519fc5869f244ac4c80ae44695a4272"
 },
 {
 "Dims": [
 "H",
 "M"
],
 "IsNull": false,
 "Value": 186.2,
 "CalcName": "expr3",
 "RunDigest": "c519fc5869f244ac4c80ae44695a4272"
 },
 {
 "Dims": [
 "H",
 "F"
],
 "IsNull": false,
 "Value": 288,
 "CalcName": "expr3",
 "RunDigest": "c519fc5869f244ac4c80ae44695a4272"
 },
 {
 "Dims": [
 "H",
 "all"
],
 "IsNull": false,
 "Value": 967610.5,
 "CalcName": "expr3",
 "RunDigest": "c519fc5869f244ac4c80ae44695a4272"
 },
 {
 "Dims": [
 "L",
 "M"
],
 "IsNull": false,
 "Value": 0,
 "CalcName": "percent_expr0",
 "RunDigest": "c519fc5869f244ac4c80ae44695a4272"
 },
 {
 "Dims": [
 "L",
 "F"
],
 "IsNull": false,
 "Value": 0,
 "CalcName": "percent_expr0",
 "RunDigest": "c519fc5869f244ac4c80ae44695a4272"
 },
 {
 "Dims": [
 "L",
 "all"
],
 "IsNull": false,
 "Value": 120000,
 "CalcName": "percent_expr0",
 "RunDigest": "c519fc5869f244ac4c80ae44695a4272"
 },
 {
 "Dims": [
 "M",
 "M"
],
 "IsNull": false,
 "Value": 0,
 "CalcName": "percent_expr0",
 "RunDigest": "c519fc5869f244ac4c80ae44695a4272"
 },
 {
 "Dims": [
 "M",
 "F"
],
 "IsNull": false,
 "Value": 0,
 "CalcName": "percent_expr0",
 "RunDigest": "c519fc5869f244ac4c80ae44695a4272"
 },
 {
 "Dims": [
 "M",
 "all"

 "all"
],
 "IsNull": false,
 "Value": 60000,
 "CalcName": "percent_expr0",
 "RunDigest": "c519fc5869f244ac4c80ae44695a4272"
 },
 {
 "Dims": [
 "H",
 "M"
],
 "IsNull": false,
 "Value": 0,
 "CalcName": "percent_expr0",
 "RunDigest": "c519fc5869f244ac4c80ae44695a4272"
 },
 {
 "Dims": [
 "H",
 "F"
],
 "IsNull": false,
 "Value": 0,
 "CalcName": "percent_expr0",
 "RunDigest": "c519fc5869f244ac4c80ae44695a4272"
 },
 {
 "Dims": [
 "H",
 "all"
],
 "IsNull": false,
 "Value": 40000,
 "CalcName": "percent_expr0",
 "RunDigest": "c519fc5869f244ac4c80ae44695a4272"
 },
 {
 "Dims": [
 "L",
 "M"
],
 "IsNull": true,
 "Value": 0,
 "CalcName": "percent_expr1",
 "RunDigest": "c519fc5869f244ac4c80ae44695a4272"
 },
 {
 "Dims": [
 "L",
 "F"
],
 "IsNull": false,
 "Value": 900,
 "CalcName": "percent_expr1",
 "RunDigest": "c519fc5869f244ac4c80ae44695a4272"
 },
 {
 "Dims": [
 "L",
 "all"
],
 "IsNull": false,
 "Value": 300.75,
 "CalcName": "percent_expr1",
 "RunDigest": "c519fc5869f244ac4c80ae44695a4272"
 },
 {
 "Dims": [
 "M",
 "M"
],
 "IsNull": false,
 "Value": 900,
 "CalcName": "percent_expr1",
 "RunDigest": "c519fc5869f244ac4c80ae44695a4272"
 },
 {
 "Dims": [
 "M",
 "F"
],
 "IsNull": false,
 "Value": 600,
 "CalcName": "percent_expr1",
 "RunDigest": "c519fc5869f244ac4c80ae44695a4272"
 },
 {

 {
 "Dims": [
 "M",
 "all"
],
 "IsNull": false,
 "Value": 300.749063670412,
 "CalcName": "percent_expr1",
 "RunDigest": "c519fc5869f244ac4c80ae44695a4272"
 },
 {
 "Dims": [
 "H",
 "M"
],
 "IsNull": false,
 "Value": 600,
 "CalcName": "percent_expr1",
 "RunDigest": "c519fc5869f244ac4c80ae44695a4272"
 },
 {
 "Dims": [
 "H",
 "F"
],
 "IsNull": false,
 "Value": 500,
 "CalcName": "percent_expr1",
 "RunDigest": "c519fc5869f244ac4c80ae44695a4272"
 },
 {
 "Dims": [
 "H",
 "all"
],
 "IsNull": false,
 "Value": 300.74812967581045,
 "CalcName": "percent_expr1",
 "RunDigest": "c519fc5869f244ac4c80ae44695a4272"
 },
 {
 "Dims": [
 "L",
 "M"
],
 "IsNull": false,
 "Value": 3,
 "CalcName": "percent_expr2",
 "RunDigest": "c519fc5869f244ac4c80ae44695a4272"
 },
 {
 "Dims": [
 "L",
 "F"
],
 "IsNull": false,
 "Value": 2.459016393442623,
 "CalcName": "percent_expr2",
 "RunDigest": "c519fc5869f244ac4c80ae44695a4272"
 },
 {
 "Dims": [
 "L",
 "all"
],
 "IsNull": false,
 "Value": 150,
 "CalcName": "percent_expr2",
 "RunDigest": "c519fc5869f244ac4c80ae44695a4272"
 },
 {
 "Dims": [
 "M",
 "M"
],
 "IsNull": false,
 "Value": 2.8517110266159698,
 "CalcName": "percent_expr2",
 "RunDigest": "c519fc5869f244ac4c80ae44695a4272"
 },
 {
 "Dims": [
 "M",
 "F"
],
 "IsNull": false,
 "Value": 2.34375,
 "CalcName": "percent_expr2",
 "RunDigest": "c519fc5869f244ac4c80ae44695a4272"

 "RunDigest": "c519fc5869f244ac4c80ae44695a4272"
 },
 {
 "Dims": [
 "M",
 "all"
],
 "IsNull": false,
 "Value": 149.626400996264,
 "CalcName": "percent_expr2",
 "RunDigest": "c519fc5869f244ac4c80ae44695a4272"
 },
 {
 "Dims": [
 "H",
 "M"
],
 "IsNull": false,
 "Value": 2.717391304347826,
 "CalcName": "percent_expr2",
 "RunDigest": "c519fc5869f244ac4c80ae44695a4272"
 },
 {
 "Dims": [
 "H",
 "F"
],
 "IsNull": false,
 "Value": 2.2388059701492535,
 "CalcName": "percent_expr2",
 "RunDigest": "c519fc5869f244ac4c80ae44695a4272"
 },
 {
 "Dims": [
 "H",
 "all"
],
 "IsNull": false,
 "Value": 149.25465838509317,
 "CalcName": "percent_expr2",
 "RunDigest": "c519fc5869f244ac4c80ae44695a4272"
 },
 {
 "Dims": [
 "L",
 "M"
],
 "IsNull": true,
 "Value": 0,
 "CalcName": "percent_expr3",
 "RunDigest": "c519fc5869f244ac4c80ae44695a4272"
 },
 {
 "Dims": [
 "L",
 "F"
],
 "IsNull": false,
 "Value": 150,
 "CalcName": "percent_expr3",
 "RunDigest": "c519fc5869f244ac4c80ae44695a4272"
 },
 {
 "Dims": [
 "L",
 "all"
],
 "IsNull": false,
 "Value": 120350.1875,
 "CalcName": "percent_expr3",
 "RunDigest": "c519fc5869f244ac4c80ae44695a4272"
 },
 {
 "Dims": [
 "M",
 "M"
],
 "IsNull": false,
 "Value": 150.00000000000003,
 "CalcName": "percent_expr3",
 "RunDigest": "c519fc5869f244ac4c80ae44695a4272"
 },
 {
 "Dims": [
 "M",
 "F"
],
 "IsNull": false,

 "Value": 75,
 "CalcName": "percent_expr3",
 "RunDigest": "c519fc5869f244ac4c80ae44695a4272"
 },
 {
 "Dims": [
 "M",
 "all"
],
 "IsNull": false,
 "Value": 60174.968789013736,
 "CalcName": "percent_expr3",
 "RunDigest": "c519fc5869f244ac4c80ae44695a4272"
 },
 {
 "Dims": [
 "H",
 "M"
],
 "IsNull": false,
 "Value": 74.99999999999999,
 "CalcName": "percent_expr3",
 "RunDigest": "c519fc5869f244ac4c80ae44695a4272"
 },
 {
 "Dims": [
 "H",
 "F"
],
 "IsNull": false,
 "Value": 50,
 "CalcName": "percent_expr3",
 "RunDigest": "c519fc5869f244ac4c80ae44695a4272"
 },
 {
 "Dims": [
 "H",
 "all"
],
 "IsNull": false,
 "Value": 40116.56275976725,
 "CalcName": "percent_expr3",
 "RunDigest": "c519fc5869f244ac4c80ae44695a4272"
 },
 {
 "Dims": [
 "L",
 "M"
],
 "IsNull": false,
 "Value": 50,
 "CalcName": "expr0",
 "RunDigest": "ffad6e8ed4449dafe11b82c7aea82f74"
 },
 {
 "Dims": [
 "L",
 "F"
],
 "IsNull": false,
 "Value": 60,
 "CalcName": "expr0",
 "RunDigest": "ffad6e8ed4449dafe11b82c7aea82f74"
 },
 {
 "Dims": [
 "L",
 "all"
],
 "IsNull": false,
 "Value": 1201,
 "CalcName": "expr0",
 "RunDigest": "ffad6e8ed4449dafe11b82c7aea82f74"
 },
 {
 "Dims": [
 "M",
 "M"
],
 "IsNull": false,
 "Value": 51.599999999999994,
 "CalcName": "expr0",
 "RunDigest": "ffad6e8ed4449dafe11b82c7aea82f74"
 },
 {
 "Dims": [
 "M",
 "F"

 "F"
],
 "IsNull": false,
 "Value": 62,
 "CalcName": "expr0",
 "RunDigest": "ffad6e8ed4449dafe11b82c7aea82f74"
 },
 {
 "Dims": [
 "M",
 "all"
],
 "IsNull": false,
 "Value": 1202,
 "CalcName": "expr0",
 "RunDigest": "ffad6e8ed4449dafe11b82c7aea82f74"
 },
 {
 "Dims": [
 "H",
 "M"
],
 "IsNull": false,
 "Value": 53.2,
 "CalcName": "expr0",
 "RunDigest": "ffad6e8ed4449dafe11b82c7aea82f74"
 },
 {
 "Dims": [
 "H",
 "F"
],
 "IsNull": false,
 "Value": 64,
 "CalcName": "expr0",
 "RunDigest": "ffad6e8ed4449dafe11b82c7aea82f74"
 },
 {
 "Dims": [
 "H",
 "all"
],
 "IsNull": false,
 "Value": 1203,
 "CalcName": "expr0",
 "RunDigest": "ffad6e8ed4449dafe11b82c7aea82f74"
 },
 {
 "Dims": [
 "L",
 "M"
],
 "IsNull": false,
 "Value": 6,
 "CalcName": "expr1",
 "RunDigest": "ffad6e8ed4449dafe11b82c7aea82f74"
 },
 {
 "Dims": [
 "L",
 "F"
],
 "IsNull": false,
 "Value": 10,
 "CalcName": "expr1",
 "RunDigest": "ffad6e8ed4449dafe11b82c7aea82f74"
 },
 {
 "Dims": [
 "L",
 "all"
],
 "IsNull": false,
 "Value": 3206,
 "CalcName": "expr1",
 "RunDigest": "ffad6e8ed4449dafe11b82c7aea82f74"
 },
 {
 "Dims": [
 "M",
 "M"
],
 "IsNull": false,
 "Value": 10,
 "CalcName": "expr1",
 "RunDigest": "ffad6e8ed4449dafe11b82c7aea82f74"
 },
 {
 "Dims": [

 "Dims": [
 "M",
 "F"
],
 "IsNull": false,
 "Value": 14,
 "CalcName": "expr1",
 "RunDigest": "ffad6e8ed4449dafe11b82c7aea82f74"
 },
 {
 "Dims": [
 "M",
 "all"
],
 "IsNull": false,
 "Value": 3210,
 "CalcName": "expr1",
 "RunDigest": "ffad6e8ed4449dafe11b82c7aea82f74"
 },
 {
 "Dims": [
 "H",
 "M"
],
 "IsNull": false,
 "Value": 14,
 "CalcName": "expr1",
 "RunDigest": "ffad6e8ed4449dafe11b82c7aea82f74"
 },
 {
 "Dims": [
 "H",
 "F"
],
 "IsNull": false,
 "Value": 18,
 "CalcName": "expr1",
 "RunDigest": "ffad6e8ed4449dafe11b82c7aea82f74"
 },
 {
 "Dims": [
 "H",
 "all"
],
 "IsNull": false,
 "Value": 3214,
 "CalcName": "expr1",
 "RunDigest": "ffad6e8ed4449dafe11b82c7aea82f74"
 },
 {
 "Dims": [
 "L",
 "M"
],
 "IsNull": false,
 "Value": 51.5,
 "CalcName": "expr2",
 "RunDigest": "ffad6e8ed4449dafe11b82c7aea82f74"
 },
 {
 "Dims": [
 "L",
 "F"
],
 "IsNull": false,
 "Value": 62.5,
 "CalcName": "expr2",
 "RunDigest": "ffad6e8ed4449dafe11b82c7aea82f74"
 },
 {
 "Dims": [
 "L",
 "all"
],
 "IsNull": false,
 "Value": 2002.5,
 "CalcName": "expr2",
 "RunDigest": "ffad6e8ed4449dafe11b82c7aea82f74"
 },
 {
 "Dims": [
 "M",
 "M"
],
 "IsNull": false,
 "Value": 54.099999999999994,
 "CalcName": "expr2",
 "RunDigest": "ffad6e8ed4449dafe11b82c7aea82f74"

 "RunDigest": "ffad6e8ed4449dafe11b82c7aea82f74"
 },
 {
 "Dims": [
 "M",
 "F"
],
 "IsNull": false,
 "Value": 65.5,
 "CalcName": "expr2",
 "RunDigest": "ffad6e8ed4449dafe11b82c7aea82f74"
 },
 {
 "Dims": [
 "M",
 "all"
],
 "IsNull": false,
 "Value": 2004.5,
 "CalcName": "expr2",
 "RunDigest": "ffad6e8ed4449dafe11b82c7aea82f74"
 },
 {
 "Dims": [
 "H",
 "M"
],
 "IsNull": false,
 "Value": 56.7,
 "CalcName": "expr2",
 "RunDigest": "ffad6e8ed4449dafe11b82c7aea82f74"
 },
 {
 "Dims": [
 "H",
 "F"
],
 "IsNull": false,
 "Value": 68.5,
 "CalcName": "expr2",
 "RunDigest": "ffad6e8ed4449dafe11b82c7aea82f74"
 },
 {
 "Dims": [
 "H",
 "all"
],
 "IsNull": false,
 "Value": 2006.5,
 "CalcName": "expr2",
 "RunDigest": "ffad6e8ed4449dafe11b82c7aea82f74"
 },
 {
 "Dims": [
 "L",
 "M"
],
 "IsNull": false,
 "Value": 75,
 "CalcName": "expr3",
 "RunDigest": "ffad6e8ed4449dafe11b82c7aea82f74"
 },
 {
 "Dims": [
 "L",
 "F"
],
 "IsNull": false,
 "Value": 150,
 "CalcName": "expr3",
 "RunDigest": "ffad6e8ed4449dafe11b82c7aea82f74"
 },
 {
 "Dims": [
 "L",
 "all"
],
 "IsNull": false,
 "Value": 963601.5,
 "CalcName": "expr3",
 "RunDigest": "ffad6e8ed4449dafe11b82c7aea82f74"
 },
 {
 "Dims": [
 "M",
 "M"
],
 "IsNull": false,
 "Value": 129,

 "Value": 129,
 "CalcName": "expr3",
 "RunDigest": "ffad6e8ed4449dafe11b82c7aea82f74"
 },
 {
 "Dims": [
 "M",
 "F"
],
 "IsNull": false,
 "Value": 217,
 "CalcName": "expr3",
 "RunDigest": "ffad6e8ed4449dafe11b82c7aea82f74"
 },
 {
 "Dims": [
 "M",
 "all"
],
 "IsNull": false,
 "Value": 965605,
 "CalcName": "expr3",
 "RunDigest": "ffad6e8ed4449dafe11b82c7aea82f74"
 },
 {
 "Dims": [
 "H",
 "M"
],
 "IsNull": false,
 "Value": 186.2,
 "CalcName": "expr3",
 "RunDigest": "ffad6e8ed4449dafe11b82c7aea82f74"
 },
 {
 "Dims": [
 "H",
 "F"
],
 "IsNull": false,
 "Value": 288,
 "CalcName": "expr3",
 "RunDigest": "ffad6e8ed4449dafe11b82c7aea82f74"
 },
 {
 "Dims": [
 "H",
 "all"
],
 "IsNull": false,
 "Value": 967610.5,
 "CalcName": "expr3",
 "RunDigest": "ffad6e8ed4449dafe11b82c7aea82f74"
 },
 {
 "Dims": [
 "L",
 "M"
],
 "IsNull": false,
 "Value": 0,
 "CalcName": "percent_expr0",
 "RunDigest": "ffad6e8ed4449dafe11b82c7aea82f74"
 },
 {
 "Dims": [
 "L",
 "F"
],
 "IsNull": false,
 "Value": 0,
 "CalcName": "percent_expr0",
 "RunDigest": "ffad6e8ed4449dafe11b82c7aea82f74"
 },
 {
 "Dims": [
 "L",
 "all"
],
 "IsNull": false,
 "Value": 120000,
 "CalcName": "percent_expr0",
 "RunDigest": "ffad6e8ed4449dafe11b82c7aea82f74"
 },
 {
 "Dims": [
 "M",
 "M"

],
 "IsNull": false,
 "Value": 0,
 "CalcName": "percent_expr0",
 "RunDigest": "ffad6e8ed4449dafe11b82c7aea82f74"
 },
 {
 "Dims": [
 "M",
 "F"
],
 "IsNull": false,
 "Value": 0,
 "CalcName": "percent_expr0",
 "RunDigest": "ffad6e8ed4449dafe11b82c7aea82f74"
 },
 {
 "Dims": [
 "M",
 "all"
],
 "IsNull": false,
 "Value": 60000,
 "CalcName": "percent_expr0",
 "RunDigest": "ffad6e8ed4449dafe11b82c7aea82f74"
 },
 {
 "Dims": [
 "H",
 "M"
],
 "IsNull": false,
 "Value": 0,
 "CalcName": "percent_expr0",
 "RunDigest": "ffad6e8ed4449dafe11b82c7aea82f74"
 },
 {
 "Dims": [
 "H",
 "F"
],
 "IsNull": false,
 "Value": 0,
 "CalcName": "percent_expr0",
 "RunDigest": "ffad6e8ed4449dafe11b82c7aea82f74"
 },
 {
 "Dims": [
 "H",
 "all"
],
 "IsNull": false,
 "Value": 40000,
 "CalcName": "percent_expr0",
 "RunDigest": "ffad6e8ed4449dafe11b82c7aea82f74"
 },
 {
 "Dims": [
 "L",
 "M"
],
 "IsNull": true,
 "Value": 0,
 "CalcName": "percent_expr1",
 "RunDigest": "ffad6e8ed4449dafe11b82c7aea82f74"
 },
 {
 "Dims": [
 "L",
 "F"
],
 "IsNull": false,
 "Value": 900,
 "CalcName": "percent_expr1",
 "RunDigest": "ffad6e8ed4449dafe11b82c7aea82f74"
 },
 {
 "Dims": [
 "L",
 "all"
],
 "IsNull": false,
 "Value": 300.75,
 "CalcName": "percent_expr1",
 "RunDigest": "ffad6e8ed4449dafe11b82c7aea82f74"
 },
 {
 "Dims": [

 "Dims": [
 "M",
 "M"
],
 "IsNull": false,
 "Value": 900,
 "CalcName": "percent_expr1",
 "RunDigest": "ffad6e8ed4449dafe11b82c7aea82f74"
 },
 {
 "Dims": [
 "M",
 "F"
],
 "IsNull": false,
 "Value": 600,
 "CalcName": "percent_expr1",
 "RunDigest": "ffad6e8ed4449dafe11b82c7aea82f74"
 },
 {
 "Dims": [
 "M",
 "all"
],
 "IsNull": false,
 "Value": 300.749063670412,
 "CalcName": "percent_expr1",
 "RunDigest": "ffad6e8ed4449dafe11b82c7aea82f74"
 },
 {
 "Dims": [
 "H",
 "M"
],
 "IsNull": false,
 "Value": 600,
 "CalcName": "percent_expr1",
 "RunDigest": "ffad6e8ed4449dafe11b82c7aea82f74"
 },
 {
 "Dims": [
 "H",
 "F"
],
 "IsNull": false,
 "Value": 500,
 "CalcName": "percent_expr1",
 "RunDigest": "ffad6e8ed4449dafe11b82c7aea82f74"
 },
 {
 "Dims": [
 "H",
 "all"
],
 "IsNull": false,
 "Value": 300.74812967581045,
 "CalcName": "percent_expr1",
 "RunDigest": "ffad6e8ed4449dafe11b82c7aea82f74"
 },
 {
 "Dims": [
 "L",
 "M"
],
 "IsNull": false,
 "Value": 3,
 "CalcName": "percent_expr2",
 "RunDigest": "ffad6e8ed4449dafe11b82c7aea82f74"
 },
 {
 "Dims": [
 "L",
 "F"
],
 "IsNull": false,
 "Value": 2.459016393442623,
 "CalcName": "percent_expr2",
 "RunDigest": "ffad6e8ed4449dafe11b82c7aea82f74"
 },
 {
 "Dims": [
 "L",
 "all"
],
 "IsNull": false,
 "Value": 150,
 "CalcName": "percent_expr2",
 "RunDigest": "ffad6e8ed4449dafe11b82c7aea82f74"
 },

 },
 {
 "Dims": [
 "M",
 "M"
],
 "IsNull": false,
 "Value": 2.8517110266159698,
 "CalcName": "percent_expr2",
 "RunDigest": "ffad6e8ed4449dafe11b82c7aea82f74"
 },
 {
 "Dims": [
 "M",
 "F"
],
 "IsNull": false,
 "Value": 2.34375,
 "CalcName": "percent_expr2",
 "RunDigest": "ffad6e8ed4449dafe11b82c7aea82f74"
 },
 {
 "Dims": [
 "M",
 "all"
],
 "IsNull": false,
 "Value": 149.626400996264,
 "CalcName": "percent_expr2",
 "RunDigest": "ffad6e8ed4449dafe11b82c7aea82f74"
 },
 {
 "Dims": [
 "H",
 "M"
],
 "IsNull": false,
 "Value": 2.717391304347826,
 "CalcName": "percent_expr2",
 "RunDigest": "ffad6e8ed4449dafe11b82c7aea82f74"
 },
 {
 "Dims": [
 "H",
 "F"
],
 "IsNull": false,
 "Value": 2.2388059701492535,
 "CalcName": "percent_expr2",
 "RunDigest": "ffad6e8ed4449dafe11b82c7aea82f74"
 },
 {
 "Dims": [
 "H",
 "all"
],
 "IsNull": false,
 "Value": 149.25465838509317,
 "CalcName": "percent_expr2",
 "RunDigest": "ffad6e8ed4449dafe11b82c7aea82f74"
 },
 {
 "Dims": [
 "L",
 "M"
],
 "IsNull": true,
 "Value": 0,
 "CalcName": "percent_expr3",
 "RunDigest": "ffad6e8ed4449dafe11b82c7aea82f74"
 },
 {
 "Dims": [
 "L",
 "F"
],
 "IsNull": false,
 "Value": 150,
 "CalcName": "percent_expr3",
 "RunDigest": "ffad6e8ed4449dafe11b82c7aea82f74"
 },
 {
 "Dims": [
 "L",
 "all"
],
 "IsNull": false,
 "Value": 120350.1875,

 "Value": 120350.1875,
 "CalcName": "percent_expr3",
 "RunDigest": "ffad6e8ed4449dafe11b82c7aea82f74"
 },
 {
 "Dims": [
 "M",
 "M"
],
 "IsNull": false,
 "Value": 150.00000000000003,
 "CalcName": "percent_expr3",
 "RunDigest": "ffad6e8ed4449dafe11b82c7aea82f74"
 },
 {
 "Dims": [
 "M",
 "F"
],
 "IsNull": false,
 "Value": 75,
 "CalcName": "percent_expr3",
 "RunDigest": "ffad6e8ed4449dafe11b82c7aea82f74"
 },
 {
 "Dims": [
 "M",
 "all"
],
 "IsNull": false,
 "Value": 60174.968789013736,
 "CalcName": "percent_expr3",
 "RunDigest": "ffad6e8ed4449dafe11b82c7aea82f74"
 },
 {
 "Dims": [
 "H",
 "M"
],
 "IsNull": false,
 "Value": 74.99999999999999,
 "CalcName": "percent_expr3",
 "RunDigest": "ffad6e8ed4449dafe11b82c7aea82f74"
 },
 {
 "Dims": [
 "H",
 "F"
],
 "IsNull": false,
 "Value": 50,
 "CalcName": "percent_expr3",
 "RunDigest": "ffad6e8ed4449dafe11b82c7aea82f74"
 },
 {
 "Dims": [
 "H",
 "all"
],
 "IsNull": false,
 "Value": 40116.56275976725,
 "CalcName": "percent_expr3",
 "RunDigest": "ffad6e8ed4449dafe11b82c7aea82f74"
 }
]

Read a "page" of output table accumulator(s) values from model run.

Page is part of output table values defined by zero-based "start" row number and row count. If row count <= 0 then all rows returned.

Dimension(s) returned as enum codes or as string values if dimension type is simple (integer or boolean).

Methods:

GET /api/model/:model/run/:run/table/:name/acc
GET /api/model/:model/run/:run/table/:name/acc/start/:start
GET /api/model/:model/run/:run/table/:name/acc/start/:start/count/:count

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

:run - (required) model run digest, run stamp or run name

Model run can be identified by run digest, run stamp or run name. It is recommended to use digest because it is uniquely identifies model run.
Run stamp, if not explicitly specified as model run option, automatically generated as timestamp string, ex.: 2016_08_17_21_07_55_123. It is
also possible to use name, which is more human readable than digest, but if there are multiple runs with same name in database than result is
undefined.

:name - (required) output table name

:start - (optional) start "page" row number, zero-based.
:count - (optional) "page" size, number of rows to select, if count <= 0 then all rows selected.

Call examples:

http://localhost:4040/api/model/modelOne/run/Default/table/salarySex/acc
http://localhost:4040/api/model/modelOne/run/Default/table/salarySex/acc/start/2
http://localhost:4040/api/model/modelOne/run/Default/table/salarySex/acc/start/2/count/4
http://localhost:4040/api/model/_201208171604590148_/run/f172e98da17beb058f30f11768053456/table/salarySex/acc
http://localhost:4040/api/model/_201208171604590148_/run/2019_01_17_19_59_52_998/table/salarySex/acc

Return example:

[{"Dims":["L","M"],"Value":50,"IsNull":false,"AccId":0,"SubId":0}
,{"Dims":["L","F"],"Value":60,"IsNull":false,"AccId":0,"SubId":0}
,{"Dims":["L","all"],"Value":1,"IsNull":false,"AccId":0,"SubId":0}
,{"Dims":["M","M"],"Value":51.599999999999994,"IsNull":false,"AccId":0,"SubId":0}
,{"Dims":["M","F"],"Value":62,"IsNull":false,"AccId":0,"SubId":0}
,{"Dims":["M","all"],"Value":2,"IsNull":false,"AccId":0,"SubId":0}
,{"Dims":["H","M"],"Value":53.2,"IsNull":false,"AccId":0,"SubId":0}
,{"Dims":["H","F"],"Value":64,"IsNull":false,"AccId":0,"SubId":0}
,{"Dims":["H","all"],"Value":3,"IsNull":false,"AccId":0,"SubId":0}
,{"Dims":["L","M"],"Value":1,"IsNull":false,"AccId":1,"SubId":0}
,{"Dims":["L","F"],"Value":2,"IsNull":false,"AccId":1,"SubId":0}
,{"Dims":["L","all"],"Value":801,"IsNull":false,"AccId":1,"SubId":0}
,{"Dims":["M","M"],"Value":3,"IsNull":false,"AccId":1,"SubId":0}
,{"Dims":["M","F"],"Value":4,"IsNull":false,"AccId":1,"SubId":0}
,{"Dims":["M","all"],"Value":803,"IsNull":false,"AccId":1,"SubId":0}
,{"Dims":["H","M"],"Value":4,"IsNull":false,"AccId":1,"SubId":0}
,{"Dims":["H","F"],"Value":5,"IsNull":false,"AccId":1,"SubId":0}
,{"Dims":["H","all"],"Value":804,"IsNull":false,"AccId":1,"SubId":0}
]

GET output table accumulator(s) from model run

Read a "page" of output table values from "all accumulators" view of model run.

"All accumulators" view include derived accumulators. Page is part of output table values defined by zero-based "start" row number and row
count. If row count <= 0 then all rows returned.

Dimension(s) returned as enum codes or as string values if dimension type is simple (integer or boolean).

Methods:

GET /api/model/:model/run/:run/table/:name/all-acc
GET /api/model/:model/run/:run/table/:name/all-acc/start/:start
GET /api/model/:model/run/:run/table/:name/all-acc/start/:start/count/:count

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

:run - (required) model run digest, run stamp or run name

Model run can be identified by run digest, run stamp or run name. It is recommended to use digest because it is uniquely identifies model run.
Run stamp, if not explicitly specified as model run option, automatically generated as timestamp string, ex.: 2016_08_17_21_07_55_123. It is
also possible to use name, which is more human readable than digest, but if there are multiple runs with same name in database than result is
undefined.

:name - (required) output table name

:start - (optional) start "page" row number, zero-based.
:count - (optional) "page" size, number of rows to select, if count <= 0 then all rows selected.

Call examples:

http://localhost:4040/api/model/modelOne/run/Default/table/salarySex/all-acc
http://localhost:4040/api/model/modelOne_/run/Default/table/salarySex/all-acc/start/2
http://localhost:4040/api/model/modelOne/run/Default/table/salarySex/all-acc/start/2/count/4
http://localhost:4040/api/model/_201208171604590148_/run/f172e98da17beb058f30f11768053456/table/salarySex/all-acc
http://localhost:4040/api/model/_201208171604590148_/run/2019_01_17_19_59_52_998/table/salarySex/all-acc

Return example:

[{"Dims":["L","M"],"SubId":0,"IsNull":[false,false,false],"Value":[50,1,51]}
,{"Dims":["L","F"],"SubId":0,"IsNull":[false,false,false],"Value":[60,2,62]}
,{"Dims":["L","all"],"SubId":0,"IsNull":[false,false,false],"Value":[1,801,802]}
,{"Dims":["M","M"],"SubId":0,"IsNull":[false,false,false],"Value":[51.599999999999994,3,54.599999999999994]}
,{"Dims":["M","F"],"SubId":0,"IsNull":[false,false,false],"Value":[62,4,66]}
,{"Dims":["M","all"],"SubId":0,"IsNull":[false,false,false],"Value":[2,803,805]}
,{"Dims":["H","M"],"SubId":0,"IsNull":[false,false,false],"Value":[53.2,4,57.2]}
,{"Dims":["H","F"],"SubId":0,"IsNull":[false,false,false],"Value":[64,5,69]}
,{"Dims":["H","all"],"SubId":0,"IsNull":[false,false,false],"Value":[3,804,807]}
]

GET output table all accumulators from model run

Read a "page" of microdata values from model run.

Page is part of microdata values defined by zero-based "start" row number and row count. If row count <= 0 then all rows returned.

Enum-based microdata attributes returned as enum codes.

Methods:

GET /api/model/:model/run/:run/microdata/:name/value
GET /api/model/:model/run/:run/microdata/:name/value/start/:start
GET /api/model/:model/run/:run/microdata/:name/value/start/:start/count/:count

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

:run - (required) model run digest, run stamp or run name

Model run can be identified by run digest, run stamp or run name. It is recommended to use digest because it is uniquely identifies model run.
Run stamp, if not explicitly specified as model run option, automatically generated as timestamp string, ex.: 2016_08_17_21_07_55_123. It is
also possible to use name, which is more human readable than digest, but if there are multiple runs with same name in database than result is
undefined.

:name - (required) microdata entity name

:start - (optional) start "page" row number, zero-based.
:count - (optional) "page" size, number of rows to select, if count <= 0 then all rows selected

Call examples:

http://localhost:4040/api/model/modelOne/run/Microdata%20in%20database/microdata/Person/value
http://localhost:4040/api/model/modelOne/run/Microdata%20in%20database/microdata/Person/value/start/131040
http://localhost:4040/api/model/modelOne/run/Microdata%20in%20database/microdata/Person/value/start/131040/count/4
http://localhost:4040/api/model/_201208171604590148_/run/Microdata%20in%20database/microdata/Person/value
http://localhost:4040/api/model/_201208171604590148_/run/2019_01_17_19_59_52_998/microdata/Person/value

Return example:

[{
 "Key": 844424930164716,
 "Attr": [{
 "IsNull": false,
 "Value": "32"
 }, {
 "IsNull": false,
 "Value": "30-40"
 }, {
 "IsNull": false,
 "Value": "M"
 }, {
 "IsNull": false,
 "Value": "268271632"
 }, {
 "IsNull": false,
 "Value": "201203724"
 }, {
 "IsNull": false,
 "Value": "H"
 }, {
 "IsNull": false,
 "Value": "Full"
 }, {
 "IsNull": false,
 "Value": "false"
 }, {

GET microdata values from model run

 "IsNull": false,
 "Value": "0"
 }
]
 }, {
 "Key": 844424930164717,
 "Attr": [{
 "IsNull": false,
 "Value": "23"
 }, {
 "IsNull": false,
 "Value": "20-30"
 }, {
 "IsNull": false,
 "Value": "F"
 }, {
 "IsNull": false,
 "Value": "268279823"
 }, {
 "IsNull": false,
 "Value": "201209867.25"
 }, {
 "IsNull": false,
 "Value": "H"
 }, {
 "IsNull": false,
 "Value": "Full"
 }, {
 "IsNull": false,
 "Value": "false"
 }, {
 "IsNull": false,
 "Value": "0"
 }
]
 }, {
 "Key": 844424930164718,
 "Attr": [{
 "IsNull": false,
 "Value": "14"
 }, {
 "IsNull": false,
 "Value": "10-20"
 }, {
 "IsNull": false,
 "Value": "M"
 }, {
 "IsNull": false,
 "Value": "0"
 }, {
 "IsNull": false,
 "Value": "0"
 }, {
 "IsNull": false,
 "Value": "L"
 }, {
 "IsNull": false,
 "Value": "Part"
 }, {
 "IsNull": false,
 "Value": "false"
 }, {
 "IsNull": false,
 "Value": "0"
 }
]
 }, {
 "Key": 844424930164719,
 "Attr": [{
 "IsNull": false,
 "Value": "5"
 }, {
 "IsNull": false,
 "Value": "10-20"
 }, {
 "IsNull": false,
 "Value": "F"
 }, {
 "IsNull": false,
 "Value": "0"
 }, {
 "IsNull": false,
 "Value": "0"
 }, {
 "IsNull": false,
 "Value": "L"
 }, {
 "IsNull": false,

 "IsNull": false,
 "Value": "Part"
 }, {
 "IsNull": false,
 "Value": "false"
 }, {
 "IsNull": false,
 "Value": "0"
 }
]
 }
]

Read a "page" of aggregated microdata values from model run.

Result can include multiple aggregations of value attributes (float of integer type) and group by dimension attributes (enum-based or bool type).
Aggregation(s) is a comma-separated list of Model Output Expressions of microdata value attributes. For example, two aggregations:
OM_AVG(Income) , OM_MAX(Salary + Pension) and group by two dimension attributes: AgeGroup , Sex .

Page is part of output table values defined by zero-based "start" row number and row count. If row count <= 0 then all rows returned.

It is also possible to use parameter(s) in calculation, parameter must be a scalar of float or integer type. For example: OM_COUNT_IF(Income >

param.High) , where param.High is a value of scalar parameter High in that model run.

Enum-based microdata attributes returned as enum codes.

Following aggregation functions avaliable:

OM_AVG mean of accumulators sub-values

OM_SUM sum of accumulators sub-values

OM_COUNT count of accumulators sub-values (excluding NULL's)

OM_COUNT_IF count values matching condition

OM_MAX maximum of accumulators sub-values

OM_MIN minimum of accumulators sub-values

OM_VAR variance of accumulators sub-values

OM_SD standard deviation of accumulators sub-values

OM_SE standard error of accumulators sub-values

OM_CV coefficient of variation of accumulators sub-values

For more details please see: Model Output Expressions

Methods:

GET /api/model/:model/run/:run/microdata/:name/group-by/:group-by/calc/:calc
GET /api/model/:model/run/:run/microdata/:name/group-by/:group-by/calc/:calc/start/:start
GET /api/model/:model/run/:run/microdata/:name/group-by/:group-by/calc/:calc/start/:start/count/:count

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

:run - (required) model run digest, run stamp or run name

Model run can be identified by run digest, run stamp or run name. It is recommended to use digest because it is uniquely identifies model run.
Run stamp, if not explicitly specified as model run option, automatically generated as timestamp string, ex.: 2016_08_17_21_07_55_123. It is
also possible to use name, which is more human readable than digest, but if there are multiple runs with same name in database than result is
undefined.

:name - (required) microdata entity name

:group-by - (required) comma-separated list of dimension attribute(s) to group by aggreagated values, dimension attribute must be enum-based or boolean type.

GET aggregated microdata from model run

https://github.com/openmpp/openmpp.github.io/wiki/Model-Output-Expressions

:calc - (required) comma-separated list of aggregation of microdata value attribute(s), value attribute must be float of integer type.

:start - (optional) start "page" row number, zero-based.
:count - (optional) "page" size, number of rows to select, if count <= 0 then all rows selected.

Call examples:

http://localhost:4040/api/model/modelOne/run/Microdata%20in%20database/microdata/Person/group-by/AgeGroup,Sex/calc/OM_AVG(Income)
http://localhost:4040/api/model/modelOne/run/Microdata%20in%20database/microdata/Person/group-by/AgeGroup,Sex/calc/OM_AVG(Income)/start/2
http://localhost:4040/api/model/modelOne/run/Microdata%20in%20database/microdata/Person/group-by/AgeGroup,Sex/calc/OM_AVG(Income)/start/2/count/3

http://localhost:4040/api/model/modelOne/run/Microdata%20in%20database/microdata/Person/group-by/AgeGroup,Sex/calc/OM_AVG(Income),OM_AVG(Salary+Pension)
http://localhost:4040/api/model/modelOne/run/Microdata%20in%20database/microdata/Person/group-by/AgeGroup,Sex/calc/OM_COUNT_IF(Income%3Eparam.StartingSeed)

Note: OM_COUNT_IF(Income%3Eparam.StartingSeed) is URL encoded: OM_COUNT_IF(Income>param.StartingSeed) .

Return example:

curl http://localhost:4040/api/model/modelOne/run/Microdata%20in%20database/microdata/Person/group-by/AgeGroup,Sex/calc/OM_AVG(Income)/csv

[
 {
 "Attr": [
 {
 "IsNull": false,
 "Value": "10-20"
 },
 {
 "IsNull": false,
 "Value": "M"
 },
 {
 "IsNull": false,
 "Value": 13400876.354360776
 }
],
 "CalcName": "ex_1200",
 "RunDigest": "a59c91359c4cd98f6275529c798d2485"
 },
 {
 "Attr": [
 {
 "IsNull": false,
 "Value": "10-20"
 },
 {
 "IsNull": false,
 "Value": "F"
 },
 {
 "IsNull": false,
 "Value": 13403741.889092576
 }
],
 "CalcName": "ex_1200",
 "RunDigest": "a59c91359c4cd98f6275529c798d2485"
 },
 {
 "Attr": [
 {
 "IsNull": false,
 "Value": "20-30"
 },
 {
 "IsNull": false,
 "Value": "M"
 },
 {
 "IsNull": false,
 "Value": 134201344
 }
],
 "CalcName": "ex_1200",
 "RunDigest": "a59c91359c4cd98f6275529c798d2485"
 },
 {
 "Attr": [
 {
 "IsNull": false,

 "Value": "20-30"
 },
 {
 "IsNull": false,
 "Value": "F"
 },
 {
 "IsNull": false,
 "Value": 134209535
 }
],
 "CalcName": "ex_1200",
 "RunDigest": "a59c91359c4cd98f6275529c798d2485"
 },
 {
 "Attr": [
 {
 "IsNull": false,
 "Value": "30-40"
 },
 {
 "IsNull": false,
 "Value": "M"
 },
 {
 "IsNull": false,
 "Value": 134283254
 }
],
 "CalcName": "ex_1200",
 "RunDigest": "a59c91359c4cd98f6275529c798d2485"
 },
 {
 "Attr": [
 {
 "IsNull": false,
 "Value": "30-40"
 },
 {
 "IsNull": false,
 "Value": "F"
 },
 {
 "IsNull": false,
 "Value": 134291445
 }
],
 "CalcName": "ex_1200",
 "RunDigest": "a59c91359c4cd98f6275529c798d2485"
 },
 {
 "Attr": [
 {
 "IsNull": false,
 "Value": "40+"
 },
 {
 "IsNull": false,
 "Value": "M"
 },
 {
 "IsNull": false,
 "Value": 74645804.26116003
 }
],
 "CalcName": "ex_1200",
 "RunDigest": "a59c91359c4cd98f6275529c798d2485"
 },
 {
 "Attr": [
 {
 "IsNull": false,
 "Value": "40+"
 },
 {
 "IsNull": false,
 "Value": "F"
 },
 {
 "IsNull": false,
 "Value": 71069306.57187325
 }
],
 "CalcName": "ex_1200",
 "RunDigest": "a59c91359c4cd98f6275529c798d2485"
 }
]

Read a "page" of microdata values and compare model runs.

Compare [base] and [variant] model runs microdata value attributes (float of integer type), group it by dimension attributes (enum-based or bool
type).

Result can include multiple aggregated comparisons, grouped by multiple dimension attributes. Aggregated comparision(s) is a comma-
separated list of Model Output Expressions of [base] and [variant] value attributes. For example, two comparisions: OM_AVG(Income[variant] -

Income[base]) , OM_MAX(100 * (Salary[variant] + Pension[variant]) / Income[base]) and group by two dimension attributes: AgeGroup , Sex .

Page is part of output table values defined by zero-based "start" row number and row count. If row count <= 0 then all rows returned.

It is also possible to use parameter(s) in calculation, parameter must be a scalar of float or integer type. For example: OM_COUNT_IF((Income[variant -

Income[base]) > param.High[base]) , where param.High[base] is a value of scalar parameter High in [base] model run.

Enum-based microdata attributes returned as enum codes.

Following aggregation functions avaliable:

OM_AVG mean of accumulators sub-values

OM_SUM sum of accumulators sub-values

OM_COUNT count of accumulators sub-values (excluding NULL's)

OM_COUNT_IF count values matching condition

OM_MAX maximum of accumulators sub-values

OM_MIN minimum of accumulators sub-values

OM_VAR variance of accumulators sub-values

OM_SD standard deviation of accumulators sub-values

OM_SE standard error of accumulators sub-values

OM_CV coefficient of variation of accumulators sub-values

For more details please see: Model Output Expressions

Methods:

GET /api/model/:model/run/:run/microdata/:name/group-by/:group-by/compare/:compare/variant/:variant
GET /api/model/:model/run/:run/microdata/:name/group-by/:group-by/compare/:compare/variant/:variant/start/:start
GET /api/model/:model/run/:run/microdata/:name/group-by/:group-by/compare/:compare/variant/:variant/start/:start/count/:count

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

:run - (required) base model run digest, run stamp or run name
:variant - (required) variant model run(s): comma-separated list of digests, run stamps or run names

Model run can be identified by run digest, run stamp or run name. It is recommended to use digest because it is uniquely identifies model run.
Run stamp, if not explicitly specified as model run option, automatically generated as timestamp string, ex.: 2016_08_17_21_07_55_123. It is
also possible to use name, which is more human readable than digest, but if there are multiple runs with same name in database than result is
undefined.

:name - (required) microdata entity name

GET microdata run comparison

https://github.com/openmpp/openmpp.github.io/wiki/Model-Output-Expressions

:group-by - (required) comma-separated list of dimension attribute(s) to group by aggreagated values, dimension attribute must be enum-based or boolean type.

:compare - (required) comma-separated list of comparions of microdata value attribute(s), value attribute must be float of integer type.

:start - (optional) start "page" row number, zero-based.
:count - (optional) "page" size, number of rows to select, if count <= 0 then all rows selected.

Call examples:

http://localhost:4040/api/model/modelOne/run/Microdata%20in%20database/microdata/Person/group-by/AgeGroup,Sex/compare/OM_AVG(Income%5Bvariant%5D-Income%5Bba
se%5D)/variant/Microdata%20other%20in%20database
http://localhost:4040/api/model/modelOne/run/Microdata%20in%20database/microdata/Person/group-by/AgeGroup,Sex/compare/OM_AVG(Income%5Bvariant%5D-Income%5Bba
se%5D)/variant/Microdata%20other%20in%20database/start/2
http://localhost:4040/api/model/modelOne/run/Microdata%20in%20database/microdata/Person/group-by/AgeGroup,Sex/compare/OM_AVG(Income%5Bvariant%5D-Income%5Bba
se%5D)/variant/Microdata%20other%20in%20database/start/2/count/4

http://localhost:4040/api/model/modelOne/run/Microdata%20in%20database/microdata/Person/group-by/AgeGroup,Sex/compare/OM_AVG(Income%5Bvariant%5D-Income%5Bba
se%5D),OM_AVG(Salary)/variant/Microdata%20other%20in%20database
http://localhost:4040/api/model/modelOne/run/Microdata%20in%20database/microdata/Person/group-by/AgeGroup,Sex/compare/OM_AVG((Income%5Bvariant%5D-Income%5Bba
se%5D)+param.StartingSeed%5Bbase%5D)/variant/Microdata%20other%20in%20database

Note:

OM_AVG(Income%5Bvariant%5D-Income%5Bbase%5D) is URL encoded: OM_AVG(Income[variant]-Income[base]) .

OM_AVG((Income%5Bvariant%5D-Income%5Bbase%5D)+param.StartingSeed%5Bbase%5D) is URL encoded: OM_AVG((Income[variant]-

Income[base])+param.StartingSeed[base]) .

Return example:

http://localhost:4040/api/model/modelOne/run/Microdata%20in%20database/microdata/Person/group-by/AgeGroup,Sex/compare/OM_AVG(Income%5Bvariant%5D-Income%5Bba
se%5D)/variant/Microdata%20other%20in%20database

[
 {
 "Attr": [
 {
 "IsNull": false,
 "Value": "10-20"
 },
 {
 "IsNull": false,
 "Value": "M"
 },
 {
 "IsNull": false,
 "Value": -6701256.201619063
 }
],
 "CalcName": "ex_1200",
 "RunDigest": "86135ceed94d1239937a42e088a7fcb7"
 },
 {
 "Attr": [
 {
 "IsNull": false,
 "Value": "10-20"
 },
 {
 "IsNull": false,
 "Value": "F"
 },
 {
 "IsNull": false,
 "Value": -6702689.143904675
 }
],
 "CalcName": "ex_1200",
 "RunDigest": "86135ceed94d1239937a42e088a7fcb7"
 },
 {
 "Attr": [
 {
 "IsNull": false,
 "Value": "20-30"
 },

 {
 "IsNull": false,
 "Value": "M"
 },
 {
 "IsNull": false,
 "Value": -67108864
 }
],
 "CalcName": "ex_1200",
 "RunDigest": "86135ceed94d1239937a42e088a7fcb7"
 },
 {
 "Attr": [
 {
 "IsNull": false,
 "Value": "20-30"
 },
 {
 "IsNull": false,
 "Value": "F"
 },
 {
 "IsNull": false,
 "Value": -67112960
 }
],
 "CalcName": "ex_1200",
 "RunDigest": "86135ceed94d1239937a42e088a7fcb7"
 },
 {
 "Attr": [
 {
 "IsNull": false,
 "Value": "30-40"
 },
 {
 "IsNull": false,
 "Value": "M"
 },
 {
 "IsNull": false,
 "Value": -67149824
 }
],
 "CalcName": "ex_1200",
 "RunDigest": "86135ceed94d1239937a42e088a7fcb7"
 },
 {
 "Attr": [
 {
 "IsNull": false,
 "Value": "30-40"
 },
 {
 "IsNull": false,
 "Value": "F"
 },
 {
 "IsNull": false,
 "Value": -67153920
 }
],
 "CalcName": "ex_1200",
 "RunDigest": "86135ceed94d1239937a42e088a7fcb7"
 },
 {
 "Attr": [
 {
 "IsNull": false,
 "Value": "40+"
 },
 {
 "IsNull": false,
 "Value": "M"
 },
 {
 "IsNull": false,
 "Value": -37327458.47071971
 }
],
 "CalcName": "ex_1200",
 "RunDigest": "86135ceed94d1239937a42e088a7fcb7"
 },
 {
 "Attr": [
 {
 "IsNull": false,

 "IsNull": false,
 "Value": "40+"
 },
 {
 "IsNull": false,
 "Value": "F"
 },
 {
 "IsNull": false,
 "Value": -35538991.09092548
 }
],
 "CalcName": "ex_1200",
 "RunDigest": "86135ceed94d1239937a42e088a7fcb7"
 }
]

Read entire parameter values from workset as csv file.

Response stream is UTF-8 parameter.csv file attachment, optionally starts with byte order mark (BOM).

Dimension(s) and enum-based parameters returned as enum codes.

Methods:

GET /api/model/:model/workset/:set/parameter/:name/csv
GET /api/model/:model/workset/:set/parameter/:name/csv-bom

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

:set - (required) workset name

Workset is uniquely identified by name (inside the model). Different models can have worksets with same name, i.e. each model can have
workset with name "Default".

:name - (required) parameter name

Call examples:

http://localhost:4040/api/model/modelOne/workset/modelOne_other/parameter/ageSex/csv
http://localhost:4040/api/model/modelOne/workset/modelOne_other/parameter/ageSex/csv-bom

Return example:

sub_id,dim0,dim1,param_value
0,10-20,M,1.1
0,10-20,F,1.2
0,20-30,M,1.3
0,20-30,F,1.4
0,30-40,M,1.5
0,30-40,F,1.6
0,40+,M,1.7
0,40+,F,1.8

GET csv parameter values from workset

Read entire parameter values from workset as csv file.

Response stream is UTF-8 parameter.csv file attachment, optionally starts with byte order mark (BOM).

Dimension(s) and enum-based parameters returned as enum id, not enum codes.

Methods:

GET /api/model/:model/workset/:set/parameter/:name/csv-id
GET /api/model/:model/workset/:set/parameter/:name/csv-id-bom

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

:set - (required) workset name

Workset is uniquely identified by name (inside the model). Different models can have worksets with same name, i.e. each model can have
workset with name "Default".

:name - (required) parameter name

Call examples:

http://localhost:4040/api/model/modelOne/workset/modelOne_other/parameter/ageSex/csv-id
http://localhost:4040/api/model/modelOne/workset/modelOne_other/parameter/ageSex/csv-id-bom

Return example:

sub_id,dim0,dim1,param_value
0,10,0,1.1
0,10,1,1.2
0,20,0,1.3
0,20,1,1.4
0,30,0,1.5
0,30,1,1.6
0,40,0,1.7
0,40,1,1.8

GET csv parameter values from workset (enum id's)

Read entire parameter values from model run as csv file.

Response stream is UTF-8 parameter.csv file attachment, optionally starts with byte order mark (BOM).

Dimension(s) and enum-based parameters returned as enum codes.

Methods:

GET /api/model/:model/run/:run/parameter/:name/csv
GET /api/model/:model/run/:run/parameter/:name/csv-bom

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

:run - (required) model run digest, run stamp or run name

Model run can be identified by run digest, run stamp or run name. It is recommended to use digest because it is uniquely identifies model run.
Run stamp, if not explicitly specified as model run option, automatically generated as timestamp string, ex.: 2016_08_17_21_07_55_123. It is
also possible to use name, which is more human readable than digest, but if there are multiple runs with same name in database than result is
undefined.

:name - (required) parameter name

Call examples:

http://localhost:4040/api/model/modelOne/run/Default/parameter/ageSex/csv
http://localhost:4040/api/model/modelOne/run/Default/parameter/ageSex/csv-bom
http://localhost:4040/api/model/modelOne/run/f172e98da17beb058f30f11768053456/parameter/ageSex/csv
http://localhost:4040/api/model/modelOne/run/f172e98da17beb058f30f11768053456/parameter/ageSex/csv-bom
http://localhost:4040/api/model/modelOne/run/2019_01_17_19_59_52_998/parameter/ageSex/csv

Return example:

sub_id,dim0,dim1,param_value
0,10-20,M,0.1
0,10-20,F,0.2
0,20-30,M,0.3
0,20-30,F,0.4
0,30-40,M,0.5
0,30-40,F,0.6
0,40+,M,0.7
0,40+,F,0.8

GET csv parameter values from model run

Read entire parameter values from model run as csv file.

Response stream is UTF-8 parameter.csv file attachment, optionally starts with byte order mark (BOM).

Dimension(s) and enum-based parameters returned as enum id, not enum codes.

Methods:

GET /api/model/:model/run/:run/parameter/:name/csv-id
GET /api/model/:model/run/:run/parameter/:name/csv-id-bom

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

:run - (required) model run digest, run stamp or run name

Model run can be identified by run digest, run stamp or run name. It is recommended to use digest because it is uniquely identifies model run.
Run stamp, if not explicitly specified as model run option, automatically generated as timestamp string, ex.: 2016_08_17_21_07_55_123. It is
also possible to use name, which is more human readable than digest, but if there are multiple runs with same name in database than result is
undefined.

:name - (required) parameter name

Call examples:

http://localhost:4040/api/model/modelOne/run/Default/parameter/ageSex/csv-id
http://localhost:4040/api/model/modelOne/run/Default/parameter/ageSex/csv-id-bom
http://localhost:4040/api/model/modelOne/run/f172e98da17beb058f30f11768053456/parameter/ageSex/csv-id
http://localhost:4040/api/model/modelOne/run/f172e98da17beb058f30f11768053456/parameter/ageSex/csv-id-bom
http://localhost:4040/api/model/modelOne/run/2019_01_17_19_59_52_998/parameter/ageSex/csv-id

Return example:

sub_id,dim0,dim1,param_value
0,10,0,0.1
0,10,1,0.2
0,20,0,0.3
0,20,1,0.4
0,30,0,0.5
0,30,1,0.6
0,40,0,0.7
0,40,1,0.8

GET csv parameter values from model run (enum id's)

Read entire output table expression(s) values from model run as csv file.

Response stream is UTF-8 outputTable.csv file attachment, optionally starts with byte order mark (BOM).

Dimension(s) returned as enum codes.

Methods:

GET /api/model/:model/run/:run/table/:name/expr/csv
GET /api/model/:model/run/:run/table/:name/expr/csv-bom

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

:run - (required) model run digest, run stamp or run name

Model run can be identified by run digest, run stamp or run name. It is recommended to use digest because it is uniquely identifies model run.
Run stamp, if not explicitly specified as model run option, automatically generated as timestamp string, ex.: 2016_08_17_21_07_55_123. It is
also possible to use name, which is more human readable than digest, but if there are multiple runs with same name in database than result is
undefined.

:name - (required) output table name

Call examples:

http://localhost:4040/api/model/modelOne/run/Default/table/salarySex/expr/csv
http://localhost:4040/api/model/modelOne/run/Default/table/salarySex/expr/csv-bom
http://localhost:4040/api/model/_201208171604590148_/run/f172e98da17beb058f30f11768053456/table/salarySex/expr/csv
http://localhost:4040/api/model/_201208171604590148_/run/2019_01_17_19_59_52_998/table/salarySex/expr/csv

Return example:

GET csv output table expressions from model run

expr_name,dim0,dim1,expr_value
expr0,L,M,50
expr0,L,F,60
expr0,L,all,1
expr0,M,M,51.6
expr0,M,F,62
expr0,M,all,2
expr0,H,M,53.2
expr0,H,F,64
expr0,H,all,3
expr1,L,M,1
expr1,L,F,2
expr1,L,all,801
expr1,M,M,3
expr1,M,F,4
expr1,M,all,803
expr1,H,M,4
expr1,H,F,5
expr1,H,all,804
expr2,L,M,50
expr2,L,F,60
expr2,L,all,1
expr2,M,M,51.6
expr2,M,F,62
expr2,M,all,2
expr2,H,M,53.2
expr2,H,F,64
expr2,H,all,3
expr3,L,M,50
expr3,L,F,120
expr3,L,all,801
expr3,M,M,154.8
expr3,M,F,248
expr3,M,all,1606
expr3,H,M,212.8
expr3,H,F,320
expr3,H,all,2412

Read entire output table expression(s) values from model run as csv file.

Response stream is UTF-8 outputTable.csv file attachment, optionally starts with byte order mark (BOM).

Dimension(s) returned as enum id's.

Methods:

GET /api/model/:model/run/:run/table/:name/expr/csv-id
GET /api/model/:model/run/:run/table/:name/expr/csv-id-bom

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

:run - (required) model run digest, run stamp or run name

Model run can be identified by run digest, run stamp or run name. It is recommended to use digest because it is uniquely identifies model run.
Run stamp, if not explicitly specified as model run option, automatically generated as timestamp string, ex.: 2016_08_17_21_07_55_123. It is
also possible to use name, which is more human readable than digest, but if there are multiple runs with same name in database than result is
undefined.

:name - (required) output table name

Call examples:

http://localhost:4040/api/model/modelOne/run/Default/table/salarySex/expr/csv-id
http://localhost:4040/api/model/modelOne/run/Default/table/salarySex/expr/csv-id-bom
http://localhost:4040/api/model/_201208171604590148_/run/f172e98da17beb058f30f11768053456/table/salarySex/expr/csv-id
http://localhost:4040/api/model/_201208171604590148_/run/2019_01_17_19_59_52_998/table/salarySex/expr/csv-id

Return example:

GET csv output table expressions from model run (enum id's)

expr_id,dim0,dim1,expr_value
0,100,0,50
0,100,1,60
0,100,800,1
0,200,0,51.6
0,200,1,62
0,200,800,2
0,300,0,53.2
0,300,1,64
0,300,800,3
1,100,0,1
1,100,1,2
1,100,800,801
1,200,0,3
1,200,1,4
1,200,800,803
1,300,0,4
1,300,1,5
1,300,800,804
2,100,0,50
2,100,1,60
2,100,800,1
2,200,0,51.6
2,200,1,62
2,200,800,2
2,300,0,53.2
2,300,1,64
2,300,800,3
3,100,0,50
3,100,1,120
3,100,800,801
3,200,0,154.8
3,200,1,248
3,200,800,1606
3,300,0,212.8
3,300,1,320
3,300,800,2412

Read entire output table accumulator(s) values from model run as csv file.

Response stream is UTF-8 outputTable.csv file attachment, optionally starts with byte order mark (BOM).

Dimension(s) returned as enum codes.

Methods:

GET /api/model/:model/run/:run/table/:name/acc/csv
GET /api/model/:model/run/:run/table/:name/acc/csv-bom

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

:run - (required) model run digest, run stamp or run name

Model run can be identified by run digest, run stamp or run name. It is recommended to use digest because it is uniquely identifies model run.
Run stamp, if not explicitly specified as model run option, automatically generated as timestamp string, ex.: 2016_08_17_21_07_55_123. It is
also possible to use name, which is more human readable than digest, but if there are multiple runs with same name in database than result is
undefined.

:name - (required) output table name

Call examples:

http://localhost:4040/api/model/modelOne/run/Default/table/salarySex/acc/csv
http://localhost:4040/api/model/modelOne/run/Default/table/salarySex/acc/csv-bom
http://localhost:4040/api/model/_201208171604590148_/run/f172e98da17beb058f30f11768053456/table/salarySex/acc/csv
http://localhost:4040/api/model/_201208171604590148_/run/2019_01_17_19_59_52_998/table/salarySex/acc/csv

Return example:

acc_name,sub_id,dim0,dim1,acc_value
acc0,0,L,M,50
acc0,0,L,F,60
acc0,0,L,all,1
acc0,0,M,M,51.6
acc0,0,M,F,62
acc0,0,M,all,2
acc0,0,H,M,53.2
acc0,0,H,F,64
acc0,0,H,all,3
acc1,0,L,M,1
acc1,0,L,F,2
acc1,0,L,all,801
acc1,0,M,M,3
acc1,0,M,F,4
acc1,0,M,all,803
acc1,0,H,M,4
acc1,0,H,F,5
acc1,0,H,all,804

GET csv output table accumulators from model run

Read entire output table accumulator(s) values from model run as csv file.

Response stream is UTF-8 outputTable.csv file attachment, optionally starts with byte order mark (BOM).

Dimension(s) returned as enum id's.

Methods:

GET /api/model/:model/run/:run/table/:name/acc/csv-id
GET /api/model/:model/run/:run/table/:name/acc/csv-id-bom

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

:run - (required) model run digest, run stamp or run name

Model run can be identified by run digest, run stamp or run name. It is recommended to use digest because it is uniquely identifies model run.
Run stamp, if not explicitly specified as model run option, automatically generated as timestamp string, ex.: 2016_08_17_21_07_55_123. It is
also possible to use name, which is more human readable than digest, but if there are multiple runs with same name in database than result is
undefined.

:name - (required) output table name

Call examples:

http://localhost:4040/api/model/modelOne/run/Default/table/salarySex/acc/csv-id
http://localhost:4040/api/model/modelOne/run/Default/table/salarySex/acc/csv-id-bom
http://localhost:4040/api/model/_201208171604590148_/run/f172e98da17beb058f30f11768053456/table/table/salarySex/acc/csv-id
http://localhost:4040/api/model/_201208171604590148_/run/2019_01_17_19_59_52_998/table/table/salarySex/acc/csv-id

Return example:

acc_id,sub_id,dim0,dim1,acc_value
0,0,100,0,50
0,0,100,1,60
0,0,100,800,1
0,0,200,0,51.6
0,0,200,1,62
0,0,200,800,2
0,0,300,0,53.2
0,0,300,1,64
0,0,300,800,3
1,0,100,0,1
1,0,100,1,2
1,0,100,800,801
1,0,200,0,3
1,0,200,1,4
1,0,200,800,803
1,0,300,0,4
1,0,300,1,5
1,0,300,800,804

GET csv output table accumulators from model run (enum id's)

Read entire output table "all-accumulators" view values from model run as csv file.

Response stream is UTF-8 outputTable.csv file attachment, optionally starts with byte order mark (BOM).

Dimension(s) returned as enum codes.

Methods:

GET /api/model/:model/run/:run/table/:name/all-acc/csv
GET /api/model/:model/run/:run/table/:name/all-acc/csv-bom

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

:run - (required) model run digest, run stamp or run name

Model run can be identified by run digest, run stamp or run name. It is recommended to use digest because it is uniquely identifies model run.
Run stamp, if not explicitly specified as model run option, automatically generated as timestamp string, ex.: 2016_08_17_21_07_55_123. It is
also possible to use name, which is more human readable than digest, but if there are multiple runs with same name in database than result is
undefined.

:name - (required) output table name

Call examples:

http://localhost:4040/api/model/modelOne/run/Default/table/salarySex/all-acc/csv
http://localhost:4040/api/model/modelOne/run/Default/table/salarySex/all-acc/csv-bom
http://localhost:4040/api/model/_201208171604590148_/run/f172e98da17beb058f30f11768053456/table/salarySex/all-acc/csv
http://localhost:4040/api/model/modelOne/run/2019_01_17_19_59_52_998/table/salarySex/all-acc/csv

Return example:

sub_id,dim0,dim1,acc0,acc1,acc2
0,L,M,50,1,51
0,L,F,60,2,62
0,L,all,1,801,802
0,M,M,51.6,3,54.6
0,M,F,62,4,66
0,M,all,2,803,805
0,H,M,53.2,4,57.2
0,H,F,64,5,69
0,H,all,3,804,807

GET csv output table all accumulators from model run

Read entire output table "all-accumulators" view values from model run as csv file.

Response stream is UTF-8 outputTable.csv file attachment, optionally starts with byte order mark (BOM).

Dimension(s) returned as enum id's.

Methods:

GET /api/model/:model/run/:run/table/:name/all-acc/csv-id
GET /api/model/:model/run/:run/table/:name/all-acc/csv-id-bom

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

:run - (required) model run digest, run stamp or run name

Model run can be identified by run digest, run stamp or run name. It is recommended to use digest because it is uniquely identifies model run.
Run stamp, if not explicitly specified as model run option, automatically generated as timestamp string, ex.: 2016_08_17_21_07_55_123. It is
also possible to use name, which is more human readable than digest, but if there are multiple runs with same name in database than result is
undefined.

:name - (required) output table name

Call examples:

http://localhost:4040/api/model/modelOne/run/Default/table/salarySex/all-acc/csv-id
http://localhost:4040/api/model/modelOne/run/Default/table/salarySex/all-acc/csv-id-bom
http://localhost:4040/api/model/_201208171604590148_/run/f172e98da17beb058f30f11768053456/table/salarySex/all-acc/csv-id
http://localhost:4040/api/model/modelOne/run/2019_01_17_19_59_52_998/table/salarySex/all-acc/csv-id

Return example:

sub_id,dim0,dim1,acc0,acc1,acc2
0,100,0,50,1,51
0,100,1,60,2,62
0,100,800,1,801,802
0,200,0,51.6,3,54.6
0,200,1,62,4,66
0,200,800,2,803,805
0,300,0,53.2,4,57.2
0,300,1,64,5,69
0,300,800,3,804,807

GET csv output table all accumulators from model run (enum id's)

Calculate and read output table expression(s) values from model run as csv file.

Read output table expressions, calculate additional measure for each expression and get it as response stream UTF-8 outputTable.csv file
attachment, optionally starts with byte order mark (BOM).

Measures calculated as one of the following:

for each table expression calculate one of: avg, sum, count, max, min, var, sd, se, cv

as arbitrary aggreagated expressions provided as comma separated list

Dimension(s) returned as enum codes.

Methods:

GET /api/model/:model/run/:run/table/:name/calc/:calc/csv
GET /api/model/:model/run/:run/table/:name/calc/:calc/csv-bom

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

:run - (required) model run digest, run stamp or run name

Model run can be identified by run digest, run stamp or run name. It is recommended to use digest because it is uniquely identifies model run.
Run stamp, if not explicitly specified as model run option, automatically generated as timestamp string, ex.: 2016_08_17_21_07_55_123. It is
also possible to use name, which is more human readable than digest, but if there are multiple runs with same name in database than result is
undefined.

:name - (required) output table name

:calc - (required) name of additional measure to calculate

Additional measure must be one of:

avg mean of expression sub-values

sum sum of expression sub-values

count count of expression sub-values (excluding NULL's)

max maximum of expression sub-values

min minimum of expression sub-values

var variance of expression sub-values

sd standard deviation of expression sub-values

se standard error of expression sub-values

cv coefficient of variation of expression sub-values

Or a list of comma-separated aggreagated expressions, for example: OM_AVG(acc0) , 2 * SQRT(OM_SUM(acc1) - OM_SD(acc0))

It is also possible to use parameter(s) in calculation, parameter must be a scalar of float or integer type. For example: OM_COUNT_IF(acc1 >

param.High) , where param.High is a value of scalar parameter High in that model run.

Following aggregation functions avaliable:

GET csv calculated table expressions from model run

OM_AVG mean of accumulators sub-values

OM_SUM sum of accumulators sub-values

OM_COUNT count of accumulators sub-values (excluding NULL's)

OM_COUNT_IF count values matching condition

OM_MAX maximum of accumulators sub-values

OM_MIN minimum of accumulators sub-values

OM_VAR variance of accumulators sub-values

OM_SD standard deviation of accumulators sub-values

OM_SE standard error of accumulators sub-values

OM_CV coefficient of variation of accumulators sub-values

For more details please see: Model Output Expressions

Call examples:

http://localhost:4040/api/model/RiskPaths/run/RiskPaths_Default/table/T04_FertilityRatesByAgeGroup/calc/avg/csv
http://localhost:4040/api/model/RiskPaths/run/RiskPaths_Default/table/T04_FertilityRatesByAgeGroup/calc/sd/csv-bom
http://localhost:4040/api/model/_201208171604590148_/run/f172e98da17beb058f30f11768053456/table/salarySex/calc/se/csv
http://localhost:4040/api/model/_201208171604590148_/run/2019_01_17_19_59_52_998/table/salarySex/calc/cv/csv

http://localhost:4040/api/model/modelOne/run/Default-4/table/salarySex/calc/OM_AVG(acc0),2*SQRT(OM_SUM(acc1)-OM_SD(acc0))/csv
http://localhost:4040/api/model/modelOne/run/Default-4/table/salarySex/calc/OM_COUNT_IF(acc0%3Cparam.StartingSeed)/csv

Note: OM_COUNT_IF(acc0%3Cparam.StartingSeed) is URL encoded: OM_COUNT_IF(acc0<param.StartingSeed)

Return example:

curl http://localhost:4040/api/model/RiskPaths/run/RiskPaths_Default_4/table/T04_FertilityRatesByAgeGroup/calc/avg/csv

run_digest,calc_name,Dim0,Dim1,calc_value
b794d3399099035740e117378c523feb,Expr0,"(-∞,15)",US_NEVER_IN_UNION,0
b794d3399099035740e117378c523feb,Expr0,"(-∞,15)",US_FIRST_UNION_PERIOD1,null
b794d3399099035740e117378c523feb,Expr0,"(-∞,15)",US_FIRST_UNION_PERIOD2,null
b794d3399099035740e117378c523feb,Expr0,"(-∞,15)",US_AFTER_FIRST_UNION,null
b794d3399099035740e117378c523feb,Expr0,"(-∞,15)",US_SECOND_UNION,null
b794d3399099035740e117378c523feb,Expr0,"(-∞,15)",US_AFTER_SECOND_UNION,null
b794d3399099035740e117378c523feb,Expr0,"[15,17.5)",US_NEVER_IN_UNION,0.0183139978773642
b794d3399099035740e117378c523feb,Expr0,"[15,17.5)",US_FIRST_UNION_PERIOD1,0.315246747433367
b794d3399099035740e117378c523feb,Expr0,"[15,17.5)",US_FIRST_UNION_PERIOD2,null
b794d3399099035740e117378c523feb,Expr0,"[15,17.5)",US_AFTER_FIRST_UNION,0
b794d3399099035740e117378c523feb,Expr0,"[15,17.5)",US_SECOND_UNION,0
b794d3399099035740e117378c523feb,Expr0,"[15,17.5)",US_AFTER_SECOND_UNION,null
b794d3399099035740e117378c523feb,Expr0,"[17.5,20)",US_NEVER_IN_UNION,0.0537541294539804
b794d3399099035740e117378c523feb,Expr0,"[17.5,20)",US_FIRST_UNION_PERIOD1,0.713129647941936
b794d3399099035740e117378c523feb,Expr0,"[17.5,20)",US_FIRST_UNION_PERIOD2,0.27913884088947
b794d3399099035740e117378c523feb,Expr0,"[17.5,20)",US_AFTER_FIRST_UNION,0.0340306112997705
b794d3399099035740e117378c523feb,Expr0,"[17.5,20)",US_SECOND_UNION,0.631356771396228
b794d3399099035740e117378c523feb,Expr0,"[17.5,20)",US_AFTER_SECOND_UNION,null
b794d3399099035740e117378c523feb,Expr0,"[20,22.5)",US_NEVER_IN_UNION,0.0544540553970037
b794d3399099035740e117378c523feb,Expr0,"[20,22.5)",US_FIRST_UNION_PERIOD1,0.814226115392992
b794d3399099035740e117378c523feb,Expr0,"[20,22.5)",US_FIRST_UNION_PERIOD2,0.225999767108206
b794d3399099035740e117378c523feb,Expr0,"[20,22.5)",US_AFTER_FIRST_UNION,0.0225289422479095
b794d3399099035740e117378c523feb,Expr0,"[20,22.5)",US_SECOND_UNION,0.552801004995511
b794d3399099035740e117378c523feb,Expr0,"[20,22.5)",US_AFTER_SECOND_UNION,0
b794d3399099035740e117378c523feb,Expr0,"[22.5,25)",US_NEVER_IN_UNION,0.0539099306643693
b794d3399099035740e117378c523feb,Expr0,"[22.5,25)",US_FIRST_UNION_PERIOD1,0.809582230266138
b794d3399099035740e117378c523feb,Expr0,"[22.5,25)",US_FIRST_UNION_PERIOD2,0.195155708061047
b794d3399099035740e117378c523feb,Expr0,"[22.5,25)",US_AFTER_FIRST_UNION,0.0414901238939861
b794d3399099035740e117378c523feb,Expr0,"[22.5,25)",US_SECOND_UNION,0.59945794749404
b794d3399099035740e117378c523feb,Expr0,"[22.5,25)",US_AFTER_SECOND_UNION,0
b794d3399099035740e117378c523feb,Expr0,"[25,27.5)",US_NEVER_IN_UNION,0.0415985067709889
b794d3399099035740e117378c523feb,Expr0,"[25,27.5)",US_FIRST_UNION_PERIOD1,0.602459144412015
b794d3399099035740e117378c523feb,Expr0,"[25,27.5)",US_FIRST_UNION_PERIOD2,0.187080449150788
b794d3399099035740e117378c523feb,Expr0,"[25,27.5)",US_AFTER_FIRST_UNION,0.0203496069483281
b794d3399099035740e117378c523feb,Expr0,"[25,27.5)",US_SECOND_UNION,1.00906724659711
b794d3399099035740e117378c523feb,Expr0,"[25,27.5)",US_AFTER_SECOND_UNION,0
b794d3399099035740e117378c523feb,Expr0,"[27.5,30)",US_NEVER_IN_UNION,0.0314673689946165
b794d3399099035740e117378c523feb,Expr0,"[27.5,30)",US_FIRST_UNION_PERIOD1,0.462198924442823

https://github.com/openmpp/openmpp.github.io/wiki/Model-Output-Expressions

b794d3399099035740e117378c523feb,Expr0,"[27.5,30)",US_FIRST_UNION_PERIOD2,0.137851629822403
b794d3399099035740e117378c523feb,Expr0,"[27.5,30)",US_AFTER_FIRST_UNION,0.0229824909841167
b794d3399099035740e117378c523feb,Expr0,"[27.5,30)",US_SECOND_UNION,0.362222813716797
b794d3399099035740e117378c523feb,Expr0,"[27.5,30)",US_AFTER_SECOND_UNION,0.0572026776260319
b794d3399099035740e117378c523feb,Expr0,"[30,32.5)",US_NEVER_IN_UNION,0.0416497396600501
b794d3399099035740e117378c523feb,Expr0,"[30,32.5)",US_FIRST_UNION_PERIOD1,0.549536875782365
b794d3399099035740e117378c523feb,Expr0,"[30,32.5)",US_FIRST_UNION_PERIOD2,0.110088801281195
b794d3399099035740e117378c523feb,Expr0,"[30,32.5)",US_AFTER_FIRST_UNION,0.0468326974687102
b794d3399099035740e117378c523feb,Expr0,"[30,32.5)",US_SECOND_UNION,0.330292197388013
b794d3399099035740e117378c523feb,Expr0,"[30,32.5)",US_AFTER_SECOND_UNION,0
b794d3399099035740e117378c523feb,Expr0,"[32.5,35)",US_NEVER_IN_UNION,0.0221476827597504
b794d3399099035740e117378c523feb,Expr0,"[32.5,35)",US_FIRST_UNION_PERIOD1,0.240119203514267
b794d3399099035740e117378c523feb,Expr0,"[32.5,35)",US_FIRST_UNION_PERIOD2,0.0732205051114689
b794d3399099035740e117378c523feb,Expr0,"[32.5,35)",US_AFTER_FIRST_UNION,0
b794d3399099035740e117378c523feb,Expr0,"[32.5,35)",US_SECOND_UNION,0.391609286784764
b794d3399099035740e117378c523feb,Expr0,"[32.5,35)",US_AFTER_SECOND_UNION,0
b794d3399099035740e117378c523feb,Expr0,"[35,37.5)",US_NEVER_IN_UNION,0.0118488890311401
b794d3399099035740e117378c523feb,Expr0,"[35,37.5)",US_FIRST_UNION_PERIOD1,0.131862730376457
b794d3399099035740e117378c523feb,Expr0,"[35,37.5)",US_FIRST_UNION_PERIOD2,0.0830998727570066
b794d3399099035740e117378c523feb,Expr0,"[35,37.5)",US_AFTER_FIRST_UNION,0.0221047417383149
b794d3399099035740e117378c523feb,Expr0,"[35,37.5)",US_SECOND_UNION,0.279863987999404
b794d3399099035740e117378c523feb,Expr0,"[35,37.5)",US_AFTER_SECOND_UNION,0.114442750608107
b794d3399099035740e117378c523feb,Expr0,"[37.5,40)",US_NEVER_IN_UNION,0.017525081049452
b794d3399099035740e117378c523feb,Expr0,"[37.5,40)",US_FIRST_UNION_PERIOD1,0.157747779554811
b794d3399099035740e117378c523feb,Expr0,"[37.5,40)",US_FIRST_UNION_PERIOD2,0.0572711925357155
b794d3399099035740e117378c523feb,Expr0,"[37.5,40)",US_AFTER_FIRST_UNION,0
b794d3399099035740e117378c523feb,Expr0,"[37.5,40)",US_SECOND_UNION,0.169455199059931
b794d3399099035740e117378c523feb,Expr0,"[37.5,40)",US_AFTER_SECOND_UNION,0
b794d3399099035740e117378c523feb,Expr0,"[40,∞)",US_NEVER_IN_UNION,0
b794d3399099035740e117378c523feb,Expr0,"[40,∞)",US_FIRST_UNION_PERIOD1,0
b794d3399099035740e117378c523feb,Expr0,"[40,∞)",US_FIRST_UNION_PERIOD2,0
b794d3399099035740e117378c523feb,Expr0,"[40,∞)",US_AFTER_FIRST_UNION,0
b794d3399099035740e117378c523feb,Expr0,"[40,∞)",US_SECOND_UNION,0
b794d3399099035740e117378c523feb,Expr0,"[40,∞)",US_AFTER_SECOND_UNION,0
b794d3399099035740e117378c523feb,OM_AVG_Expr0,"(-∞,15)",US_NEVER_IN_UNION,0
b794d3399099035740e117378c523feb,OM_AVG_Expr0,"(-∞,15)",US_FIRST_UNION_PERIOD1,null
b794d3399099035740e117378c523feb,OM_AVG_Expr0,"(-∞,15)",US_FIRST_UNION_PERIOD2,null
b794d3399099035740e117378c523feb,OM_AVG_Expr0,"(-∞,15)",US_AFTER_FIRST_UNION,null
b794d3399099035740e117378c523feb,OM_AVG_Expr0,"(-∞,15)",US_SECOND_UNION,null
b794d3399099035740e117378c523feb,OM_AVG_Expr0,"(-∞,15)",US_AFTER_SECOND_UNION,null
b794d3399099035740e117378c523feb,OM_AVG_Expr0,"[15,17.5)",US_NEVER_IN_UNION,0.0183150153186944
b794d3399099035740e117378c523feb,OM_AVG_Expr0,"[15,17.5)",US_FIRST_UNION_PERIOD1,0.316271343152912
b794d3399099035740e117378c523feb,OM_AVG_Expr0,"[15,17.5)",US_FIRST_UNION_PERIOD2,null
b794d3399099035740e117378c523feb,OM_AVG_Expr0,"[15,17.5)",US_AFTER_FIRST_UNION,0
b794d3399099035740e117378c523feb,OM_AVG_Expr0,"[15,17.5)",US_SECOND_UNION,0
b794d3399099035740e117378c523feb,OM_AVG_Expr0,"[15,17.5)",US_AFTER_SECOND_UNION,null
b794d3399099035740e117378c523feb,OM_AVG_Expr0,"[17.5,20)",US_NEVER_IN_UNION,0.0537675746731247
b794d3399099035740e117378c523feb,OM_AVG_Expr0,"[17.5,20)",US_FIRST_UNION_PERIOD1,0.713529542211133
b794d3399099035740e117378c523feb,OM_AVG_Expr0,"[17.5,20)",US_FIRST_UNION_PERIOD2,0.290605057165821
b794d3399099035740e117378c523feb,OM_AVG_Expr0,"[17.5,20)",US_AFTER_FIRST_UNION,0.0257953477423063
b794d3399099035740e117378c523feb,OM_AVG_Expr0,"[17.5,20)",US_SECOND_UNION,0.971013422710935
b794d3399099035740e117378c523feb,OM_AVG_Expr0,"[17.5,20)",US_AFTER_SECOND_UNION,null
b794d3399099035740e117378c523feb,OM_AVG_Expr0,"[20,22.5)",US_NEVER_IN_UNION,0.054451507853128
b794d3399099035740e117378c523feb,OM_AVG_Expr0,"[20,22.5)",US_FIRST_UNION_PERIOD1,0.815769510398502
b794d3399099035740e117378c523feb,OM_AVG_Expr0,"[20,22.5)",US_FIRST_UNION_PERIOD2,0.229287238004696
b794d3399099035740e117378c523feb,OM_AVG_Expr0,"[20,22.5)",US_AFTER_FIRST_UNION,0.0127116167313564
b794d3399099035740e117378c523feb,OM_AVG_Expr0,"[20,22.5)",US_SECOND_UNION,0.429415814994704
b794d3399099035740e117378c523feb,OM_AVG_Expr0,"[20,22.5)",US_AFTER_SECOND_UNION,0
b794d3399099035740e117378c523feb,OM_AVG_Expr0,"[22.5,25)",US_NEVER_IN_UNION,0.0541040962861145
b794d3399099035740e117378c523feb,OM_AVG_Expr0,"[22.5,25)",US_FIRST_UNION_PERIOD1,0.80980843837352
b794d3399099035740e117378c523feb,OM_AVG_Expr0,"[22.5,25)",US_FIRST_UNION_PERIOD2,0.195232130104512
b794d3399099035740e117378c523feb,OM_AVG_Expr0,"[22.5,25)",US_AFTER_FIRST_UNION,0.0425462458785113
b794d3399099035740e117378c523feb,OM_AVG_Expr0,"[22.5,25)",US_SECOND_UNION,0.831967409785808
b794d3399099035740e117378c523feb,OM_AVG_Expr0,"[22.5,25)",US_AFTER_SECOND_UNION,0
b794d3399099035740e117378c523feb,OM_AVG_Expr0,"[25,27.5)",US_NEVER_IN_UNION,0.0417067099443355
b794d3399099035740e117378c523feb,OM_AVG_Expr0,"[25,27.5)",US_FIRST_UNION_PERIOD1,0.602467976857289
b794d3399099035740e117378c523feb,OM_AVG_Expr0,"[25,27.5)",US_FIRST_UNION_PERIOD2,0.186968206655534
b794d3399099035740e117378c523feb,OM_AVG_Expr0,"[25,27.5)",US_AFTER_FIRST_UNION,0.0315133813846249
b794d3399099035740e117378c523feb,OM_AVG_Expr0,"[25,27.5)",US_SECOND_UNION,1.28700220240812
b794d3399099035740e117378c523feb,OM_AVG_Expr0,"[25,27.5)",US_AFTER_SECOND_UNION,0
b794d3399099035740e117378c523feb,OM_AVG_Expr0,"[27.5,30)",US_NEVER_IN_UNION,0.0314820070793188
b794d3399099035740e117378c523feb,OM_AVG_Expr0,"[27.5,30)",US_FIRST_UNION_PERIOD1,0.462127063133201
b794d3399099035740e117378c523feb,OM_AVG_Expr0,"[27.5,30)",US_FIRST_UNION_PERIOD2,0.137897098019438
b794d3399099035740e117378c523feb,OM_AVG_Expr0,"[27.5,30)",US_AFTER_FIRST_UNION,0.0295557293946093
b794d3399099035740e117378c523feb,OM_AVG_Expr0,"[27.5,30)",US_SECOND_UNION,0.268318808255325
b794d3399099035740e117378c523feb,OM_AVG_Expr0,"[27.5,30)",US_AFTER_SECOND_UNION,0.0267057657548253
b794d3399099035740e117378c523feb,OM_AVG_Expr0,"[30,32.5)",US_NEVER_IN_UNION,0.0416625733706113
b794d3399099035740e117378c523feb,OM_AVG_Expr0,"[30,32.5)",US_FIRST_UNION_PERIOD1,0.567544621403048
b794d3399099035740e117378c523feb,OM_AVG_Expr0,"[30,32.5)",US_FIRST_UNION_PERIOD2,0.111089012753633
b794d3399099035740e117378c523feb,OM_AVG_Expr0,"[30,32.5)",US_AFTER_FIRST_UNION,0.0452064833182238
b794d3399099035740e117378c523feb,OM_AVG_Expr0,"[30,32.5)",US_SECOND_UNION,0.463879691400302
b794d3399099035740e117378c523feb,OM_AVG_Expr0,"[30,32.5)",US_AFTER_SECOND_UNION,0
b794d3399099035740e117378c523feb,OM_AVG_Expr0,"[32.5,35)",US_NEVER_IN_UNION,0.022442211806591
b794d3399099035740e117378c523feb,OM_AVG_Expr0,"[32.5,35)",US_FIRST_UNION_PERIOD1,0.26518578732689
b794d3399099035740e117378c523feb,OM_AVG_Expr0,"[32.5,35)",US_FIRST_UNION_PERIOD2,0.0759259959848827
b794d3399099035740e117378c523feb,OM_AVG_Expr0,"[32.5,35)",US_AFTER_FIRST_UNION,0
b794d3399099035740e117378c523feb,OM_AVG_Expr0,"[32.5,35)",US_SECOND_UNION,0.557998028374596
b794d3399099035740e117378c523feb,OM_AVG_Expr0,"[32.5,35)",US_AFTER_SECOND_UNION,0

b794d3399099035740e117378c523feb,OM_AVG_Expr0,"[32.5,35)",US_AFTER_SECOND_UNION,0
b794d3399099035740e117378c523feb,OM_AVG_Expr0,"[35,37.5)",US_NEVER_IN_UNION,0.0110885846008521
b794d3399099035740e117378c523feb,OM_AVG_Expr0,"[35,37.5)",US_FIRST_UNION_PERIOD1,0.13577342261578
b794d3399099035740e117378c523feb,OM_AVG_Expr0,"[35,37.5)",US_FIRST_UNION_PERIOD2,0.0815471990733788
b794d3399099035740e117378c523feb,OM_AVG_Expr0,"[35,37.5)",US_AFTER_FIRST_UNION,0.0123398583333944
b794d3399099035740e117378c523feb,OM_AVG_Expr0,"[35,37.5)",US_SECOND_UNION,0.235867044941869
b794d3399099035740e117378c523feb,OM_AVG_Expr0,"[35,37.5)",US_AFTER_SECOND_UNION,0.0534359868184371
b794d3399099035740e117378c523feb,OM_AVG_Expr0,"[37.5,40)",US_NEVER_IN_UNION,0.0172608633104785
b794d3399099035740e117378c523feb,OM_AVG_Expr0,"[37.5,40)",US_FIRST_UNION_PERIOD1,0.165574819914602
b794d3399099035740e117378c523feb,OM_AVG_Expr0,"[37.5,40)",US_FIRST_UNION_PERIOD2,0.0569355432493007
b794d3399099035740e117378c523feb,OM_AVG_Expr0,"[37.5,40)",US_AFTER_FIRST_UNION,0
b794d3399099035740e117378c523feb,OM_AVG_Expr0,"[37.5,40)",US_SECOND_UNION,0.165135000822642
b794d3399099035740e117378c523feb,OM_AVG_Expr0,"[37.5,40)",US_AFTER_SECOND_UNION,0
b794d3399099035740e117378c523feb,OM_AVG_Expr0,"[40,∞)",US_NEVER_IN_UNION,0
b794d3399099035740e117378c523feb,OM_AVG_Expr0,"[40,∞)",US_FIRST_UNION_PERIOD1,0
b794d3399099035740e117378c523feb,OM_AVG_Expr0,"[40,∞)",US_FIRST_UNION_PERIOD2,0
b794d3399099035740e117378c523feb,OM_AVG_Expr0,"[40,∞)",US_AFTER_FIRST_UNION,0
b794d3399099035740e117378c523feb,OM_AVG_Expr0,"[40,∞)",US_SECOND_UNION,0
b794d3399099035740e117378c523feb,OM_AVG_Expr0,"[40,∞)",US_AFTER_SECOND_UNION,0

Calculate and read output table expression(s) values from model run as csv file.

Read output table expressions, calculate additional measure for each expression and get it as response stream UTF-8 outputTable.csv file
attachment, optionally starts with byte order mark (BOM).

Measures calculated as one of the following:

for each table expression calculate one of: avg, sum, count, max, min, var, sd, se, cv

as arbitrary aggreagated expressions provided as comma separated list

Dimension(s) returned as enum id's.

Methods:

GET /api/model/:model/run/:run/table/:name/calc/:calc/csv-id
GET /api/model/:model/run/:run/table/:name/calc/:calc/csv-id-bom

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

:run - (required) model run digest, run stamp or run name

Model run can be identified by run digest, run stamp or run name. It is recommended to use digest because it is uniquely identifies model run.
Run stamp, if not explicitly specified as model run option, automatically generated as timestamp string, ex.: 2016_08_17_21_07_55_123. It is
also possible to use name, which is more human readable than digest, but if there are multiple runs with same name in database than result is
undefined.

:name - (required) output table name

:calc - (required) name of additional measure to calculate

Additional measure must be one of:

avg mean of expression sub-values

sum sum of expression sub-values

count count of expression sub-values (excluding NULL's)

max maximum of expression sub-values

min minimum of expression sub-values

var variance of expression sub-values

sd standard deviation of expression sub-values

se standard error of expression sub-values

cv coefficient of variation of expression sub-values

Or a list of comma-separated aggreagated expressions, for example: OM_AVG(acc0) , 2 * SQRT(OM_SUM(acc1) - OM_SD(acc0))

It is also possible to use parameter(s) in calculation, parameter must be a scalar of float or integer type. For example: OM_COUNT_IF(acc1 >

param.High) , where param.High is a value of scalar parameter High in that model run.

Following aggregation functions avaliable:

GET csv calculated table expressions from model run (enum id's)

OM_AVG mean of accumulators sub-values

OM_SUM sum of accumulators sub-values

OM_COUNT count of accumulators sub-values (excluding NULL's)

OM_COUNT_IF count values matching condition

OM_MAX maximum of accumulators sub-values

OM_MIN minimum of accumulators sub-values

OM_VAR variance of accumulators sub-values

OM_SD standard deviation of accumulators sub-values

OM_SE standard error of accumulators sub-values

OM_CV coefficient of variation of accumulators sub-values

For more details please see: Model Output Expressions

Call examples:

http://localhost:4040/api/model/RiskPaths/run/RiskPaths_Default/table/T04_FertilityRatesByAgeGroup/calc/avg/csv-id
http://localhost:4040/api/model/RiskPaths/run/RiskPaths_Default/table/T04_FertilityRatesByAgeGroup/calc/sd/csv-id-bom
http://localhost:4040/api/model/_201208171604590148_/run/f172e98da17beb058f30f11768053456/table/salarySex/calc/se/csv-id
http://localhost:4040/api/model/_201208171604590148_/run/2019_01_17_19_59_52_998/table/salarySex/calc/cv/csv-id-bom

http://localhost:4040/api/model/modelOne/run/Default-4/table/salarySex/calc/OM_AVG(acc0),2*SQRT(OM_SUM(acc1)-OM_SD(acc0))/csv-id
http://localhost:4040/api/model/modelOne/run/Default-4/table/salarySex/calc/OM_COUNT_IF(acc0%3Cparam.StartingSeed)/csv-id

Note: OM_COUNT_IF(acc0%3Cparam.StartingSeed) is URL encoded: OM_COUNT_IF(acc0<param.StartingSeed)

Return example:

calc_id column contains output table expression id's: 0 <= expr_id < 1200 or id's of calculated values: expr_id + 1200 . For example, id of calculated
value SE(Expr2) is: calc_id = 1202

curl http://localhost:4040/api/model/RiskPaths/run/RiskPaths_Default_4/table/T04_FertilityRatesByAgeGroup/calc/avg/csv-id

run_id,calc_id,Dim0,Dim1,calc_value
102,0,0,0,0
102,0,0,1,null
102,0,0,2,null
102,0,0,3,null
102,0,0,4,null
102,0,0,5,null
102,0,1,0,0.0183139978773642
102,0,1,1,0.315246747433367
102,0,1,2,null
102,0,1,3,0
102,0,1,4,0
102,0,1,5,null
102,0,2,0,0.0537541294539804
102,0,2,1,0.713129647941936
102,0,2,2,0.27913884088947
102,0,2,3,0.0340306112997705
102,0,2,4,0.631356771396228
102,0,2,5,null
102,0,3,0,0.0544540553970037
102,0,3,1,0.814226115392992
102,0,3,2,0.225999767108206
102,0,3,3,0.0225289422479095
102,0,3,4,0.552801004995511
102,0,3,5,0
102,0,4,0,0.0539099306643693
102,0,4,1,0.809582230266138
102,0,4,2,0.195155708061047
102,0,4,3,0.0414901238939861
102,0,4,4,0.59945794749404
102,0,4,5,0
102,0,5,0,0.0415985067709889
102,0,5,1,0.602459144412015
102,0,5,2,0.187080449150788
102,0,5,3,0.0203496069483281
102,0,5,4,1.00906724659711

https://github.com/openmpp/openmpp.github.io/wiki/Model-Output-Expressions

102,0,5,4,1.00906724659711
102,0,5,5,0
102,0,6,0,0.0314673689946165
102,0,6,1,0.462198924442823
102,0,6,2,0.137851629822403
102,0,6,3,0.0229824909841167
102,0,6,4,0.362222813716797
102,0,6,5,0.0572026776260319
102,0,7,0,0.0416497396600501
102,0,7,1,0.549536875782365
102,0,7,2,0.110088801281195
102,0,7,3,0.0468326974687102
102,0,7,4,0.330292197388013
102,0,7,5,0
102,0,8,0,0.0221476827597504
102,0,8,1,0.240119203514267
102,0,8,2,0.0732205051114689
102,0,8,3,0
102,0,8,4,0.391609286784764
102,0,8,5,0
102,0,9,0,0.0118488890311401
102,0,9,1,0.131862730376457
102,0,9,2,0.0830998727570066
102,0,9,3,0.0221047417383149
102,0,9,4,0.279863987999404
102,0,9,5,0.114442750608107
102,0,10,0,0.017525081049452
102,0,10,1,0.157747779554811
102,0,10,2,0.0572711925357155
102,0,10,3,0
102,0,10,4,0.169455199059931
102,0,10,5,0
102,0,11,0,0
102,0,11,1,0
102,0,11,2,0
102,0,11,3,0
102,0,11,4,0
102,0,11,5,0
102,1200,0,0,0
102,1200,0,1,null
102,1200,0,2,null
102,1200,0,3,null
102,1200,0,4,null
102,1200,0,5,null
102,1200,1,0,0.0183150153186944
102,1200,1,1,0.316271343152912
102,1200,1,2,null
102,1200,1,3,0
102,1200,1,4,0
102,1200,1,5,null
102,1200,2,0,0.0537675746731247
102,1200,2,1,0.713529542211133
102,1200,2,2,0.290605057165821
102,1200,2,3,0.0257953477423063
102,1200,2,4,0.971013422710935
102,1200,2,5,null
102,1200,3,0,0.054451507853128
102,1200,3,1,0.815769510398502
102,1200,3,2,0.229287238004696
102,1200,3,3,0.0127116167313564
102,1200,3,4,0.429415814994704
102,1200,3,5,0
102,1200,4,0,0.0541040962861145
102,1200,4,1,0.80980843837352
102,1200,4,2,0.195232130104512
102,1200,4,3,0.0425462458785113
102,1200,4,4,0.831967409785808
102,1200,4,5,0
102,1200,5,0,0.0417067099443355
102,1200,5,1,0.602467976857289
102,1200,5,2,0.186968206655534
102,1200,5,3,0.0315133813846249
102,1200,5,4,1.28700220240812
102,1200,5,5,0
102,1200,6,0,0.0314820070793188
102,1200,6,1,0.462127063133201
102,1200,6,2,0.137897098019438
102,1200,6,3,0.0295557293946093
102,1200,6,4,0.268318808255325
102,1200,6,5,0.0267057657548253
102,1200,7,0,0.0416625733706113
102,1200,7,1,0.567544621403048
102,1200,7,2,0.111089012753633
102,1200,7,3,0.0452064833182238
102,1200,7,4,0.463879691400302
102,1200,7,5,0
102,1200,8,0,0.022442211806591
102,1200,8,1,0.26518578732689

102,1200,8,1,0.26518578732689
102,1200,8,2,0.0759259959848827
102,1200,8,3,0
102,1200,8,4,0.557998028374596
102,1200,8,5,0
102,1200,9,0,0.0110885846008521
102,1200,9,1,0.13577342261578
102,1200,9,2,0.0815471990733788
102,1200,9,3,0.0123398583333944
102,1200,9,4,0.235867044941869
102,1200,9,5,0.0534359868184371
102,1200,10,0,0.0172608633104785
102,1200,10,1,0.165574819914602
102,1200,10,2,0.0569355432493007
102,1200,10,3,0
102,1200,10,4,0.165135000822642
102,1200,10,5,0
102,1200,11,0,0
102,1200,11,1,0
102,1200,11,2,0
102,1200,11,3,0
102,1200,11,4,0
102,1200,11,5,0

Compare model runs and return results as csv file.

Compare [base] and [variant] model runs output values for each expression and get it as response stream UTF-8 outputTable.csv file attachment,
optionally starts with byte order mark (BOM).

Comparison can be calculated as one of the following:

for each table expression use one of: diff , ratio or percent comparison between [base] and [variant] model runs.

use comma separated list of comparison expressions between [base] and [variant] or simple expression for each run.

Dimension(s) returned as enum codes.

Methods:

GET /api/model/:model/run/:run/table/:name/compare/:compare/variant/:variant/csv
GET /api/model/:model/run/:run/table/:name/compare/:compare/variant/:variant/csv-bom

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

:run - (required) base model run digest, run stamp or run name
:variant - (required) variant model run(s): comma-separated list of digests, run stamps or run names

Model run can be identified by run digest, run stamp or run name. It is recommended to use digest because it is uniquely identifies model run.
Run stamp, if not explicitly specified as model run option, automatically generated as timestamp string, ex.: 2016_08_17_21_07_55_123. It is
also possible to use name, which is more human readable than digest, but if there are multiple runs with same name in database than result is
undefined.

:name - (required) output table name

:compare - (required) comparison to calculate

diff differenece of values between variant and base run, e.g.: Expr0[variant] - Expr0[base]

ratio ratio of values between variant and base run, e.g.: Expr0[variant] / Expr0[base]

percent proportional difference multipled by 100, e.g.: 100 * (Expr0[variant] - Expr0[base]) / Expr0[base]

Or a list of comma-separated expressions, for example: expr0, expr1[variant] + expr2[base]

It is also possible to use parameter(s) in calculation, parameter must be a scalar of float or integer type. For example: (Expr1[variant] - Expr1[base]) *

param.Scale[base] , where param.Scale is a value of scalar parameter Scale in [base] model run.

Call examples:

http://localhost:4040/api/model/modelOne/run/Default/table/salarySex/compare/diff/variant/Default-4/csv
http://localhost:4040/api/model/modelOne/run/Default/table/salarySex/compare/ratio/variant/Default-4/csv
http://localhost:4040/api/model/modelOne/run/Default/table/salarySex/compare/percent/variant/Default-4/csv

http://localhost:4040/api/model/modelOne/run/Default/table/salarySex/compare/diff/variant/Default-4/csv-bom

http://localhost:4040/api/model/modelOne/run/Default/table/salarySex/compare/expr0,expr1,expr2/variant/Default-4/csv
http://localhost:4040/api/model/modelOne/run/Default/table/salarySex/compare/expr0%2Cexpr1%5Bvariant%5D%2Bexpr2%5Bbase%5D/variant/Default-4/csv

Note: above expr0%2Cexpr1%5Bvariant%5D%2Bexpr2%5Bbase%5D is URL encoded: expr0,expr1[variant]+expr2[base] .

Example:

GET csv model runs comparison table expressions

curl http://localhost:4040/api/model/modelOne/run/Default/table/salarySex/compare/ratio/variant/Default-4,Sub-values_4/csv

run_digest,calc_name,dim0,dim1,calc_value
ca663651953bae94d0afdf71edba4c91,expr0,L,M,50
ca663651953bae94d0afdf71edba4c91,expr0,L,F,60
ca663651953bae94d0afdf71edba4c91,expr0,L,all,1
ca663651953bae94d0afdf71edba4c91,expr0,M,M,51.6
ca663651953bae94d0afdf71edba4c91,expr0,M,F,62
ca663651953bae94d0afdf71edba4c91,expr0,M,all,2
ca663651953bae94d0afdf71edba4c91,expr0,H,M,53.2
ca663651953bae94d0afdf71edba4c91,expr0,H,F,64
ca663651953bae94d0afdf71edba4c91,expr0,H,all,3
ca663651953bae94d0afdf71edba4c91,expr1,L,M,0
ca663651953bae94d0afdf71edba4c91,expr1,L,F,1
ca663651953bae94d0afdf71edba4c91,expr1,L,all,800
ca663651953bae94d0afdf71edba4c91,expr1,M,M,1
ca663651953bae94d0afdf71edba4c91,expr1,M,F,2
ca663651953bae94d0afdf71edba4c91,expr1,M,all,801
ca663651953bae94d0afdf71edba4c91,expr1,H,M,2
ca663651953bae94d0afdf71edba4c91,expr1,H,F,3
ca663651953bae94d0afdf71edba4c91,expr1,H,all,802
ca663651953bae94d0afdf71edba4c91,expr2,L,M,50
ca663651953bae94d0afdf71edba4c91,expr2,L,F,61
ca663651953bae94d0afdf71edba4c91,expr2,L,all,801
ca663651953bae94d0afdf71edba4c91,expr2,M,M,52.6
ca663651953bae94d0afdf71edba4c91,expr2,M,F,64
ca663651953bae94d0afdf71edba4c91,expr2,M,all,803
ca663651953bae94d0afdf71edba4c91,expr2,H,M,55.2
ca663651953bae94d0afdf71edba4c91,expr2,H,F,67
ca663651953bae94d0afdf71edba4c91,expr2,H,all,805
ca663651953bae94d0afdf71edba4c91,expr3,L,M,0
ca663651953bae94d0afdf71edba4c91,expr3,L,F,60
ca663651953bae94d0afdf71edba4c91,expr3,L,all,800
ca663651953bae94d0afdf71edba4c91,expr3,M,M,51.6
ca663651953bae94d0afdf71edba4c91,expr3,M,F,124
ca663651953bae94d0afdf71edba4c91,expr3,M,all,1602
ca663651953bae94d0afdf71edba4c91,expr3,H,M,106.4
ca663651953bae94d0afdf71edba4c91,expr3,H,F,192
ca663651953bae94d0afdf71edba4c91,expr3,H,all,2406
c519fc5869f244ac4c80ae44695a4272,expr0,L,M,50
c519fc5869f244ac4c80ae44695a4272,expr0,L,F,60
c519fc5869f244ac4c80ae44695a4272,expr0,L,all,1201
c519fc5869f244ac4c80ae44695a4272,expr0,M,M,51.6
c519fc5869f244ac4c80ae44695a4272,expr0,M,F,62
c519fc5869f244ac4c80ae44695a4272,expr0,M,all,1202
c519fc5869f244ac4c80ae44695a4272,expr0,H,M,53.2
c519fc5869f244ac4c80ae44695a4272,expr0,H,F,64
c519fc5869f244ac4c80ae44695a4272,expr0,H,all,1203
c519fc5869f244ac4c80ae44695a4272,expr1,L,M,6
c519fc5869f244ac4c80ae44695a4272,expr1,L,F,10
c519fc5869f244ac4c80ae44695a4272,expr1,L,all,3206
c519fc5869f244ac4c80ae44695a4272,expr1,M,M,10
c519fc5869f244ac4c80ae44695a4272,expr1,M,F,14
c519fc5869f244ac4c80ae44695a4272,expr1,M,all,3210
c519fc5869f244ac4c80ae44695a4272,expr1,H,M,14
c519fc5869f244ac4c80ae44695a4272,expr1,H,F,18
c519fc5869f244ac4c80ae44695a4272,expr1,H,all,3214
c519fc5869f244ac4c80ae44695a4272,expr2,L,M,51.5
c519fc5869f244ac4c80ae44695a4272,expr2,L,F,62.5
c519fc5869f244ac4c80ae44695a4272,expr2,L,all,2002.5
c519fc5869f244ac4c80ae44695a4272,expr2,M,M,54.1
c519fc5869f244ac4c80ae44695a4272,expr2,M,F,65.5
c519fc5869f244ac4c80ae44695a4272,expr2,M,all,2004.5
c519fc5869f244ac4c80ae44695a4272,expr2,H,M,56.7
c519fc5869f244ac4c80ae44695a4272,expr2,H,F,68.5
c519fc5869f244ac4c80ae44695a4272,expr2,H,all,2006.5
c519fc5869f244ac4c80ae44695a4272,expr3,L,M,75
c519fc5869f244ac4c80ae44695a4272,expr3,L,F,150
c519fc5869f244ac4c80ae44695a4272,expr3,L,all,963601.5
c519fc5869f244ac4c80ae44695a4272,expr3,M,M,129
c519fc5869f244ac4c80ae44695a4272,expr3,M,F,217
c519fc5869f244ac4c80ae44695a4272,expr3,M,all,965605
c519fc5869f244ac4c80ae44695a4272,expr3,H,M,186.2
c519fc5869f244ac4c80ae44695a4272,expr3,H,F,288
c519fc5869f244ac4c80ae44695a4272,expr3,H,all,967610.5
c519fc5869f244ac4c80ae44695a4272,ratio_expr0,L,M,1
c519fc5869f244ac4c80ae44695a4272,ratio_expr0,L,F,1
c519fc5869f244ac4c80ae44695a4272,ratio_expr0,L,all,1201
c519fc5869f244ac4c80ae44695a4272,ratio_expr0,M,M,1
c519fc5869f244ac4c80ae44695a4272,ratio_expr0,M,F,1
c519fc5869f244ac4c80ae44695a4272,ratio_expr0,M,all,601
c519fc5869f244ac4c80ae44695a4272,ratio_expr0,H,M,1
c519fc5869f244ac4c80ae44695a4272,ratio_expr0,H,F,1
c519fc5869f244ac4c80ae44695a4272,ratio_expr0,H,all,401
c519fc5869f244ac4c80ae44695a4272,ratio_expr1,L,M,null
c519fc5869f244ac4c80ae44695a4272,ratio_expr1,L,F,10

c519fc5869f244ac4c80ae44695a4272,ratio_expr1,L,F,10
c519fc5869f244ac4c80ae44695a4272,ratio_expr1,L,all,4.0075
c519fc5869f244ac4c80ae44695a4272,ratio_expr1,M,M,10
c519fc5869f244ac4c80ae44695a4272,ratio_expr1,M,F,7
c519fc5869f244ac4c80ae44695a4272,ratio_expr1,M,all,4.00749063670412
c519fc5869f244ac4c80ae44695a4272,ratio_expr1,H,M,7
c519fc5869f244ac4c80ae44695a4272,ratio_expr1,H,F,6
c519fc5869f244ac4c80ae44695a4272,ratio_expr1,H,all,4.0074812967581
c519fc5869f244ac4c80ae44695a4272,ratio_expr2,L,M,1.03
c519fc5869f244ac4c80ae44695a4272,ratio_expr2,L,F,1.02459016393443
c519fc5869f244ac4c80ae44695a4272,ratio_expr2,L,all,2.5
c519fc5869f244ac4c80ae44695a4272,ratio_expr2,M,M,1.02851711026616
c519fc5869f244ac4c80ae44695a4272,ratio_expr2,M,F,1.0234375
c519fc5869f244ac4c80ae44695a4272,ratio_expr2,M,all,2.49626400996264
c519fc5869f244ac4c80ae44695a4272,ratio_expr2,H,M,1.02717391304348
c519fc5869f244ac4c80ae44695a4272,ratio_expr2,H,F,1.02238805970149
c519fc5869f244ac4c80ae44695a4272,ratio_expr2,H,all,2.49254658385093
c519fc5869f244ac4c80ae44695a4272,ratio_expr3,L,M,null
c519fc5869f244ac4c80ae44695a4272,ratio_expr3,L,F,2.5
c519fc5869f244ac4c80ae44695a4272,ratio_expr3,L,all,1204.501875
c519fc5869f244ac4c80ae44695a4272,ratio_expr3,M,M,2.5
c519fc5869f244ac4c80ae44695a4272,ratio_expr3,M,F,1.75
c519fc5869f244ac4c80ae44695a4272,ratio_expr3,M,all,602.749687890137
c519fc5869f244ac4c80ae44695a4272,ratio_expr3,H,M,1.75
c519fc5869f244ac4c80ae44695a4272,ratio_expr3,H,F,1.5
c519fc5869f244ac4c80ae44695a4272,ratio_expr3,H,all,402.165627597672
ffad6e8ed4449dafe11b82c7aea82f74,expr0,L,M,50
ffad6e8ed4449dafe11b82c7aea82f74,expr0,L,F,60
ffad6e8ed4449dafe11b82c7aea82f74,expr0,L,all,1201
ffad6e8ed4449dafe11b82c7aea82f74,expr0,M,M,51.6
ffad6e8ed4449dafe11b82c7aea82f74,expr0,M,F,62
ffad6e8ed4449dafe11b82c7aea82f74,expr0,M,all,1202
ffad6e8ed4449dafe11b82c7aea82f74,expr0,H,M,53.2
ffad6e8ed4449dafe11b82c7aea82f74,expr0,H,F,64
ffad6e8ed4449dafe11b82c7aea82f74,expr0,H,all,1203
ffad6e8ed4449dafe11b82c7aea82f74,expr1,L,M,6
ffad6e8ed4449dafe11b82c7aea82f74,expr1,L,F,10
ffad6e8ed4449dafe11b82c7aea82f74,expr1,L,all,3206
ffad6e8ed4449dafe11b82c7aea82f74,expr1,M,M,10
ffad6e8ed4449dafe11b82c7aea82f74,expr1,M,F,14
ffad6e8ed4449dafe11b82c7aea82f74,expr1,M,all,3210
ffad6e8ed4449dafe11b82c7aea82f74,expr1,H,M,14
ffad6e8ed4449dafe11b82c7aea82f74,expr1,H,F,18
ffad6e8ed4449dafe11b82c7aea82f74,expr1,H,all,3214
ffad6e8ed4449dafe11b82c7aea82f74,expr2,L,M,51.5
ffad6e8ed4449dafe11b82c7aea82f74,expr2,L,F,62.5
ffad6e8ed4449dafe11b82c7aea82f74,expr2,L,all,2002.5
ffad6e8ed4449dafe11b82c7aea82f74,expr2,M,M,54.1
ffad6e8ed4449dafe11b82c7aea82f74,expr2,M,F,65.5
ffad6e8ed4449dafe11b82c7aea82f74,expr2,M,all,2004.5
ffad6e8ed4449dafe11b82c7aea82f74,expr2,H,M,56.7
ffad6e8ed4449dafe11b82c7aea82f74,expr2,H,F,68.5
ffad6e8ed4449dafe11b82c7aea82f74,expr2,H,all,2006.5
ffad6e8ed4449dafe11b82c7aea82f74,expr3,L,M,75
ffad6e8ed4449dafe11b82c7aea82f74,expr3,L,F,150
ffad6e8ed4449dafe11b82c7aea82f74,expr3,L,all,963601.5
ffad6e8ed4449dafe11b82c7aea82f74,expr3,M,M,129
ffad6e8ed4449dafe11b82c7aea82f74,expr3,M,F,217
ffad6e8ed4449dafe11b82c7aea82f74,expr3,M,all,965605
ffad6e8ed4449dafe11b82c7aea82f74,expr3,H,M,186.2
ffad6e8ed4449dafe11b82c7aea82f74,expr3,H,F,288
ffad6e8ed4449dafe11b82c7aea82f74,expr3,H,all,967610.5
ffad6e8ed4449dafe11b82c7aea82f74,ratio_expr0,L,M,1
ffad6e8ed4449dafe11b82c7aea82f74,ratio_expr0,L,F,1
ffad6e8ed4449dafe11b82c7aea82f74,ratio_expr0,L,all,1201
ffad6e8ed4449dafe11b82c7aea82f74,ratio_expr0,M,M,1
ffad6e8ed4449dafe11b82c7aea82f74,ratio_expr0,M,F,1
ffad6e8ed4449dafe11b82c7aea82f74,ratio_expr0,M,all,601
ffad6e8ed4449dafe11b82c7aea82f74,ratio_expr0,H,M,1
ffad6e8ed4449dafe11b82c7aea82f74,ratio_expr0,H,F,1
ffad6e8ed4449dafe11b82c7aea82f74,ratio_expr0,H,all,401
ffad6e8ed4449dafe11b82c7aea82f74,ratio_expr1,L,M,null
ffad6e8ed4449dafe11b82c7aea82f74,ratio_expr1,L,F,10
ffad6e8ed4449dafe11b82c7aea82f74,ratio_expr1,L,all,4.0075
ffad6e8ed4449dafe11b82c7aea82f74,ratio_expr1,M,M,10
ffad6e8ed4449dafe11b82c7aea82f74,ratio_expr1,M,F,7
ffad6e8ed4449dafe11b82c7aea82f74,ratio_expr1,M,all,4.00749063670412
ffad6e8ed4449dafe11b82c7aea82f74,ratio_expr1,H,M,7
ffad6e8ed4449dafe11b82c7aea82f74,ratio_expr1,H,F,6
ffad6e8ed4449dafe11b82c7aea82f74,ratio_expr1,H,all,4.0074812967581
ffad6e8ed4449dafe11b82c7aea82f74,ratio_expr2,L,M,1.03
ffad6e8ed4449dafe11b82c7aea82f74,ratio_expr2,L,F,1.02459016393443
ffad6e8ed4449dafe11b82c7aea82f74,ratio_expr2,L,all,2.5
ffad6e8ed4449dafe11b82c7aea82f74,ratio_expr2,M,M,1.02851711026616
ffad6e8ed4449dafe11b82c7aea82f74,ratio_expr2,M,F,1.0234375
ffad6e8ed4449dafe11b82c7aea82f74,ratio_expr2,M,all,2.49626400996264
ffad6e8ed4449dafe11b82c7aea82f74,ratio_expr2,H,M,1.02717391304348
ffad6e8ed4449dafe11b82c7aea82f74,ratio_expr2,H,F,1.02238805970149

ffad6e8ed4449dafe11b82c7aea82f74,ratio_expr2,H,F,1.02238805970149
ffad6e8ed4449dafe11b82c7aea82f74,ratio_expr2,H,all,2.49254658385093
ffad6e8ed4449dafe11b82c7aea82f74,ratio_expr3,L,M,null
ffad6e8ed4449dafe11b82c7aea82f74,ratio_expr3,L,F,2.5
ffad6e8ed4449dafe11b82c7aea82f74,ratio_expr3,L,all,1204.501875
ffad6e8ed4449dafe11b82c7aea82f74,ratio_expr3,M,M,2.5
ffad6e8ed4449dafe11b82c7aea82f74,ratio_expr3,M,F,1.75
ffad6e8ed4449dafe11b82c7aea82f74,ratio_expr3,M,all,602.749687890137
ffad6e8ed4449dafe11b82c7aea82f74,ratio_expr3,H,M,1.75
ffad6e8ed4449dafe11b82c7aea82f74,ratio_expr3,H,F,1.5
ffad6e8ed4449dafe11b82c7aea82f74,ratio_expr3,H,all,402.165627597672

Compare model runs and return results as csv file.

Compare [base] and [variant] model runs output values for each expression and get it as response stream UTF-8 outputTable.csv file attachment,
optionally starts with byte order mark (BOM).

Comparison can be calculated as one of the following:

for each table expression use one of: diff , ratio or percent comparison between [base] and [variant] model runs.

use comma separated list of comparison expressions between [base] and [variant] or simple expression for each run.

Dimension(s) returned as enum id's.

Methods:

GET /api/model/:model/run/:run/table/:name/compare/:compare/variant/:variant/csv-id
GET /api/model/:model/run/:run/table/:name/compare/:compare/variant/:variant/csv-id-bom

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

:run - (required) base model run digest, run stamp or run name
:variant - (required) variant model run(s): comma-separated list of digests, run stamps or run names

Model run can be identified by run digest, run stamp or run name. It is recommended to use digest because it is uniquely identifies model run.
Run stamp, if not explicitly specified as model run option, automatically generated as timestamp string, ex.: 2016_08_17_21_07_55_123. It is
also possible to use name, which is more human readable than digest, but if there are multiple runs with same name in database than result is
undefined.

:name - (required) output table name

:compare - (required) comparison to calculate

diff differenece of values between variant and base run, e.g.: Expr0[variant] - Expr0[base]

ratio ratio of values between variant and base run, e.g.: Expr0[variant] / Expr0[base]

percent proportional difference multipled by 100, e.g.: 100 * (Expr0[variant] - Expr0[base]) / Expr0[base]

Or a list of comma-separated expressions, for example: expr0, expr1[variant] + expr2[base]

It is also possible to use parameter(s) in calculation, parameter must be a scalar of float or integer type. For example: (Expr1[variant] - Expr1[base]) *

param.Scale[base] , where param.Scale is a value of scalar parameter Scale in [base] model run.

Call examples:

http://localhost:4040/api/model/modelOne/run/Default/table/salarySex/compare/diff/variant/Default-4/csv
http://localhost:4040/api/model/modelOne/run/Default/table/salarySex/compare/ratio/variant/Default-4/csv
http://localhost:4040/api/model/modelOne/run/Default/table/salarySex/compare/percent/variant/Default-4/csv

http://localhost:4040/api/model/modelOne/run/Default/table/salarySex/compare/diff/variant/Default-4/csv-bom

http://localhost:4040/api/model/modelOne/run/Default/table/salarySex/compare/expr0,expr1,expr2/variant/Default-4/csv
http://localhost:4040/api/model/modelOne/run/Default/table/salarySex/compare/expr0%2Cexpr1%5Bvariant%5D%2Bexpr2%5Bbase%5D/variant/Default-4/csv

Note: above expr0%2Cexpr1%5Bvariant%5D%2Bexpr2%5Bbase%5D is URL encoded: expr0,expr1[variant]+expr2[base] .

Example:

GET csv model runs comparison table expressions (enum id's)

In output below CalcId contains output table expression id's: 0 <= ExprId < 1200 or id's of calculated values: ExprId + 1200 . For example, id of
calculated value Expr2[variant] - Expr2[base] is: CalcId = 1202

curl http://localhost:4040/api/model/modelOne/run/Default/table/salarySex/compare/ratio/variant/Default-4,Sub-values_4/csv-id

run_id,calc_id,dim0,dim1,calc_value
201,0,100,0,50
201,0,100,1,60
201,0,100,800,1
201,0,200,0,51.6
201,0,200,1,62
201,0,200,800,2
201,0,300,0,53.2
201,0,300,1,64
201,0,300,800,3
201,1,100,0,0
201,1,100,1,1
201,1,100,800,800
201,1,200,0,1
201,1,200,1,2
201,1,200,800,801
201,1,300,0,2
201,1,300,1,3
201,1,300,800,802
201,2,100,0,50
201,2,100,1,61
201,2,100,800,801
201,2,200,0,52.6
201,2,200,1,64
201,2,200,800,803
201,2,300,0,55.2
201,2,300,1,67
201,2,300,800,805
201,3,100,0,0
201,3,100,1,60
201,3,100,800,800
201,3,200,0,51.6
201,3,200,1,124
201,3,200,800,1602
201,3,300,0,106.4
201,3,300,1,192
201,3,300,800,2406
202,0,100,0,50
202,0,100,1,60
202,0,100,800,1201
202,0,200,0,51.6
202,0,200,1,62
202,0,200,800,1202
202,0,300,0,53.2
202,0,300,1,64
202,0,300,800,1203
202,1,100,0,6
202,1,100,1,10
202,1,100,800,3206
202,1,200,0,10
202,1,200,1,14
202,1,200,800,3210
202,1,300,0,14
202,1,300,1,18
202,1,300,800,3214
202,2,100,0,51.5
202,2,100,1,62.5
202,2,100,800,2002.5
202,2,200,0,54.1
202,2,200,1,65.5
202,2,200,800,2004.5
202,2,300,0,56.7
202,2,300,1,68.5
202,2,300,800,2006.5
202,3,100,0,75
202,3,100,1,150
202,3,100,800,963601.5
202,3,200,0,129
202,3,200,1,217
202,3,200,800,965605
202,3,300,0,186.2
202,3,300,1,288
202,3,300,800,967610.5
202,1200,100,0,1
202,1200,100,1,1
202,1200,100,800,1201
202,1200,200,0,1
202,1200,200,1,1
202,1200,200,800,601
202,1200,300,0,1

202,1200,300,0,1
202,1200,300,1,1
202,1200,300,800,401
202,1201,100,0,null
202,1201,100,1,10
202,1201,100,800,4.0075
202,1201,200,0,10
202,1201,200,1,7
202,1201,200,800,4.00749063670412
202,1201,300,0,7
202,1201,300,1,6
202,1201,300,800,4.0074812967581
202,1202,100,0,1.03
202,1202,100,1,1.02459016393443
202,1202,100,800,2.5
202,1202,200,0,1.02851711026616
202,1202,200,1,1.0234375
202,1202,200,800,2.49626400996264
202,1202,300,0,1.02717391304348
202,1202,300,1,1.02238805970149
202,1202,300,800,2.49254658385093
202,1203,100,0,null
202,1203,100,1,2.5
202,1203,100,800,1204.501875
202,1203,200,0,2.5
202,1203,200,1,1.75
202,1203,200,800,602.749687890137
202,1203,300,0,1.75
202,1203,300,1,1.5
202,1203,300,800,402.165627597672
208,0,100,0,50
208,0,100,1,60
208,0,100,800,1201
208,0,200,0,51.6
208,0,200,1,62
208,0,200,800,1202
208,0,300,0,53.2
208,0,300,1,64
208,0,300,800,1203
208,1,100,0,6
208,1,100,1,10
208,1,100,800,3206
208,1,200,0,10
208,1,200,1,14
208,1,200,800,3210
208,1,300,0,14
208,1,300,1,18
208,1,300,800,3214
208,2,100,0,51.5
208,2,100,1,62.5
208,2,100,800,2002.5
208,2,200,0,54.1
208,2,200,1,65.5
208,2,200,800,2004.5
208,2,300,0,56.7
208,2,300,1,68.5
208,2,300,800,2006.5
208,3,100,0,75
208,3,100,1,150
208,3,100,800,963601.5
208,3,200,0,129
208,3,200,1,217
208,3,200,800,965605
208,3,300,0,186.2
208,3,300,1,288
208,3,300,800,967610.5
208,1200,100,0,1
208,1200,100,1,1
208,1200,100,800,1201
208,1200,200,0,1
208,1200,200,1,1
208,1200,200,800,601
208,1200,300,0,1
208,1200,300,1,1
208,1200,300,800,401
208,1201,100,0,null
208,1201,100,1,10
208,1201,100,800,4.0075
208,1201,200,0,10
208,1201,200,1,7
208,1201,200,800,4.00749063670412
208,1201,300,0,7
208,1201,300,1,6
208,1201,300,800,4.0074812967581
208,1202,100,0,1.03
208,1202,100,1,1.02459016393443
208,1202,100,800,2.5
208,1202,200,0,1.02851711026616

208,1202,200,0,1.02851711026616
208,1202,200,1,1.0234375
208,1202,200,800,2.49626400996264
208,1202,300,0,1.02717391304348
208,1202,300,1,1.02238805970149
208,1202,300,800,2.49254658385093
208,1203,100,0,null
208,1203,100,1,2.5
208,1203,100,800,1204.501875
208,1203,200,0,2.5
208,1203,200,1,1.75
208,1203,200,800,602.749687890137
208,1203,300,0,1.75
208,1203,300,1,1.5
208,1203,300,800,402.165627597672

Read entire microdata values from model run as csv file.

Response stream is UTF-8 microdata.csv file attachment, optionally starts with byte order mark (BOM).

Enum-based microdata attributes returned as enum codes.

Methods:

GET /api/model/:model/run/:run/microdata/:name/csv
GET /api/model/:model/run/:run/microdata/:name/csv-bom

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

:run - (required) model run digest, run stamp or run name

Model run can be identified by run digest, run stamp or run name. It is recommended to use digest because it is uniquely identifies model run.
Run stamp, if not explicitly specified as model run option, automatically generated as timestamp string, ex.: 2016_08_17_21_07_55_123. It is
also possible to use name, which is more human readable than digest, but if there are multiple runs with same name in database than result is
undefined.

:name - (required) microdata entity name

Call examples:

http://localhost:4040/api/model/modelOne/run/Microdata%20in%20database/microdata/Person/csv
http://localhost:4040/api/model/modelOne/run/Microdata%20in%20database/microdata/Person/csv-bom
http://localhost:4040/api/model/modelOne/run/f172e98da17beb058f30f11768053456/microdata/Person/csv-bom
http://localhost:4040/api/model/modelOne/run/2019_01_17_19_59_52_998/microdata/Person/csv
http://localhost:4040/api/model/_201208171604590148_/run/Microdata%20in%20database/microdata/Person/csv

Return example:

key,Age,AgeGroup,Sex,Income,Salary,SalaryGroup,FullTime,IsOldAge,Pension
0,91,40+,F,23000,0,L,Part,true,23000
1,82,40+,M,23000,0,L,Part,true,23000
2,73,40+,F,29900,6900,L,Part,true,23000
3,64,40+,M,32764,24573,L,Full,false,0
................
................
844424930164728,24,20-30,M,268369924,201277443,H,Full,false,0
844424930164729,15,10-20,F,0,0,L,Part,false,0
844424930164730,6,10-20,M,0,0,L,Part,false,0
844424930164731,97,40+,F,53678899.4,0,L,Part,true,53678899.4

GET csv microdata values from model run

Read entire microdata values from model run as csv file.

Response stream is UTF-8 microdata.csv file attachment, optionally starts with byte order mark (BOM).

Enum-based microdata attributes returned as enum id, not enum codes.

Methods:

GET /api/model/:model/run/:run/microdata/:name/csv-id
GET /api/model/:model/run/:run/microdata/:name/csv-id-bom

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

:run - (required) model run digest, run stamp or run name

Model run can be identified by run digest, run stamp or run name. It is recommended to use digest because it is uniquely identifies model run.
Run stamp, if not explicitly specified as model run option, automatically generated as timestamp string, ex.: 2016_08_17_21_07_55_123. It is
also possible to use name, which is more human readable than digest, but if there are multiple runs with same name in database than result is
undefined.

:name - (required) microdata entity name

Call examples:

http://localhost:4040/api/model/modelOne/run/Microdata%20in%20database/microdata/Person/csv-id
http://localhost:4040/api/model/modelOne/run/Microdata%20in%20database/microdata/Person/csv-id-bom
http://localhost:4040/api/model/modelOne/run/f172e98da17beb058f30f11768053456/microdata/Person/csv-id-bom
http://localhost:4040/api/model/modelOne/run/2019_01_17_19_59_52_998/microdata/Person/csv-id
http://localhost:4040/api/model/_201208171604590148_/run/Microdata%20in%20database/microdata/Person/csv-id

Return example:

key,Age,AgeGroup,Sex,Income,Salary,SalaryGroup,FullTime,IsOldAge,Pension
0,91,40,1,23000,0,100,33,true,23000
1,82,40,0,23000,0,100,33,true,23000
2,73,40,1,29900,6900,100,33,true,23000
3,64,40,0,32764,24573,100,22,false,0
................
................
844424930164728,24,20,0,268369924,201277443,300,22,false,0
844424930164729,15,10,1,0,0,100,33,false,0
844424930164730,6,10,0,0,0,100,33,false,0
844424930164731,97,40,1,53678899.4,0,100,33,true,53678899.4

GET csv microdata values from model run (enum id's)

Aggregate microdata values and read it as csv file.

Aggregate microdata value attributes, group by dimension attributes and get it as response stream UTF-8 Entity.csv file attachment, optionally
starts with byte order mark (BOM).

Result can include multiple aggregations of value attributes (float of integer type) and group by dimension attributes (enum-based or bool type).
Aggregation(s) is a comma-separated list of Model Output Expressions of microdata value attributes. For example, two aggregations:
OM_AVG(Income) , OM_MAX(Salary + Pension) and group by two dimension attributes: AgeGroup , Sex .

It is also possible to use parameter(s) in calculation, parameter must be a scalar of float or integer type. For example: OM_COUNT_IF(Income >

param.High) , where param.High is a value of scalar parameter High in that model run.

Enum-based microdata attributes returned as enum codes.

Following aggregation functions avaliable:

OM_AVG mean of accumulators sub-values

OM_SUM sum of accumulators sub-values

OM_COUNT count of accumulators sub-values (excluding NULL's)

OM_COUNT_IF count values matching condition

OM_MAX maximum of accumulators sub-values

OM_MIN minimum of accumulators sub-values

OM_VAR variance of accumulators sub-values

OM_SD standard deviation of accumulators sub-values

OM_SE standard error of accumulators sub-values

OM_CV coefficient of variation of accumulators sub-values

For more details please see: Model Output Expressions

Methods:

GET /api/model/:model/run/:run/microdata/:name/group-by/:group-by/calc/:calc/csv
GET /api/model/:model/run/:run/microdata/:name/group-by/:group-by/calc/:calc/csv-bom

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

:run - (required) model run digest, run stamp or run name

Model run can be identified by run digest, run stamp or run name. It is recommended to use digest because it is uniquely identifies model run.
Run stamp, if not explicitly specified as model run option, automatically generated as timestamp string, ex.: 2016_08_17_21_07_55_123. It is
also possible to use name, which is more human readable than digest, but if there are multiple runs with same name in database than result is
undefined.

:name - (required) microdata entity name

:group-by - (required) comma-separated list of dimension attribute(s) to group by aggreagated values, dimension attribute must be enum-based or boolean type.

GET csv aggregated microdata from model run

https://github.com/openmpp/openmpp.github.io/wiki/Model-Output-Expressions

:calc - (required) comma-separated list of aggregation of microdata value attribute(s), value attribute must be float of integer type.

Call examples:

http://localhost:4040/api/model/modelOne/run/Microdata%20in%20database/microdata/Person/group-by/AgeGroup,Sex/calc/OM_AVG(Income)/csv
http://localhost:4040/api/model/modelOne/run/Microdata%20in%20database/microdata/Person/group-by/AgeGroup,Sex/calc/OM_AVG(Income)/csv-bom
http://localhost:4040/api/model/modelOne/run/Microdata%20in%20database/microdata/Person/group-by/AgeGroup,Sex/calc/OM_AVG(Income),OM_AVG(Salary+Pension)/csv
http://localhost:4040/api/model/modelOne/run/Microdata%20in%20database/microdata/Person/group-by/AgeGroup,Sex/calc/OM_AVG(Income),OM_AVG(Salary+Pension)/csv-bo
m
http://localhost:4040/api/model/modelOne/run/Microdata%20in%20database/microdata/Person/group-by/AgeGroup,Sex/calc/OM_COUNT_IF(Income%3Eparam.StartingSeed)/csv

Note: OM_COUNT_IF(Income%3Eparam.StartingSeed) is is URL encoded: OM_COUNT_IF(Income>param.StartingSeed)

Return example:

curl http://localhost:4040/api/model/modelOne/run/Microdata%20in%20database/microdata/Person/group-by/AgeGroup,Sex/calc/OM_AVG(Income)/csv

run_digest,calc_name,AgeGroup,Sex,calc_value
a59c91359c4cd98f6275529c798d2485,ex_1200,10-20,M,13400876.3543608
a59c91359c4cd98f6275529c798d2485,ex_1200,10-20,F,13403741.8890926
a59c91359c4cd98f6275529c798d2485,ex_1200,20-30,M,134201344
a59c91359c4cd98f6275529c798d2485,ex_1200,20-30,F,134209535
a59c91359c4cd98f6275529c798d2485,ex_1200,30-40,M,134283254
a59c91359c4cd98f6275529c798d2485,ex_1200,30-40,F,134291445
a59c91359c4cd98f6275529c798d2485,ex_1200,40+,M,74645804.26116
a59c91359c4cd98f6275529c798d2485,ex_1200,40+,F,71069306.5718732

curl http://localhost:4040/api/model/modelOne/run/Microdata%20in%20database/microdata/Person/group-by/AgeGroup,Sex/calc/OM_AVG(Income),OM_AVG(Salary+Pension)/csv

run_digest,calc_name,AgeGroup,Sex,calc_value
a59c91359c4cd98f6275529c798d2485,ex_1200,10-20,M,13400876.3543608
a59c91359c4cd98f6275529c798d2485,ex_1200,10-20,F,13403741.8890926
a59c91359c4cd98f6275529c798d2485,ex_1200,20-30,M,134201344
a59c91359c4cd98f6275529c798d2485,ex_1200,20-30,F,134209535
a59c91359c4cd98f6275529c798d2485,ex_1200,30-40,M,134283254
a59c91359c4cd98f6275529c798d2485,ex_1200,30-40,F,134291445
a59c91359c4cd98f6275529c798d2485,ex_1200,40+,M,74645804.26116
a59c91359c4cd98f6275529c798d2485,ex_1200,40+,F,71069306.5718732
a59c91359c4cd98f6275529c798d2485,ex_1201,10-20,M,10050657.2657706
a59c91359c4cd98f6275529c798d2485,ex_1201,10-20,F,10052806.4168194
a59c91359c4cd98f6275529c798d2485,ex_1201,20-30,M,100651008
a59c91359c4cd98f6275529c798d2485,ex_1201,20-30,F,100657151.25
a59c91359c4cd98f6275529c798d2485,ex_1201,30-40,M,100712440.5
a59c91359c4cd98f6275529c798d2485,ex_1201,30-40,F,100718583.75
a59c91359c4cd98f6275529c798d2485,ex_1201,40+,M,60124633.8262087
a59c91359c4cd98f6275529c798d2485,ex_1201,40+,F,57665830.5421598

Aggregate microdata values and read it as csv file.

Aggregate microdata value attributes, group by dimension attributes and get it as response stream UTF-8 Entity.csv file attachment, optionally
starts with byte order mark (BOM).

Result can include multiple aggregations of value attributes (float of integer type) and group by dimension attributes (enum-based or bool type).
Aggregation(s) is a comma-separated list of Model Output Expressions of microdata value attributes. For example, two aggregations:
OM_AVG(Income) , OM_MAX(Salary + Pension) and group by two dimension attributes: AgeGroup , Sex .

It is also possible to use parameter(s) in calculation, parameter must be a scalar of float or integer type. For example: OM_COUNT_IF(Income >

param.High) , where param.High is a value of scalar parameter High in that model run.

Enum-based microdata attributes returned as enum id, not enum codes.

Following aggregation functions avaliable:

OM_AVG mean of accumulators sub-values

OM_SUM sum of accumulators sub-values

OM_COUNT count of accumulators sub-values (excluding NULL's)

OM_COUNT_IF count values matching condition

OM_MAX maximum of accumulators sub-values

OM_MIN minimum of accumulators sub-values

OM_VAR variance of accumulators sub-values

OM_SD standard deviation of accumulators sub-values

OM_SE standard error of accumulators sub-values

OM_CV coefficient of variation of accumulators sub-values

For more details please see: Model Output Expressions

Methods:

GET /api/model/:model/run/:run/microdata/:name/group-by/:group-by/calc/:calc/csv-id
GET /api/model/:model/run/:run/microdata/:name/group-by/:group-by/calc/:calc/csv-id-bom

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

:run - (required) model run digest, run stamp or run name

Model run can be identified by run digest, run stamp or run name. It is recommended to use digest because it is uniquely identifies model run.
Run stamp, if not explicitly specified as model run option, automatically generated as timestamp string, ex.: 2016_08_17_21_07_55_123. It is
also possible to use name, which is more human readable than digest, but if there are multiple runs with same name in database than result is
undefined.

:name - (required) microdata entity name

:group-by - (required) comma-separated list of dimension attribute(s) to group by aggreagated values, dimension attribute must be enum-based or boolean type.

GET csv aggregated microdata from model run (enum id's)

https://github.com/openmpp/openmpp.github.io/wiki/Model-Output-Expressions

:calc - (required) comma-separated list of aggregation of microdata value attribute(s), value attribute must be float of integer type.

Call examples:

http://localhost:4040/api/model/modelOne/run/Microdata%20in%20database/microdata/Person/group-by/AgeGroup,Sex/calc/OM_AVG(Income)/csv-id
http://localhost:4040/api/model/modelOne/run/Microdata%20in%20database/microdata/Person/group-by/AgeGroup,Sex/calc/OM_AVG(Income)/csv-id-bom
http://localhost:4040/api/model/modelOne/run/Microdata%20in%20database/microdata/Person/group-by/AgeGroup,Sex/calc/OM_AVG(Income),OM_AVG(Salary+Pension)/csv-id
http://localhost:4040/api/model/modelOne/run/Microdata%20in%20database/microdata/Person/group-by/AgeGroup,Sex/calc/OM_AVG(Income),OM_AVG(Salary+Pension)/csv-id-b
om
http://localhost:4040/api/model/modelOne/run/Microdata%20in%20database/microdata/Person/group-by/AgeGroup,Sex/calc/OM_COUNT_IF(Income%3Eparam.StartingSeed)/csv-i
d

Note: OM_COUNT_IF(Income%3Eparam.StartingSeed) is is URL encoded: OM_COUNT_IF(Income>param.StartingSeed)

Return example:

curl http://localhost:4040/api/model/modelOne/run/Microdata%20in%20database/microdata/Person/group-by/AgeGroup,Sex/calc/OM_AVG(Income)/csv-id

run_id,calc_id,AgeGroup,Sex,calc_value
219,1200,10,0,13400876.3543608
219,1200,10,1,13403741.8890926
219,1200,20,0,134201344
219,1200,20,1,134209535
219,1200,30,0,134283254
219,1200,30,1,134291445
219,1200,40,0,74645804.26116
219,1200,40,1,71069306.5718732

curl http://localhost:4040/api/model/modelOne/run/Microdata%20in%20database/microdata/Person/group-by/AgeGroup,Sex/calc/OM_AVG(Income),OM_AVG(Salary+Pension)/csv-
id

run_id,calc_id,AgeGroup,Sex,calc_value
219,1200,10,0,13400876.3543608
219,1200,10,1,13403741.8890926
219,1200,20,0,134201344
219,1200,20,1,134209535
219,1200,30,0,134283254
219,1200,30,1,134291445
219,1200,40,0,74645804.26116
219,1200,40,1,71069306.5718732
219,1201,10,0,10050657.2657706
219,1201,10,1,10052806.4168194
219,1201,20,0,100651008
219,1201,20,1,100657151.25
219,1201,30,0,100712440.5
219,1201,30,1,100718583.75
219,1201,40,0,60124633.8262087
219,1201,40,1,57665830.5421598

Compare microdata values and return results as csv file.

Compare [base] and [variant] model runs microdata value attributes (float of integer type), group it by dimension attributes (enum-based or bool
type) and get it as response stream UTF-8 Entity.csv file attachment, optionally starts with byte order mark (BOM).

Result can include multiple aggregated comparisons, grouped by multiple dimension attributes. Aggregated comparision(s) is a comma-
separated list of Model Output Expressions of [base] and [variant] value attributes. For example, two comparisions: OM_AVG(Income[variant] -

Income[base]) , OM_MAX(100 * (Salary[variant] + Pension[variant]) / Income[base]) and group by two dimension attributes: AgeGroup , Sex .

It is also possible to use parameter(s) in calculation, parameter must be a scalar of float or integer type. For example: OM_COUNT_IF((Income[variant -

Income[base]) > param.High[base]) , where param.High[base] is a value of scalar parameter High in [base] model run.

Enum-based microdata attributes returned as enum codes.

Following aggregation functions avaliable:

OM_AVG mean of accumulators sub-values

OM_SUM sum of accumulators sub-values

OM_COUNT count of accumulators sub-values (excluding NULL's)

OM_COUNT_IF count values matching condition

OM_MAX maximum of accumulators sub-values

OM_MIN minimum of accumulators sub-values

OM_VAR variance of accumulators sub-values

OM_SD standard deviation of accumulators sub-values

OM_SE standard error of accumulators sub-values

OM_CV coefficient of variation of accumulators sub-values

For more details please see: Model Output Expressions

Methods:

GET /api/model/:model/run/:run/microdata/:name/group-by/:group-by/compare/:compare/variant/:variant/csv
GET /api/model/:model/run/:run/microdata/:name/group-by/:group-by/compare/:compare/variant/:variant/csv-bom

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

:run - (required) base model run digest, run stamp or run name
:variant - (required) variant model run(s): comma-separated list of digests, run stamps or run names

Model run can be identified by run digest, run stamp or run name. It is recommended to use digest because it is uniquely identifies model run.
Run stamp, if not explicitly specified as model run option, automatically generated as timestamp string, ex.: 2016_08_17_21_07_55_123. It is
also possible to use name, which is more human readable than digest, but if there are multiple runs with same name in database than result is
undefined.

:name - (required) microdata entity name

:group-by - (required) comma-separated list of dimension attribute(s) to group by aggreagated values, dimension attribute must be enum-based or boolean type.

GET csv microdata run comparison

https://github.com/openmpp/openmpp.github.io/wiki/Model-Output-Expressions

:compare - (required) comma-separated list of comparions of microdata value attribute(s), value attribute must be float of integer type.

Call examples:

http://localhost:4040/api/model/modelOne/run/Microdata%20in%20database/microdata/Person/group-by/AgeGroup,Sex/compare/OM_AVG(Income%5Bvariant%5D-Income%5Bba
se%5D)/variant/Microdata%20other%20in%20database/csv
http://localhost:4040/api/model/modelOne/run/Microdata%20in%20database/microdata/Person/group-by/AgeGroup,Sex/compare/OM_AVG(Income%5Bvariant%5D-Income%5Bba
se%5D)/variant/Microdata%20other%20in%20database/csv-bom

http://localhost:4040/api/model/modelOne/run/Microdata%20in%20database/microdata/Person/group-by/AgeGroup,Sex/compare/OM_AVG(Income%5Bvariant%5D-Income%5Bba
se%5D),OM_AVG(Salary)/variant/Microdata%20other%20in%20database/csv
http://localhost:4040/api/model/modelOne/run/Microdata%20in%20database/microdata/Person/group-by/AgeGroup,Sex/compare/OM_AVG((Income%5Bvariant%5D-Income%5Bba
se%5D)%2Aparam.StartingSeed%5Bbase%5D)/variant/Microdata%20other%20in%20database/csv

Note:

OM_AVG(Income%5Bvariant%5D-Income%5Bbase%5D) is URL encoded: OM_AVG(Income[variant]-Income[base])

OM_AVG((Income%5Bvariant%5D-Income%5Bbase%5D)%2Aparam.StartingSeed%5Bbase%5D) is URL encoded: OM_AVG((Income[variant]-

Income[base])*param.StartingSeed)

Return example:

curl http://localhost:4040/api/model/modelOne/run/Microdata%20in%20database/microdata/Person/group-by/AgeGroup,Sex/compare/OM_AVG(Income%5Bvariant%5D-Income%5
Bbase%5D)/variant/Microdata%20other%20in%20database/csv

run_digest,calc_name,AgeGroup,Sex,calc_value
86135ceed94d1239937a42e088a7fcb7,ex_1200,10-20,M,-6701256.20161906
86135ceed94d1239937a42e088a7fcb7,ex_1200,10-20,F,-6702689.14390467
86135ceed94d1239937a42e088a7fcb7,ex_1200,20-30,M,-67108864
86135ceed94d1239937a42e088a7fcb7,ex_1200,20-30,F,-67112960
86135ceed94d1239937a42e088a7fcb7,ex_1200,30-40,M,-67149824
86135ceed94d1239937a42e088a7fcb7,ex_1200,30-40,F,-67153920
86135ceed94d1239937a42e088a7fcb7,ex_1200,40+,M,-37327458.4707197
86135ceed94d1239937a42e088a7fcb7,ex_1200,40+,F,-35538991.0909255

curl http://localhost:4040/api/model/modelOne/run/Microdata%20in%20database/microdata/Person/group-by/AgeGroup,Sex/compare/OM_AVG(Income%5Bvariant%5D-Income%5
Bbase%5D),OM_AVG(Salary)/variant/Microdata%20other%20in%20database/csv

run_digest,calc_name,AgeGroup,Sex,calc_value
a59c91359c4cd98f6275529c798d2485,ex_1201,10-20,M,10050657.2657706
a59c91359c4cd98f6275529c798d2485,ex_1201,10-20,F,10052806.4168194
a59c91359c4cd98f6275529c798d2485,ex_1201,20-30,M,100651008
a59c91359c4cd98f6275529c798d2485,ex_1201,20-30,F,100657151.25
a59c91359c4cd98f6275529c798d2485,ex_1201,30-40,M,100712440.5
a59c91359c4cd98f6275529c798d2485,ex_1201,30-40,F,100718583.75
a59c91359c4cd98f6275529c798d2485,ex_1201,40+,M,44905401.6613024
a59c91359c4cd98f6275529c798d2485,ex_1201,40+,F,41552168.3348642
86135ceed94d1239937a42e088a7fcb7,ex_1200,10-20,M,-6701256.20161906
86135ceed94d1239937a42e088a7fcb7,ex_1200,10-20,F,-6702689.14390467
86135ceed94d1239937a42e088a7fcb7,ex_1200,20-30,M,-67108864
86135ceed94d1239937a42e088a7fcb7,ex_1200,20-30,F,-67112960
86135ceed94d1239937a42e088a7fcb7,ex_1200,30-40,M,-67149824
86135ceed94d1239937a42e088a7fcb7,ex_1200,30-40,F,-67153920
86135ceed94d1239937a42e088a7fcb7,ex_1200,40+,M,-37327458.4707197
86135ceed94d1239937a42e088a7fcb7,ex_1200,40+,F,-35538991.0909255
86135ceed94d1239937a42e088a7fcb7,ex_1201,10-20,M,5024715.11455629
86135ceed94d1239937a42e088a7fcb7,ex_1201,10-20,F,5025789.55889093
86135ceed94d1239937a42e088a7fcb7,ex_1201,20-30,M,50319360
86135ceed94d1239937a42e088a7fcb7,ex_1201,20-30,F,50322431.25
86135ceed94d1239937a42e088a7fcb7,ex_1201,30-40,M,50350072.5
86135ceed94d1239937a42e088a7fcb7,ex_1201,30-40,F,50353143.75
86135ceed94d1239937a42e088a7fcb7,ex_1201,40+,M,22449959.7419271
86135ceed94d1239937a42e088a7fcb7,ex_1201,40+,F,20773547.8187544

Compare microdata values and return results as csv file.

Compare [base] and [variant] model runs microdata value attributes (float of integer type), group it by dimension attributes (enum-based or bool
type) and get it as response stream UTF-8 Entity.csv file attachment, optionally starts with byte order mark (BOM).

Result can include multiple aggregated comparisons, grouped by multiple dimension attributes. Aggregated comparision(s) is a comma-
separated list of Model Output Expressions of [base] and [variant] value attributes. For example, two comparisions: OM_AVG(Income[variant] -

Income[base]) , OM_MAX(100 * (Salary[variant] + Pension[variant]) / Income[base]) and group by two dimension attributes: AgeGroup , Sex .

It is also possible to use parameter(s) in calculation, parameter must be a scalar of float or integer type. For example: OM_COUNT_IF((Income[variant -

Income[base]) > param.High[base]) , where param.High[base] is a value of scalar parameter High in [base] model run.

Enum-based microdata attributes returned as enum id, not enum codes.

Following aggregation functions avaliable:

OM_AVG mean of accumulators sub-values

OM_SUM sum of accumulators sub-values

OM_COUNT count of accumulators sub-values (excluding NULL's)

OM_COUNT_IF count values matching condition

OM_MAX maximum of accumulators sub-values

OM_MIN minimum of accumulators sub-values

OM_VAR variance of accumulators sub-values

OM_SD standard deviation of accumulators sub-values

OM_SE standard error of accumulators sub-values

OM_CV coefficient of variation of accumulators sub-values

For more details please see: Model Output Expressions

Methods:

GET /api/model/:model/run/:run/microdata/:name/group-by/:group-by/compare/:compare/variant/:variant/csv-id
GET /api/model/:model/run/:run/microdata/:name/group-by/:group-by/compare/:compare/variant/:variant/csv-id-bom

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

:run - (required) base model run digest, run stamp or run name
:variant - (required) variant model run(s): comma-separated list of digests, run stamps or run names

Model run can be identified by run digest, run stamp or run name. It is recommended to use digest because it is uniquely identifies model run.
Run stamp, if not explicitly specified as model run option, automatically generated as timestamp string, ex.: 2016_08_17_21_07_55_123. It is
also possible to use name, which is more human readable than digest, but if there are multiple runs with same name in database than result is
undefined.

:name - (required) microdata entity name

:group-by - (required) comma-separated list of dimension attribute(s) to group by aggreagated values, dimension attribute must be enum-based or boolean type.

GET csv microdata run comparison (enum id's)

https://github.com/openmpp/openmpp.github.io/wiki/Model-Output-Expressions

:compare - (required) comma-separated list of comparions of microdata value attribute(s), value attribute must be float of integer type.

Call examples:

http://localhost:4040/api/model/modelOne/run/Microdata%20in%20database/microdata/Person/group-by/AgeGroup,Sex/compare/OM_AVG(Income%5Bvariant%5D-Income%5Bba
se%5D)/variant/Microdata%20other%20in%20database/csv-id
http://localhost:4040/api/model/modelOne/run/Microdata%20in%20database/microdata/Person/group-by/AgeGroup,Sex/compare/OM_AVG(Income%5Bvariant%5D-Income%5Bba
se%5D)/variant/Microdata%20other%20in%20database/csv-id-bom

http://localhost:4040/api/model/modelOne/run/Microdata%20in%20database/microdata/Person/group-by/AgeGroup,Sex/compare/OM_AVG(Income%5Bvariant%5D-Income%5Bba
se%5D),OM_AVG(Salary)/variant/Microdata%20other%20in%20database/csv-id
http://localhost:4040/api/model/modelOne/run/Microdata%20in%20database/microdata/Person/group-by/AgeGroup,Sex/compare/OM_AVG(Income%5Bvariant%5D-Income%5Bba
se%5D),OM_AVG(Salary)/variant/Microdata%20other%20in%20database/csv-id-bom
http://localhost:4040/api/model/modelOne/run/Microdata%20in%20database/microdata/Person/group-by/AgeGroup,Sex/compare/OM_AVG((Income%5Bvariant%5D-Income%5Bba
se%5D)%2Aparam.StartingSeed%5Bbase%5D)/variant/Microdata%20other%20in%20database/csv-id

Note:

OM_AVG(Income%5Bvariant%5D-Income%5Bbase%5D) is URL encoded: OM_AVG(Income[variant]-Income[base])

OM_AVG((Income%5Bvariant%5D-Income%5Bbase%5D)%2Aparam.StartingSeed%5Bbase%5D) is URL encoded: OM_AVG((Income[variant]-

Income[base])*param.StartingSeed)[base]

Return example:

curl http://localhost:4040/api/model/modelOne/run/Microdata%20in%20database/microdata/Person/group-by/AgeGroup,Sex/compare/OM_AVG(Income%5Bvariant%5D-Income%5
Bbase%5D)/variant/Microdata%20other%20in%20database/csv-id

run_id,calc_id,AgeGroup,Sex,calc_value
221,1200,10,0,-6701256.20161906
221,1200,10,1,-6702689.14390467
221,1200,20,0,-67108864
221,1200,20,1,-67112960
221,1200,30,0,-67149824
221,1200,30,1,-67153920
221,1200,40,0,-37327458.4707197
221,1200,40,1,-35538991.0909255

curl http://localhost:4040/api/model/modelOne/run/Microdata%20in%20database/microdata/Person/group-by/AgeGroup,Sex/compare/OM_AVG(Income%5Bvariant%5D-Income%5
Bbase%5D),OM_AVG(Salary)/variant/Microdata%20other%20in%20database/csv-id

run_id,calc_id,AgeGroup,Sex,calc_value
219,1201,10,0,10050657.2657706
219,1201,10,1,10052806.4168194
219,1201,20,0,100651008
219,1201,20,1,100657151.25
219,1201,30,0,100712440.5
219,1201,30,1,100718583.75
219,1201,40,0,44905401.6613024
219,1201,40,1,41552168.3348642
221,1200,10,0,-6701256.20161906
221,1200,10,1,-6702689.14390467
221,1200,20,0,-67108864
221,1200,20,1,-67112960
221,1200,30,0,-67149824
221,1200,30,1,-67153920
221,1200,40,0,-37327458.4707197
221,1200,40,1,-35538991.0909255
221,1201,10,0,5024715.11455629
221,1201,10,1,5025789.55889093
221,1201,20,0,50319360
221,1201,20,1,50322431.25
221,1201,30,0,50350072.5
221,1201,30,1,50353143.75
221,1201,40,0,22449959.7419271
221,1201,40,1,20773547.8187544

Get list of modeling tasks: language-neutral part of task list metadata.

Methods:

GET /api/model/:model/task-list

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

Call examples from browser:

http://localhost:4040/api/model/modelOne/task-list
http://localhost:4040/api/model/_201208171604590148_/task-list

Return example:

[
 {
 "ModelName": "modelOne",
 "ModelDigest": "_201208171604590148_",
 "Name": "taskOne",
 "Txt": [],
 "Set": [],
 "TaskRun": []
 }
]

GET list of modeling tasks

Get list of modeling tasks, including text (description and notes).

Methods:

GET /api/model/:model/task-list/text
GET /api/model/:model/task-list/text/lang/:lang

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

:lang - (optional) language code

If optional lang argument specified then result in that language else in browser language. If no such language exist then text portion of result
(description and notes) is empty.

Call examples from browser:

http://localhost:4040/api/model/modelOne/task-list/text
http://localhost:4040/api/model/modelOne/task-list/text/lang/EN

Return example:

[
 {
 "ModelName": "modelOne",
 "ModelDigest": "_201208171604590148_",
 "Name": "taskOne",
 "Txt": [
 {
 "LangCode": "EN",
 "Descr": "Task One for Model One",
 "Note": "Task One: two set of input parameters"
 }
],
 "Set": [],
 "TaskRun": []
 }
]

GET list of modeling tasks including text (description and notes)

Get modeling task input sets: language-neutral part of task metadata.

Methods:

GET /api/model/:model/task/:task/sets

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

:task - (required) modeling task name

Task is uniquely identified by name (inside the model). Different models can have tasks with same name, i.e. each model can have task with
name "My First Task".

Call examples from browser:

http://localhost:4040/api/model/modelOne/task/taskOne/sets
http://localhost:4040/api/model/_201208171604590148_/task/taskOne/sets

Return example:

{
 "ModelName": "modelOne",
 "ModelDigest": "_201208171604590148_",
 "Name": "taskOne",
 "Txt": [],
 "Set": [
 "Default",
 "modelOne_other"
],
 "TaskRun": []
}

GET modeling task input worksets

Get modeling task run history: language-neutral part of task metadata.

Methods:

GET /api/model/:model/task/:task/runs

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

:task - (required) modeling task name

Task is uniquely identified by name (inside the model). Different models can have tasks with same name, i.e. each model can have task with
name "My First Task".

Call examples from browser:

http://localhost:4040/api/model/modelOne/task/taskOne/runs
http://localhost:4040/api/model/modelOne/task/taskOne/runs

Return example:

{
 "ModelName": "modelOne",
 "ModelDigest": "_201208171604590148_",
 "Name": "taskOne",
 "Txt": [],
 "Set": [],
 "TaskRun": [
 {
 "Name": "First Task Run",
 "SubCount": 1,
 "CreateDateTime": "2020-03-24 16:29:20.427",
 "Status": "s",
 "UpdateDateTime": "2020-03-24 16:29:20.857",
 "RunStamp": "2020_03_24_16_29_20_427",
 "TaskRunSet": [
 {
 "Run": {
 "Name": "First_Task_Run_Default",
 "SubCompleted": 1,
 "CreateDateTime": "2020-03-24 16:29:20.459",
 "Status": "s",
 "RunDigest": "aa3bed04d833966853bdf04f841c5feb",
 "ValueDigest": "6c5c0f48e19f67899c868688bb8a23fd",
 "RunStamp": "2020_03_24_16_29_20_427"
 },
 "SetName": "Default"
 },
 {
 "Run": {
 "Name": "First_Task_Run_modelOne_other",
 "SubCompleted": 1,
 "CreateDateTime": "2020-03-24 16:29:20.667",
 "Status": "s",
 "RunDigest": "f8e078c414f15c79d19a2666b126dea5",
 "ValueDigest": "fb27d108fae2040fa1cae6f49704a1b7",
 "RunStamp": "2020_03_24_16_29_20_427"
 },
 "SetName": "modelOne_other"
 }
]
 }
]
}

GET modeling task run history

Get status of modeling task run.

Methods:

GET /api/model/:model/task/:task/run-status/run/:run

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

:task - (required) modeling task name

Task is uniquely identified by name (inside the model). Different models can have tasks with same name, i.e. each model can have task with
name "My First Task".

:run - (required) modeling task run stamp or task run name

Task run stamp and task run name can be explicitly specified as model run options. If task run stamp not specified then it automatically generated
as timestamp string, ex.: 2016_08_17_21_07_55_123. It is recommended to specify unique run stamp or run name when you are running the
modeling task. If task run stamp or task run name is not unique then result of this call is undefined. You can use GET status of modeling task run
list method to get status of multiple runs with same name or stamp.

Call examples from browser:

http://localhost:4040/api/model/modelOne/task/taskOne/run-status/run/First%20Task%20Run
http://localhost:4040/api/model/_201208171604590148_/task/taskOne/run-status/run/2019_01_17_19_59_53_260

Return example: This is a beta version and may change in the future.

{
 "TaskRunId": 101,
 "TaskId": 1,
 "Name": "First Task Run",
 "SubCount": 1,
 "CreateDateTime": "2019-01-17 19:59:53.260",
 "Status": "s",
 "UpdateDateTime": "2019-01-17 19:59:53.539",
 "RunStamp": "2019_01_17_19_59_53_260"
}

GET status of modeling task run

Get status of modeling task runs.

Methods:

GET /api/model/:model/task/:task/run-status/list/:run

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

:task - (required) modeling task name

Task is uniquely identified by name (inside the model). Different models can have tasks with same name, i.e. each model can have task with
name "My First Task".

:run - (required) modeling task run stamp or task run name

Task run stamp and task run name can be explicitly specified as model run options. If task run stamp not specified then it automatically generated
as timestamp string, ex.: 2016_08_17_21_07_55_123. It is recommended to specify unique run stamp or run name when you are running the
modeling task.

Call examples from browser:

http://localhost:4040/api/model/modelOne/task/taskOne/run-status/list/First%20Task%20Run
http://localhost:4040/api/model/_201208171604590148_/task/taskOne/run-status/list/2019_01_17_19_59_53_260

Return example: This is a beta version and may change in the future.

[
 {
 "TaskRunId": 101,
 "TaskId": 1,
 "Name": "First Task Run",
 "SubCount": 1,
 "CreateDateTime": "2020-02-01 12:10:45.090",
 "Status": "s",
 "UpdateDateTime": "2020-02-01 12:10:45.523",
 "RunStamp": "2020_02_01_12_10_45_090"
 }
]

GET status of modeling task run list

Get status of modeling task first run.

Methods:

GET /api/model/:model/task/:task/run-status/first

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

:task - (required) modeling task name

Task is uniquely identified by name (inside the model). Different models can have tasks with same name, i.e. each model can have task with
name "My First Task".

Call examples from browser:

http://localhost:4040/api/model/modelOne/task/taskOne/run-status/first
http://localhost:4040/api/model/_201208171604590148_/task/taskOne/run-status/first

Return example: This is a beta version and may change in the future.

{
 "TaskRunId": 101,
 "TaskId": 1,
 "Name": "First Task Run",
 "SubCount": 1,
 "CreateDateTime": "2019-01-17 19:59:53.260",
 "Status": "s",
 "UpdateDateTime": "2019-01-17 19:59:53.539",
 "RunStamp": "2019_01_17_19_59_53_260"
}

GET status of modeling task first run

Get status of modeling task last (most recent) run.

Methods:

GET /api/model/:model/task/:task/run-status/last

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

:task - (required) modeling task name

Task is uniquely identified by name (inside the model). Different models can have tasks with same name, i.e. each model can have task with
name "My First Task".

Call examples from browser:

http://localhost:4040/api/model/modelOne/task/taskOne/run-status/last
http://localhost:4040/api/model/_201208171604590148_/task/taskOne/run-status/last

Return example: This is a beta version and may change in the future.

{
 "TaskRunId": 101,
 "TaskId": 1,
 "Name": "First Task Run",
 "SubCount": 1,
 "CreateDateTime": "2019-01-17 19:59:53.260",
 "Status": "s",
 "UpdateDateTime": "2019-01-17 19:59:53.539",
 "RunStamp": "2019_01_17_19_59_53_260"
}

GET status of modeling task last run

Get status of modeling task last completed run. Run completed if run status one of: s=success, x=exit, e=error.

Methods:

GET /api/model/:model/task/:task/run-status/last-completed

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

:task - (required) modeling task name

Task is uniquely identified by name (inside the model). Different models can have tasks with same name, i.e. each model can have task with
name "My First Task".

Call examples from browser:

http://localhost:4040/api/model/modelOne/task/taskOne/run-status/last-completed
http://localhost:4040/api/model/_201208171604590148_/task/taskOne/run-status/last-completed

Return example: This is a beta version and may change in the future.

{
 "TaskRunId": 101,
 "TaskId": 1,
 "Name": "First Task Run",
 "SubCount": 1,
 "CreateDateTime": "2019-01-17 19:59:53.260",
 "Status": "s",
 "UpdateDateTime": "2019-01-17 19:59:53.539",
 "RunStamp": "2019_01_17_19_59_53_260"
}

GET status of modeling task last completed run

Get modeling task and task run history, including text (description and notes)

Methods:

GET /api/model/:model/task/:task/text
GET /api/model/:model/task/:task/text/lang/:lang

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

:task - (required) modeling task name

Task is uniquely identified by name (inside the model). Different models can have tasks with same name, i.e. each model can have task with
name "My First Task".

:lang - (optional) language code

If optional lang argument specified then result in that language else in browser language. If no such language exist then text portion of result
(description and notes) is empty.

Call examples from browser:

http://localhost:4040/api/model/modelOne/task/taskOne/text
http://localhost:4040/api/model/modelOne/task/taskOne/text/lang/EN
http://localhost:4040/api/model/_201208171604590148_/task/taskOne/text/lang/EN

Return example:

{
 "Task": {
 "ModelName": "modelOne",
 "ModelDigest": "_201208171604590148_",
 "Name": "taskOne",
 "Txt": [
 {
 "LangCode": "EN",
 "Descr": "Task One for Model One",
 "Note": "Task One: two set of input parameters"
 }
],
 "Set": [
 "Default",
 "modelOne_other"
],
 "TaskRun": [
 {
 "Name": "First Task Run",
 "SubCount": 1,
 "CreateDateTime": "2020-03-24 16:29:20.427",
 "Status": "s",
 "UpdateDateTime": "2020-03-24 16:29:20.857",
 "RunStamp": "2020_03_24_16_29_20_427",
 "TaskRunSet": [
 {
 "Run": {
 "Name": "First_Task_Run_Default",
 "SubCompleted": 1,
 "CreateDateTime": "2020-03-24 16:29:20.459",
 "Status": "s",
 "RunDigest": "aa3bed04d833966853bdf04f841c5feb",
 "ValueDigest": "6c5c0f48e19f67899c868688bb8a23fd",
 "RunStamp": "2020_03_24_16_29_20_427"
 },
 "SetName": "Default"
 },
 {
 "Run": {

GET modeling task including text (description and notes)

 "Run": {
 "Name": "First_Task_Run_modelOne_other",
 "SubCompleted": 1,
 "CreateDateTime": "2020-03-24 16:29:20.667",
 "Status": "s",
 "RunDigest": "f8e078c414f15c79d19a2666b126dea5",
 "ValueDigest": "fb27d108fae2040fa1cae6f49704a1b7",
 "RunStamp": "2020_03_24_16_29_20_427"
 },
 "SetName": "modelOne_other"
 }
]
 }
]
 },
 "Txt": {
 "SetTxt": {
 "Default": [
 {
 "LangCode": "EN",
 "Descr": "Model One default set of parameters",
 "Note": ""
 }
],
 "modelOne_other": [
 {
 "LangCode": "EN",
 "Descr": "Model One other set of parameters",
 "Note": ""
 }
]
 },
 "RunTxt": {
 "aa3bed04d833966853bdf04f841c5feb": [
 {
 "LangCode": "EN",
 "Descr": "Model One default set of parameters",
 "Note": ""
 }
],
 "f8e078c414f15c79d19a2666b126dea5": [
 {
 "LangCode": "EN",
 "Descr": "Model One other set of parameters",
 "Note": ""
 }
]
 }
 }
}

Get modeling task and task run history, including text (description and notes) in all languages.

Methods:

GET /api/model/:model/task/:task/text-all

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

:task - (required) modeling task name

Task is uniquely identified by name (inside the model). Different models can have tasks with same name, i.e. each model can have task with
name "My First Task".

Call examples from browser:

http://localhost:4040/api/model/modelOne/task/taskOne/text-all
http://localhost:4040/api/model/_201208171604590148_/task/taskOne/text-all

Return example:

{
 "Task": {
 "ModelName": "modelOne",
 "ModelDigest": "_201208171604590148_",
 "Name": "taskOne",
 "Txt": [
 {
 "LangCode": "EN",
 "Descr": "Task One for Model One",
 "Note": "Task One: two set of input parameters"
 },
 {
 "LangCode": "FR",
 "Descr": "(FR) Task One for Model One",
 "Note": ""
 }
],
 "Set": [
 "Default",
 "modelOne_other"
],
 "TaskRun": [
 {
 "Name": "First Task Run",
 "SubCount": 1,
 "CreateDateTime": "2020-03-24 16:29:20.427",
 "Status": "s",
 "UpdateDateTime": "2020-03-24 16:29:20.857",
 "RunStamp": "2020_03_24_16_29_20_427",
 "TaskRunSet": [
 {
 "Run": {
 "Name": "First_Task_Run_Default",
 "SubCompleted": 1,
 "CreateDateTime": "2020-03-24 16:29:20.459",
 "Status": "s",
 "RunDigest": "aa3bed04d833966853bdf04f841c5feb",
 "ValueDigest": "6c5c0f48e19f67899c868688bb8a23fd",
 "RunStamp": "2020_03_24_16_29_20_427"
 },
 "SetName": "Default"
 },
 {
 "Run": {
 "Name": "First_Task_Run_modelOne_other",
 "SubCompleted": 1,
 "CreateDateTime": "2020-03-24 16:29:20.667",
 "Status": "s",
 "RunDigest": "f8e078c414f15c79d19a2666b126dea5",

GET modeling task text in all languages

 "RunDigest": "f8e078c414f15c79d19a2666b126dea5",
 "ValueDigest": "fb27d108fae2040fa1cae6f49704a1b7",
 "RunStamp": "2020_03_24_16_29_20_427"
 },
 "SetName": "modelOne_other"
 }
]
 }
]
 },
 "Txt": {
 "SetTxt": {
 "Default": [
 {
 "LangCode": "EN",
 "Descr": "Model One default set of parameters",
 "Note": ""
 },
 {
 "LangCode": "FR",
 "Descr": "(FR) Model One default set of parameters",
 "Note": ""
 }
],
 "modelOne_other": [
 {
 "LangCode": "EN",
 "Descr": "Model One other set of parameters",
 "Note": ""
 },
 {
 "LangCode": "FR",
 "Descr": "(FR) Model One other set of parameters",
 "Note": ""
 }
]
 },
 "RunTxt": {
 "aa3bed04d833966853bdf04f841c5feb": [
 {
 "LangCode": "EN",
 "Descr": "Model One default set of parameters",
 "Note": ""
 },
 {
 "LangCode": "FR",
 "Descr": "(FR) Model One default set of parameters",
 "Note": ""
 }
],
 "f8e078c414f15c79d19a2666b126dea5": [
 {
 "LangCode": "EN",
 "Descr": "Model One other set of parameters",
 "Note": ""
 },
 {
 "LangCode": "FR",
 "Descr": "(FR) Model One other set of parameters",
 "Note": ""
 }
]
 }
 }
}

Create new or replace existing profile.

Profile is a set of key-value options which can be used to run the model.

This method insert new or replace all existing profile options. If no such profile exist in database then new profile created.

If profile already exist then it is delete-insert operation:

all existing profile key-value options deleted from database;

new key-value options inserted.

Profile is uniquely identified by name (inside of the database). Profile are not a property of the model and you can use same profile for different
models. Beta version: beta version API uses model name or digest to find profile.

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

This is a beta version and may change in the future.

Method:

PATCH /api/model/:model/profile

For example:

curl -v -X PATCH -H "Content-Type: application/json" "http://localhost:4040/api/model/modelOne/profile" -d @m1.profile.json

JSON arguments:

It is expected to be same JSON as return of GET model profile method.

For example (m1.profile.json file):

{
 "Name": "m1",
 "Opts": {
 "OpenM.SparseOutput": "false",
 "Parameter.StartingSeed": "192"
 }
}

PATCH create or replace profile

Delete existing profile.

Profile is a set of key-value options which can be used to run the model.

This method does delete of existing profile and all profile options. If no such profile exist in database then nothing is changed (it is no-op).

Profile is uniquely identified by name (inside of the database). Profile are not a property of the model and you can use same profile for different
models. Beta version: beta version API uses model name or digest to find profile.

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

This is a beta version and may change in the future.

Method:

DELETE /api/model/:model/profile/:profile

For example:

curl -v -X DELETE http://localhost:4040/api/model/modelOne/profile/m1
curl -v -X DELETE http://localhost:4040/api/model/_201208171604590148_/profile/m1

curl -v -X DELETE http://localhost:4040/api/model/modelOne/profile/m1

* Trying ::1...
* TCP_NODELAY set
* Trying 127.0.0.1...
* TCP_NODELAY set
* Connected to localhost (127.0.0.1) port 4040 (#0)
> DELETE /api/model/modelOne/profile/m1 HTTP/1.1
> Host: localhost:4040
> User-Agent: curl/7.54.1
> Accept: */*
>
< HTTP/1.1 200 OK
< Content-Location: /api/model/modelOne/profile/m1
< Date: Fri, 28 Dec 2018 03:06:21 GMT
< Content-Length: 0
<
* Connection #0 to host localhost left intact

DELETE profile

Create new or replace existing profile option.

Profile is a set of key-value options which can be used to run the model.

This method insert new or replace all existing profile key-value options. If no such profile exist in database then new profile created. If no such key
exist in that profile then new key-value inserted. If key already exist the value replaced.

Profile is uniquely identified by name (inside of the database). Profile are not a property of the model and you can use same profile for different
models. Beta version: beta version API uses model name or digest to find profile.

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

This is a beta version and may change in the future.

Method:

POST /api/model/:model/profile/:profile/key/:key/value/:value

For example:

curl -v -X POST http://localhost:4040/api/model/modelOne/profile/m1/key/Parameter.StartingSeed/value/4095

* Trying ::1...
* TCP_NODELAY set
* Trying 127.0.0.1...
* TCP_NODELAY set
* Connected to localhost (127.0.0.1) port 4040 (#0)
> PATCH /api/model/modelOne/profile/m1/key/Parameter.StartingSeed/value/4095 HTTP/1.1
> Host: localhost:4040
> User-Agent: curl/7.54.1
> Accept: */*
>
< HTTP/1.1 200 OK
< Content-Location: /api/model/modelOne/profile/m1/key/Parameter.StartingSeed
< Date: Fri, 28 Dec 2018 03:10:49 GMT
< Content-Length: 0
<
* Connection #0 to host localhost left intact

POST create or replace profile option

Delete existing profile option.

Profile is a set of key-value options which can be used to run the model.

This method does delete of existing profile key and associated value. If no such option key exist in that profile then nothing is changed (it is no-
op).

Profile is uniquely identified by name (inside of the database). Profile are not a property of the model and you can use same profile for different
models. Beta version: beta version API uses model name or digest to find profile.

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

This is a beta version and may change in the future.

Method:

DELETE /api/model/:model/profile/:profile/key/:key

For example:

curl -v -X DELETE http://localhost:4040/api/model/modelOne/profile/m1/key/Parameter.StartingSeed

* Trying ::1...
* TCP_NODELAY set
* Trying 127.0.0.1...
* TCP_NODELAY set
* Connected to localhost (127.0.0.1) port 4040 (#0)
> DELETE /api/model/modelOne/profile/m1/key/Parameter.StartingSeed HTTP/1.1
> Host: localhost:4040
> User-Agent: curl/7.54.1
> Accept: */*
>
< HTTP/1.1 200 OK
< Content-Location: /api/model/modelOne/profile/m1/key/Parameter.StartingSeed
< Date: Fri, 28 Dec 2018 03:15:15 GMT
< Content-Length: 0
<
* Connection #0 to host localhost left intact

DELETE profile option

Update read-only status of model workset.

Workset is a set of model input parameters (a.k.a. "scenario" input).

Workset can be used to run the model.

Workset is uniquely identified by name (in model context).

Workset must be read-only in order to run the model with this set of input parameters.

If user want to edit this set input parameters it must be read-write (not read-only status).

Methods:

POST /api/model/:model/workset/:set/readonly/:readonly

Arguments as URL parameters:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

:set - (required) workset name

Workset is uniquely identified by name (inside the model). Different models can have worksets with same name, i.e. each model can have
workset with name "Default".

:readonly - (required) read-only status

Read-only status is a boolean value. It accepts 1, t, T, TRUE, true, True, 0, f, F, FALSE, false, False. Any other value returns an error.

Examples:

curl -v -X POST http://localhost:4040/api/model/modelOne/workset/modelOne_set/readonly/1

* Trying ::1...
* TCP_NODELAY set
* Trying 127.0.0.1...
* TCP_NODELAY set
* Connected to localhost (127.0.0.1) port 4040 (#0)
> POST /api/model/modelOne/workset/modelOne_set/readonly/1 HTTP/1.1
> Host: localhost:4040
> User-Agent: curl/7.55.1
> Accept: */*
>
< HTTP/1.1 200 OK
< Content-Location: /api/model/_201208171604590148_/workset/modelOne_set
< Content-Type: application/json
< Date: Thu, 20 Dec 2018 03:54:59 GMT
< Content-Length: 122
<
{"SetId":3,"BaseRunId":0,"ModelId":1,"Name":"modelOne_set","IsReadonly":true,"UpdateDateTime":"2018-12-19 22:54:59.0583"}
* Connection #0 to host localhost left intact

POST update workset read-only status

curl -v -X POST http://localhost:4040/api/model/modelOne/workset/INVALID_NAME/readonly/1

* Trying ::1...
* TCP_NODELAY set
* Trying 127.0.0.1...
* TCP_NODELAY set
* Connected to localhost (127.0.0.1) port 4040 (#0)
> POST /api/model/modelOne/workset/INVALID_NAME/readonly/1 HTTP/1.1
> Host: localhost:4040
> User-Agent: curl/7.55.1
> Accept: */*
>
< HTTP/1.1 200 OK
< Content-Type: application/json
< Date: Thu, 20 Dec 2018 03:56:50 GMT
< Content-Length: 87
<
{"SetId":0,"BaseRunId":0,"ModelId":0,"Name":"","IsReadonly":false,"UpdateDateTime":""}
* Connection #0 to host localhost left intact

Create new model workset and append new parameter(s) values.

Workset is a set of model input parameters (a.k.a. "scenario" input).

Workset can be used to run the model.

Workset is uniquely identified by name (in model context).

Workset must be read-only in order to run the model with this set of input parameters.

If user want to edit this set input parameters it must be read-write (not read-only status).

This method creates new workset by inserting workset metadata, parameter(s) metadata and parameter(s) values from json request body.
Workset metadata must contain model digest (or model name) and workset name, any other parts of metadata is optional.

Workset parameters are optional, you can create empty workset and add parameters later. Each parameter must have metadata and parameter
value(s). Parameter metadata must contain parameter name and if cell values supplied then also number of sub-values (use 1 as default), all
other metadata are optional. For each parameter values must be supplied. Workset cannot contain parameter metadata only, it must have all
parameter values. See below for information about parameter values.

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

Workset is uniquely identified by name (inside the model). Different models can have worksets with same name, i.e. each model can have
workset with name "Default".

If workset with the same name already exist then method return an error.

If workset name not specified or empty then new workset created with unique name.

This is a beta version and may change in the future.

Method:

PUT /api/workset-create

For example:

curl -v -X PUT -H "Content-Type: application/json" "http://localhost:4040/api/workset-create" -d @test.json

JSON body:

It is expected to be same JSON metadata as return of Get Workset Metadata in All Languages method.

Parameter values must be one of:

JSON cell values, identical to output of read parameter "page": Read parameter values from workset

copy of parameter values from model run, use: { "Kind": "run", "From": "run digest or run name or run stamp" }

copy of parameter values from other workset, use: { "Kind": "set", "From": "workset name" } Source workset must be readonly .

JSON response:

{
 "SetId": 142,
 "BaseRunId": 101,
 "ModelId": 1,
 "Name": "auto_name_set_of_parameters_2020_05_01_15_22_54_807",
 "IsReadonly": false,
 "UpdateDateTime": "2020-05-01 15:22:54.809"
}

Example 1:

PUT create new workset

{
 "ModelName": "modelOne",
 "Name": "NewSet",
 "Txt": [
 {
 "LangCode": "EN",
 "Descr": "New Set of model One parameters"
 }
]
}

Example 2:

{
 "ModelName": "modelOne",
 "ModelDigest": "_201208171604590148_",
 "Name": "NewSet",
 "BaseRunDigest": "",
 "IsReadonly": false,
 "Txt": [
 {
 "LangCode": "EN",
 "Descr": "New Set of model One parameters"
 },
 {
 "LangCode": "FR",
 "Descr": "(FR) New Set of model One parameters",
 "Note": "(FR) Note for New Set of model One parameters"
 }
],
 "Param": [
 {
 "Name": "ageSex",
 "SubCount": 1,
 "DefaultSubId": 0,
 "Txt": [
 {
 "LangCode": "EN",
 "Note": "Age by Sex new set of values"
 },
 {
 "LangCode": "FR",
 "Note": "(FR) Age by Sex new set of values"
 }
],
 "Value": [
 {"Dims": ["10-20","M"], "IsNull": false, "Value": 0.1, "SubId": 0},
 {"Dims": ["10-20","F"], "IsNull": false, "Value": 0.2, "SubId": 0},
 {"Dims": ["20-30","M"], "IsNull": false, "Value": 0.3, "SubId": 0},
 {"Dims": ["20-30","F"], "IsNull": false, "Value": 0.4, "SubId": 0},
 {"Dims": ["30-40","M"], "IsNull": false, "Value": 0.5, "SubId": 0},
 {"Dims": ["30-40","F"], "IsNull": false, "Value": 0.6, "SubId": 0},
 {"Dims": ["40+","M"], "IsNull": false, "Value": 0.7, "SubId": 0},
 {"Dims": ["40+","F"], "IsNull": false, "Value": 0.8, "SubId": 0}
]
 }
]
}

Example 3:

Create workset based on existing model run and copy two parameters:

copy parameter ageSex from model run Default-4

copy parameter salaryAge from Default workset

{
 "ModelName": "modelOne",
 "ModelDigest": "_201208171604590148_",
 "Name": "m1_based_on_first_run",
 "BaseRunDigest": "09cf2735bbe8aa88fd427c20925ca14a",
 "Txt": [{
 "LangCode": "EN",
 "Descr": "modelOne based on first run",
 "Note": "modelOne copy parameters from Default-4 run and Default workset"
 }, {
 "LangCode": "FR",
 "Descr": "(FR) modelOne based on first run",
 "Note": "(FR) modelOne copy parameters from Default-4 run and Default workset"
 }
],
 "Param": [
 {
 "Name": "ageSex",
 "Kind": "run",
 "From": "Default-4"
 },
 {
 "Name": "salaryAge",
 "Kind": "set",
 "From": "Default"
 }
]
}

curl -v -X PUT -H "Content-Type: application/json" "http://localhost:4040/api/workset-create" -d @m1_ws_new_on_run.json

* Trying ::1...
* TCP_NODELAY set
* Connected to localhost (::1) port 4040 (#0)
> PUT /api/workset-create HTTP/1.1
> Host: localhost:4040
> User-Agent: curl/7.55.1
> Accept: */*
> Content-Type: application/json
> Content-Length: 399
>
* upload completely sent off: 399 out of 399 bytes
< HTTP/1.1 200 OK
< Content-Location: /api/model/_201208171604590148_/workset/auto_name_set_of_parameters_2020_05_01_15_22_54_807
< Content-Type: application/json
< Date: Fri, 01 May 2020 19:22:54 GMT
< Content-Length: 165
<
{"SetId":142,"BaseRunId":101,"ModelId":1,"Name":"auto_name_set_of_parameters_2020_05_01_15_22_54_807","IsReadonly":false,"UpdateDateTime":"2020-05-01 15:22:54.809"
}
* Connection #0 to host localhost left intact

Example 4:

{
 "ModelName": "modelOne",
 "ModelDigest": "_201208171604590148_",
 "Name": "NewSet",
 "IsReadonly": true,
 "Txt": [
 {
 "LangCode": "EN",
 "Descr": "New Set of model One parameters"
 },
 {
 "LangCode": "FR",
 "Descr": "(FR) New Set of model One parameters",
 "Note": "(FR) Note for New Set of model One parameters"
 }
],
 "Param": [
 {
 "Name": "ageSex",
 "SubCount": 1,
 "DefaultSubId": 0,
 "Txt": [
 {
 "LangCode": "EN",
 "Note": "Age by Sex new set of values"
 },
 {
 "LangCode": "FR",
 "Note": "(FR) Age by Sex new set of values"
 }

 }
],
 "Value": [
 {"Dims": ["10-20","M"], "IsNull": false, "Value": 0.1, "SubId": 0},
 {"Dims": ["10-20","F"], "IsNull": false, "Value": 0.2, "SubId": 0},
 {"Dims": ["20-30","M"], "IsNull": false, "Value": 0.3, "SubId": 0},
 {"Dims": ["20-30","F"], "IsNull": false, "Value": 0.4, "SubId": 0},
 {"Dims": ["30-40","M"], "IsNull": false, "Value": 0.5, "SubId": 0},
 {"Dims": ["30-40","F"], "IsNull": false, "Value": 0.6, "SubId": 0},
 {"Dims": ["40+","M"], "IsNull": false, "Value": 0.7, "SubId": 0},
 {"Dims": ["40+","F"], "IsNull": false, "Value": 0.8, "SubId": 0}
]
 },
 {
 "Name": "salaryAge",
 "SubCount": 1,
 "DefaultSubId": 0,
 "Txt": [
 {
 "LangCode": "EN",
 "Note": "Salary by Age new set of values"
 },
 {
 "LangCode": "FR",
 "Note": "(FR) Salary by Age new set of values"
 }
],
 "Value": [
 {"Dims": ["L","10-20"], "IsNull": false, "Value": 10, "SubId": 0},
 {"Dims": ["L","20-30"], "IsNull": false, "Value": 20, "SubId": 0},
 {"Dims": ["L","30-40"], "IsNull": false, "Value": 30, "SubId": 0},
 {"Dims": ["L","40+"], "IsNull": false, "Value": 40, "SubId": 0},
 {"Dims": ["M","10-20"], "IsNull": false, "Value": 11, "SubId": 0},
 {"Dims": ["M","20-30"], "IsNull": false, "Value": 21, "SubId": 0},
 {"Dims": ["M","30-40"], "IsNull": false, "Value": 31, "SubId": 0},
 {"Dims": ["M","40+"], "IsNull": false, "Value": 41, "SubId": 0},
 {"Dims": ["H","10-20"], "IsNull": false, "Value": 12, "SubId": 0},
 {"Dims": ["H","20-30"], "IsNull": false, "Value": 22, "SubId": 0},
 {"Dims": ["H","30-40"], "IsNull": false, "Value": 32, "SubId": 0},
 {"Dims": ["H","40+"], "IsNull": false, "Value": 42, "SubId": 0}
]
 },
 {
 "Name": "StartingSeed",
 "SubCount": 1,
 "DefaultSubId": 0,
 "Txt": [
 {
 "LangCode": "EN",
 "Note": "Starting seed new set of value"
 }
],
 "Value": [
 {"Dims": [], "IsNull": false, "Value": 8191, "SubId": 0}
]
 },
 {
 "Name": "salaryFull",
 "SubCount": 4,
 "DefaultSubId": 3,
 "Txt": [
 {
 "LangCode": "EN",
 "Note": "Full or part time by Salary new set of values"
 }
],
 "Value": [
 {"Dims": ["L"], "IsNull": false, "Value": "Part", "SubId": 0},
 {"Dims": ["M"], "IsNull": false, "Value": "Full", "SubId": 0},
 {"Dims": ["H"], "IsNull": false, "Value": "Full", "SubId": 0},
 {"Dims": ["L"], "IsNull": false, "Value": "Part", "SubId": 1},
 {"Dims": ["M"], "IsNull": false, "Value": "Part", "SubId": 1},
 {"Dims": ["H"], "IsNull": false, "Value": "Part", "SubId": 1},
 {"Dims": ["L"], "IsNull": false, "Value": "Full", "SubId": 2},
 {"Dims": ["M"], "IsNull": false, "Value": "Full", "SubId": 2},
 {"Dims": ["H"], "IsNull": false, "Value": "Full", "SubId": 2},
 {"Dims": ["L"], "IsNull": false, "Value": "Full", "SubId": 3},
 {"Dims": ["M"], "IsNull": false, "Value": "Full", "SubId": 3},
 {"Dims": ["H"], "IsNull": false, "Value": "Part", "SubId": 3}
]
 },
 {
 "Name": "baseSalary",
 "SubCount": 4,
 "DefaultSubId": 3,
 "Txt": [],
 "Value": [
 {"Dims": [],"IsNull": false, "Value": "Full", "SubId": 0},

 {"Dims": [],"IsNull": false, "Value": "Full", "SubId": 0},
 {"Dims": [],"IsNull": false, "Value": "Part", "SubId": 1},
 {"Dims": [],"IsNull": false, "Value": "Full", "SubId": 2},
 {"Dims": [],"IsNull": false, "Value": "Part", "SubId": 3}
]
 },
 {
 "Name": "filePath",
 "SubCount": 4,
 "DefaultSubId": 3,
 "Txt": [],
 "Value": [
 {"Dims": [], "IsNull": false, "Value": "file 0 path", "SubId": 0},
 {"Dims": [], "IsNull": false, "Value": "file 1 path", "SubId": 1},
 {"Dims": [], "IsNull": false, "Value": "file 2 path", "SubId": 2},
 {"Dims": [], "IsNull": false, "Value": "file 3 path", "SubId": 3}
]
 },
 {
 "Name": "isOldAge",
 "SubCount": 4,
 "DefaultSubId": 3,
 "Txt": [
 {
 "LangCode": "EN",
 "Note": "Is old age new set of values"
 }
],
 "Value": [
 {"Dims": ["10-20"], "IsNull": false, "Value": false, "SubId": 0},
 {"Dims": ["20-30"], "IsNull": false, "Value": false, "SubId": 0},
 {"Dims": ["30-40"], "IsNull": false, "Value": false, "SubId": 0},
 {"Dims": ["40+"], "IsNull": false, "Value": true, "SubId": 0},
 {"Dims": ["10-20"], "IsNull": false, "Value": false, "SubId": 1},
 {"Dims": ["20-30"], "IsNull": false, "Value": false, "SubId": 1},
 {"Dims": ["30-40"], "IsNull": false, "Value": false, "SubId": 1},
 {"Dims": ["40+"], "IsNull": false, "Value": true, "SubId": 1},
 {"Dims": ["10-20"], "IsNull": false, "Value": false, "SubId": 2},
 {"Dims": ["20-30"], "IsNull": false, "Value": false, "SubId": 2},
 {"Dims": ["30-40"], "IsNull": false, "Value": false, "SubId": 2},
 {"Dims": ["40+"], "IsNull": false, "Value": true, "SubId": 2},
 {"Dims": ["10-20"], "IsNull": false, "Value": false, "SubId": 3},
 {"Dims": ["20-30"], "IsNull": false, "Value": false, "SubId": 3},
 {"Dims": ["30-40"], "IsNull": false, "Value": false, "SubId": 3},
 {"Dims": ["40+"], "IsNull": false, "Value": true, "SubId": 3}
]
 }
]
}

Create new or replace existing model workset metadata, parameter(s) metadata and parameter(s) values.

Workset is a set of model input parameters (a.k.a. "scenario" input).

Workset can be used to run the model.

Workset is uniquely identified by name (in model context).

Workset must be read-only in order to run the model with this set of input parameters.

If user want to edit this set input parameters it must be read-write (not read-only status).

This method replace workset metadata, parameter(s) metadata and parameter(s) values from multipart-form, expected multipart form parts:

first workset part with workset metadata and parameters metadata in json

optional multiple parts file-csv=parameterName.csv.

If no such workset exist in database then new workset created.

If workset name not specified or empty then new workset created with unique name.

If workset already exist then it is delete-insert operation:

existing metadata, parameter list, parameter metadata and parameter values deleted from database;

new metadata, parameters metadata and parameters values inserted.

For each parameter in the parameter list csv parameter values must be supplied. Workset cannot contain parameter metadata only, it must have
parameter values as parameter.csv part.

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

Workset is uniquely identified by name (inside the model). Different models can have worksets with same name, i.e. each model can have
workset with name "Default".

This is a beta version and may change in the future.

Method:

PUT /api/workset-replace

For example:

curl -v -X PUT -F "workset=@test.json" http://localhost:4040/api/workset-replace
curl -v -X PUT -F "workset=@test.json" -F "parameter-csv=@new_ageSex.csv;filename=ageSex.csv" http://localhost:4040/api/workset-replace

JSON arguments:

It is expected to be same JSON as return of Get Workset Metadata in All Languages method.

For example (test.json file):

PUT create or replace workset

{
 "ModelName": "modelOne",
 "ModelDigest": "_201208171604590148_",
 "Name": "modelOne_set2",
 "BaseRunDigest": "",
 "IsReadonly": false,
 "Txt": [{
 "LangCode": "EN",
 "Descr": "modelOne modified set of parameters",
 "Note": ""
 }, {
 "LangCode": "FR",
 "Descr": "(FR) modelOne modified set of parameters",
 "Note": "(FR) modelOne workset notes"
 }
],
 "Param": [{
 "Name": "ageSex",
 "SubCount": 1,
 "DefaultSubId": 0,
 "Txt": [{
 "LangCode": "EN",
 "Note": "Age by Sex modified values"
 }, {
 "LangCode": "FR",
 "Note": "(FR) Age by Sex modified values"
 }
]
 }
]
}

Each parameter.csv part expected to be same as return of methods:

GET parameter values from model run

GET parameter values from workset

For example (new_ageSex.csv file):

sub_id,dim0,dim1,param_value
0,10-20,M,1.1
0,10-20,F,1.2
0,20-30,M,1.3
0,20-30,F,1.4
0,30-40,M,1.5
0,30-40,F,1.6
0,40+,M,1.7
0,40+,F,1.8

JSON response:

{
 "SetId": 142,
 "BaseRunId": 101,
 "ModelId": 1,
 "Name": "auto_name_set_of_parameters_2020_05_01_15_22_54_807",
 "IsReadonly": false,
 "UpdateDateTime": "2020-05-01 15:22:54.809"
}

Create new or merge existing model workset metadata, parameter(s) metadata and replace parameter(s) values.

Workset is a set of model input parameters (a.k.a. "scenario" input).

Workset can be used to run the model.

Workset is uniquely identified by name (in model context).

Workset must be read-only in order to run the model with this set of input parameters.

If user want to edit this set input parameters it must be read-write (not read-only status).

This method merge workset metadata, parameter(s) metadata and parameter(s) values from multipart-form, expected multipart form parts:

first workset part with workset metadata and parameters metadata in json

optional multiple parts file-csv=parameterName.csv.

First part must have model digest or name and workset name:

if no such workset exist in database then new workset created.

if workset already exist then merge existing workset metadata with new.

if workset name not specified or empty then new workset created with unique name.

Parameter list merged with existing workset parameter list:

if parameter exist in workset then parameter metadata merged.

if new parameter values supplied then replace parameter values.

if parameter not already exist in workset then parameter values must be supplied.

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

Workset is uniquely identified by name (inside the model). Different models can have worksets with same name, i.e. each model can have
workset with name "Default".

This is a beta version and may change in the future.

Method:

PATCH /api/workset-merge

For example:

curl -v -X PATCH -F "workset=@test.json" http://localhost:4040/api/workset-merge
curl -v -X PATCH -F "workset=@test.json" -F "parameter-csv=@new_ageSex.csv;filename=ageSex.csv" http://localhost:4040/api/workset-merge

JSON arguments:

It is expected to be same JSON as return of Get Workset Metadata in All Languages method.

For example (test.json file):

PATCH create or merge workset

{
 "ModelName": "modelOne",
 "ModelDigest": "_201208171604590148_",
 "Name": "modelOne_set2",
 "BaseRunDigest": "",
 "IsCleanBaseRun": true,
 "IsReadonly": false,
 "Txt": [{
 "LangCode": "EN",
 "Descr": "modelOne modified set of parameters",
 "Note": ""
 }, {
 "LangCode": "FR",
 "Descr": "(FR) modelOne modified set of parameters",
 "Note": "(FR) modelOne workset notes"
 }
],
 "Param": [{
 "Name": "ageSex",
 "SubCount": 1,
 "Txt": [{
 "LangCode": "EN",
 "Note": "Age by Sex modified values"
 }, {
 "LangCode": "FR",
 "Note": "(FR) Age by Sex modified values"
 }
]
 }
]
}

Use "IsCleanBaseRun": true and "BaseRunDigest": "" if you want to update base run to empty NULL value. Use only "BaseRunDigest": "" if you do not want
to update base run.

Each parameter.csv part expected to be same as return of methods:

GET parameter values from model run

GET parameter values from workset

For example (new_ageSex.csv file):

sub_id,dim0,dim1,param_value
0,10-20,M,1.1
0,10-20,F,1.2
0,20-30,M,1.3
0,20-30,F,1.4
0,30-40,M,1.5
0,30-40,F,1.6
0,40+,M,1.7
0,40+,F,1.8

JSON response:

{
 "SetId": 142,
 "BaseRunId": 101,
 "ModelId": 1,
 "Name": "auto_name_set_of_parameters_2020_05_01_15_22_54_807",
 "IsReadonly": false,
 "UpdateDateTime": "2020-05-01 15:22:54.809"
}

Delete model workset and workset parameter(s) values from database.

Workset is a set of model input parameters (a.k.a. "scenario" input). Workset can be used to run the model.

Method:

DELETE /api/model/:model/workset/:set

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

:set - (required) workset name

Workset is uniquely identified by name (inside the model). Different models can have worksets with same name, i.e. each model can have
workset with name "Default".

Call examples:

curl -v -X DELETE http://localhost:4040/api/model/modelOne/workset/modelOne_set2
curl -v -X DELETE http://localhost:4040/api/model/_201208171604590148_/workset/modelOne_set2

curl -v -X DELETE http://localhost:4040/api/model/modelOne/workset/modelOne_set2

* Trying ::1...
* TCP_NODELAY set
* Trying 127.0.0.1...
* TCP_NODELAY set
* Connected to localhost (127.0.0.1) port 4040 (#0)
> DELETE /api/model/modelOne/workset/modelOne_set2 HTTP/1.1
> Host: localhost:4040
> User-Agent: curl/7.54.1
> Accept: */*
>
< HTTP/1.1 200 OK
< Location: /api/model/modelOne/workset/modelOne_set2
< Date: Tue, 19 Dec 2017 03:10:16 GMT
< Content-Length: 0
< Content-Type: text/plain; charset=utf-8
<
* Connection #0 to host localhost left intact

DELETE workset

Delete multiple worksets and workset parameter(s) values from database.

Workset is a set of model input parameters (a.k.a. "scenario" input). Workset can be used to run the model.

Method:

POST /api/model/:model/delete-worksets

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

JSON body request:

Array of workset names to delete, for example:

[
 "modelOne_partial",
 "modelOne_other"
]

Workset is uniquely identified by name (inside the model). Different models can have worksets with same name, i.e. each model can have
workset with name "Default".

Call example:

curl -v -X POST -H "Content-Type: application/json" http://localhost:4040/api/model/modelOne/delete-worksets -d @del_m1_ws_lst.json

Note: Unnecessary use of -X or --request, POST is already inferred.
* Trying [::1]:4040...
* Connected to localhost (::1) port 4040
> POST /api/model/modelOne/delete-worksets HTTP/1.1
> Host: localhost:4040
> User-Agent: curl/8.4.0
> Accept: */*
> Content-Type: application/json
> Content-Length: 96
>
< HTTP/1.1 200 OK
< Content-Location: /api/model/modelOne//delete-worksets/2
< Content-Type: text/plain
< Date: Wed, 24 Jan 2024 04:49:52 GMT
< Content-Length: 0
<
* Connection #0 to host localhost left intact

POST delete multiple worksets

Delete parameter from workset: delete workset parameter metadata and parameter valuesfrom database.

Workset is a set of model input parameters (a.k.a. "scenario" input). Workset can be used to run the model.

Method:

DELETE /api/model/:model/workset/:set/parameter/:name

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

:set - (required) workset name

Workset is uniquely identified by name (inside the model). Different models can have worksets with same name, i.e. each model can have
workset with name "Default".

:name - (required) parameter name

Call examples:

curl -v -X DELETE http://localhost:4040/api/model/modelOne/workset/modelOne_set2/parameter/ageSex
curl -v -X DELETE http://localhost:4040/api/model/_201208171604590148_/workset/modelOne_set2/parameter/ageSex

curl -v -X DELETE http://localhost:4040/api/model/modelOne/workset/modelOne_set2/parameter/ageSex

* Trying ::1...
* TCP_NODELAY set
* Trying 127.0.0.1...
* TCP_NODELAY set
* Connected to localhost (127.0.0.1) port 4040 (#0)
> DELETE /api/model/modelOne/workset/modelOne_set2/parameter/ageSex HTTP/1.1
> Host: localhost:4040
> User-Agent: curl/7.54.1
> Accept: */*
>
< HTTP/1.1 200 OK
< Location: /api/model/modelOne/workset/modelOne_set2/parameter/ageSex
< Date: Fri, 22 Dec 2017 03:16:54 GMT
< Content-Length: 0
< Content-Type: text/plain; charset=utf-8
<
* Connection #0 to host localhost left intact

DELETE parameter from workset

Update existing parameter values in workset.

Workset is a set of model input parameters (a.k.a. "scenario" input). Workset can be used to run the model.

This method replace existing parameter values by new values. Typical use of this method is a parameter editing through UI when only small part
of parameter rows replaced. Input data are json-encoded and expected to be same as Page part of JSON return from Read parameter values
from workset method.

Dimension(s) and enum-based parameter values expected as enum codes.

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

Workset is uniquely identified by name (inside the model). Different models can have worksets with same name, i.e. each model can have
workset with name "Default".

This is a beta version and may change in the future.

Method:

PATCH /api/model/:model/workset/:set/parameter/:name/new/value

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

:set - (required) workset name

Workset is uniquely identified by name (inside the model). Different models can have worksets with same name, i.e. each model can have
workset with name "Default".

:name - (required) parameter name

Call examples:

curl -v -X PATCH -H "Content-Type: application/json" http://localhost:4040/api/model/modelOne/workset/modelOne_set/parameter/ageSex/new/value -d @test.json
curl -v -X PATCH -H "Content-Type: application/json" http://localhost:4040/api/model/_201208171604590148_/workset/modelOne_set/parameter/ageSex/new/value -d @test.json

JSON body:

It is expected to be same as Page part of JSON return from Read parameter values from workset method.

For example (test.json file):

[
{"Dims":["10-20","M"],"IsNull":false,"Value":1234.1,"SubId":0}
,{"Dims":["10-20","F"],"IsNull":false,"Value":5678.2,"SubId":0}
]

PATCH update workset parameter values

Update existing parameter values in workset.

Workset is a set of model input parameters (a.k.a. "scenario" input). Workset can be used to run the model.

This method replace existing parameter values by new values. Typical use of this method is a parameter editing through UI when only small part
of parameter rows replaced. Input data are json-encoded and expected to be the same as Page part of JSON return from Read parameter values
from workset (enum id's) method.

Dimension(s) and enum-based parameter values expected as enum id, not enum codes.

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

Workset is uniquely identified by name (inside the model). Different models can have worksets with same name, i.e. each model can have
workset with name "Default".

This is a beta version and may change in the future.

Method:

PATCH /api/model/:model/workset/:set/parameter/:name/new/value-id

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

:set - (required) workset name

Workset is uniquely identified by name (inside the model). Different models can have worksets with same name, i.e. each model can have
workset with name "Default".

:name - (required) parameter name

Call examples:

curl -v -X PATCH -H "Content-Type: application/json" http://localhost:4040/api/model/modelOne/workset/modelOne_set/parameter/ageSex/new/value-id -d @test.json
curl -v -X PATCH -H "Content-Type: application/json" http://localhost:4040/api/model/_201208171604590148_/workset/modelOne_set/parameter/ageSex/new/value-id -d @test.json

JSON body:

It is expected to be same as Page part of JSON return from Read parameter values from workset (enum id's) method.

For example (test.json file):

[
{"DimIds":[10,0],"IsNull":false,"Value":9876.1,"SubId":0}
,{"DimIds":[10,1],"IsNull":false,"Value":5432.2,"SubId":0}
]

PATCH update workset parameter values (enum id's)

Update parameter(s) value notes in workset.

Workset is a set of model input parameters (a.k.a. "scenario" input). Workset can be used to run the model.

This method merge (insert new or update existing) parameter(s) value notes in workset. Input data are json-encoded array of parameters, similat
to the Param array part of JSON return from GET workset including text in all languages method.

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model.

Workset is uniquely identified by name (inside the model). Different models can have worksets with same name, i.e. each model can have
workset with name "Default".

Workset must be in read-write state (editable) otherwise error returned.

Each input element of parameters value notes array must have parameter Name and can have optional Txt array with LangCode and Note

properties for each element. For example:

[
 {
 "Name": "ageSex",
 "Txt": [
 {
 "LangCode": "EN",
 "Note": "Age by Sex Default values"
 },
 {
 "LangCode": "FR",
 "Note": "Valeurs par défaut de l'âge par sexe"
 }
]
 },
 {
 "Name": "salaryAge",
 "Txt": [
 {
 "LangCode": "EN",
 "Note": "Salary by Age default values"
 },
 {
 "LangCode": "FR",
 "Note": "Salaire par âge valeurs par défaut"
 }
]
 }
]

Parameter Name must be one of the name of workset parameter (parameter already included in workset). If parameter does not included in
workset then error returned.

LangCode must be one of model alguage codes or dialect of such, for example, it can be fr-CA or fr-FR if model has FR language. Note value
can be empty.

If parameter value notes already exist for such parameter Name and LngCode then it will be replaced with new Note value. If there is no such
parameter note then new value will be inserted.

This is a beta version and may change in the future.

Method:

PATCH /api/model/:model/workset/:set/parameter-text

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

PATCH update workset parameter(s) value notes

:set - (required) workset name

Workset is uniquely identified by name (inside the model). Different models can have worksets with same name, i.e. each model can have
workset with name "Default".

JSON arguments:

It is expected to be same JSON as return of Get Workset Metadata in All Languages method.

For example (test.json file):

[{
 "Name": "ageSex",
 "Txt": [{
 "LangCode": "EN",
 "Note": "new value notes Age by Sex"
 }, {
 "LangCode": "FR",
 "Note": "nouvelles notes de valeur Âge par sexe"
 }
]
 }, {
 "Name": "StartingSeed",
 "Txt": [{
 "LangCode": "EN",
 "Note": "new value notes Starting seed"
 }
]
 }, {
 "Name": "baseSalary",
 "Txt": [{
 "LangCode": "EN",
 "Note": "new value notes Base Salary"
 }
]
 }
]

Call examples:

curl -v -X PATCH -H "Content-Type: application/json" http://localhost:4040/api/model/modelOne/workset/Default/parameter-text -d @test.json
curl -v -X PATCH -H "Content-Type: application/json" http://localhost:4040/api/model/_201208171604590148_/workset/Default/parameter-text -d @test.json

Output example:

* Connected to localhost (::1) port 4040 (#0)
> PATCH /api/model/_201208171604590148_/workset/Default/parameter-text HTTP/1.1
> Host: localhost:4040
> User-Agent: curl/7.55.1
> Accept: */*
> Content-Type: application/json
> Content-Length: 469
>
* upload completely sent off: 469 out of 469 bytes
< HTTP/1.1 200 OK
< Content-Location: /api/model/_201208171604590148_/workset/Default/parameter-text
< Content-Type: text/plain
< Date: Tue, 26 Oct 2021 02:34:21 GMT
< Content-Length: 0
<
* Connection #0 to host localhost left intact

Copy and insert new parameter values and parameter value notes from model run into workset.

If parameter with that name already exist in workset then error returned. There is similar method PATCH merge parameter from model run into
workset which does insert new or replace existing parameter.

Workset is a set of model input parameters (a.k.a. "scenario" input).

Workset can be used to run the model.

Workset must be read-only in order to run the model with this set of input parameters.

If user want to edit this set input parameters it must be read-write (not read-only status).

Method:

PUT /api/model/:model/workset/:set/copy/parameter/:name/from-run/:run

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

:set - (required) workset name

Workset is uniquely identified by name (inside the model). Different models can have worksets with same name, i.e. each model can have
workset with name "Default". Destination workset must be in read-write state (editable), use POST update workset read-only status method to
make workset editable.

:name - (required) parameter name

If parameter with that name already exist in workset then error returned. You can delete parameter from workset by DELETE parameter from
workset method.

:run - (required) model run digest, run stamp or run name

Model run can be identified by run digest, run stamp or run name. It is recommended to use digest because it is uniquely identifies model run.
Run stamp, if not explicitly specified as model run option, automatically generated as timestamp string, ex.: 2016_08_17_21_07_55_123. It is
also possible to use name, which is more human readable than digest, but if there are multiple runs with same name in database than result is
undefined.

Call examples:

curl -v -X PUT http://localhost:4040/api/model/modelOne/workset/set2/copy/parameter/ageSex/from-run/Default-4
curl -v -X PUT http://localhost:4040/api/model/_201208171604590148_/workset/set2/copy/parameter/ageSex/from-run/6fbad822cb9ae42deea1ede626890711
curl -v -X PUT http://localhost:4040/api/model/modelOne/workset/set2/copy/parameter/ageSex/from-run/2019_01_17_19_59_52_998

PUT copy parameter from model run into workset

curl -v -X PUT http://localhost:4040/api/model/modelOne/workset/set2/copy/parameter/ageSex/from-run/Default-4

* Trying ::1...
* TCP_NODELAY set
* Trying 127.0.0.1...
* TCP_NODELAY set
* Connected to localhost (127.0.0.1) port 4040 (#0)
> PUT /api/model/modelOne/workset/set2/copy/parameter/ageSex/from-run/Default-4 HTTP/1.1
> Host: localhost:4040
> User-Agent: curl/7.54.1
> Accept: */*
>
< HTTP/1.1 200 OK
< Content-Location: /api/model/modelOne/workset/set2/parameter/ageSex
< Date: Mon, 31 Dec 2018 19:34:21 GMT
< Content-Length: 0
<
* Connection #0 to host localhost left intact

Copy and insert or replace parameter values and parameter value notes from model run into workset.

If parameter with that name already exist in workset then existing values and parameter metadata replaced by new copy from model run. There is
similar method PUT copy parameter from model run into workset which returns error if parameter already exist in workset.

Workset is a set of model input parameters (a.k.a. "scenario" input).

Workset can be used to run the model.

Workset must be read-only in order to run the model with this set of input parameters.

If user want to edit this set input parameters it must be read-write (not read-only status).

Method:

PATCH /api/model/:model/workset/:set/merge/parameter/:name/from-run/:run

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

:set - (required) workset name

Workset is uniquely identified by name (inside the model). Different models can have worksets with same name, i.e. each model can have
workset with name "Default". Destination workset must be in read-write state (editable), use POST update workset read-only status method to
make workset editable.

:name - (required) parameter name

If parameter with that name already exist in workset then it is delete and insert operation: existing parameter values and metadata will be
replaced by copy from model run.

:run - (required) model run digest, run stamp or run name

Model run can be identified by run digest, run stamp or run name. It is recommended to use digest because it is uniquely identifies model run.
Run stamp, if not explicitly specified as model run option, automatically generated as timestamp string, ex.: 2016_08_17_21_07_55_123. It is
also possible to use name, which is more human readable than digest, but if there are multiple runs with same name in database than result is
undefined.

Call examples:

curl -v -X PATCH http://localhost:4040/api/model/modelOne/workset/NewSet/merge/parameter/salaryFull/from-run/Default-4
curl -v -X PATCH http://localhost:4040/api/model/_201208171604590148_/workset/NewSet/merge/parameter/salaryFull/from-run/3356660729aaaaccf04f1699248c4355
curl -v -X PATCH http://localhost:4040/api/model/modelOne/workset/NewSet/merge/parameter/salaryFull/from-run/2021_10_04_21_19_18_975

PATCH merge parameter from model run into workset

curl -v -X PATCH http://localhost:4040/api/model/modelOne/workset/NewSet/merge/parameter/salaryFull/from-run/Default-4

* Trying ::1...
* TCP_NODELAY set
* Connected to localhost (::1) port 4040 (#0)
> PATCH /api/model/modelOne/workset/NewSet/merge/parameter/salaryFull/from-run/Default-4 HTTP/1.1
> Host: localhost:4040
> User-Agent: curl/7.55.1
> Accept: */*
>
< HTTP/1.1 200 OK
< Content-Location: /api/model/modelOne/workset/NewSet/parameter/salaryFull
< Content-Type: text/plain
< Date: Sat, 30 Oct 2021 03:36:11 GMT
< Content-Length: 0
<
* Connection #0 to host localhost left intact

Copy and insert new parameter values and parameter value notes from one workset to another.

If parameter with that name already exist in workset then error returned. There is similar method PATCH merge parameter from workset to
another which does insert new or replace existing parameter.

Workset is a set of model input parameters (a.k.a. "scenario" input).

Workset can be used to run the model.

Workset must be read-only in order to run the model with this set of input parameters.

If user want to edit this set input parameters it must be read-write (not read-only status).

Method:

PUT /api/model/:model/workset/:set/copy/parameter/:name/from-workset/:from-set

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

:set - (required) destination workset name

Workset is uniquely identified by name (inside the model). Different models can have worksets with same name, i.e. each model can have
workset with name "Default". Destination workset must be in read-write state (editable), use POST update workset read-only status method to
make workset editable.

:name - (required) parameter name

If parameter with that name already exist in workset then error returned. You can delete parameter from workset by DELETE parameter from
workset method.

:from-set - (required) source workset name

Source workset must be in read-only state.

Call examples:

curl -v -X PUT http://localhost:4040/api/model/modelOne/workset/set2/copy/parameter/ageSex/from-workset/modelOne_other
curl -v -X PUT http://localhost:4040/api/model/_201208171604590148_/workset/set2/copy/parameter/ageSex/from-workset/modelOne_other

curl -v -X PUT http://localhost:4040/api/model/modelOne/workset/set2/copy/parameter/ageSex/from-workset/modelOne_other

* Trying ::1...
* TCP_NODELAY set
* Trying 127.0.0.1...
* TCP_NODELAY set
* Connected to localhost (127.0.0.1) port 4040 (#0)
> PUT /api/model/modelOne/workset/set2/copy/parameter/ageSex/from-workset/modelOne_other HTTP/1.1
> Host: localhost:4040
> User-Agent: curl/7.54.1
> Accept: */*
>
< HTTP/1.1 200 OK
< Content-Location: /api/model/modelOne/workset/set2/parameter/ageSex
< Date: Mon, 31 Dec 2018 19:50:05 GMT
< Content-Length: 0
<
* Connection #0 to host localhost left intact

PUT copy parameter from workset to another

Copy and insert or replace parameter values and parameter value notes from one workset to another.

If parameter with that name already exist in workset then existing values and parameter metadata replaced by new copy from source workset.
There is similar method PUT copy parameter from workset to another which returns error if parameter already exist in workset.

Workset is a set of model input parameters (a.k.a. "scenario" input).

Workset can be used to run the model.

Workset must be read-only in order to run the model with this set of input parameters.

If user want to edit this set input parameters it must be read-write (not read-only status).

Method:

PATCH /api/model/:model/workset/:set/merge/parameter/:name/from-workset/:from-set

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

:set - (required) destination workset name

Workset is uniquely identified by name (inside the model). Different models can have worksets with same name, i.e. each model can have
workset with name "Default". Destination workset must be in read-write state (editable), use POST update workset read-only status method to
make workset editable.

:name - (required) parameter name

If parameter with that name already exist in workset then it is delete and insert operation: existing parameter values and metadata will be
replaced by copy from source workset.

:from-set - (required) source workset name

Source workset must be in read-only state.

Call examples:

curl -v -X PATCH http://localhost:4040/api/model/modelOne/workset/NewSet/merge/parameter/salaryFull/from-workset/Default

* Connected to localhost (::1) port 4040 (#0)
> PATCH /api/model/modelOne/workset/NewSet/merge/parameter/salaryFull/from-workset/Default HTTP/1.1
> Host: localhost:4040
> User-Agent: curl/7.55.1
> Accept: */*
>
< HTTP/1.1 200 OK
< Content-Location: /api/model/modelOne/workset/NewSet/parameter/salaryFull
< Content-Type: text/plain
< Date: Sat, 30 Oct 2021 02:59:59 GMT
< Content-Length: 0
<
* Connection #0 to host localhost left intact

PATCH merge parameter from workset to another

Merge (add new or update existing) model run text (description and notes and run parameters value notes.

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

Model run must be completed (successfully or with error) before you can modify run text description or notes. If model run still in progress then
error returned.

This is a beta version and may change in the future.

Method:

PATCH /api/run/text

For example:

curl -v -X PATCH -H "Content-Type: application/json" http://localhost:4040/api/run/text -d @test.json

JSON arguments:

It is expected to be same JSON as return of GET run including text in all languages method.

Only following parts are used from input json:

model digest or model name

run digest, run stamp or run name

run text language code, description and notes

parameter value text language code and notes Any other parts on json body are silently ignored because it is not possible to modify model
run data, only run text (dexcription and notes) can be updated.

For example (test.json file):

{
 "ModelName": "modelOne",
 "ModelDigest": "_201208171604590148_",
 "Name": "Default-4",
 "Digest": "05403de52f30f59b050417561914fbb8",
 "Txt": [
 {
 "LangCode": "EN",
 "Descr": "UPDATED Model One default set of parameters",
 "Note": "UPDATED Note"
 }
],
 "Param": [
 {
 "Name": "ageSex",
 "Txt": [
 {
 "LangCode": "EN",
 "Note": "UPDATED Age by Sex default values"
 }
]
 },
 {
 "Name": "salaryAge",
 "Txt": [
 {
 "LangCode": "EN",
 "Note": "UPDATED Salary by Age default values"
 }
]
 }
]
}

PATCH update model run text (description and notes)

Delete model run results from database, including output table values, input parameters and microdata.

Method:

DELETE /api/model/:model/run/:run

This method is asynchronous: it starts run delete return a response immediately. You need to check the results later by using GET status of
model run or GET list of model runs or other methods to make sure that particular model run deleted and no longer exist in the list of model runs.

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

:run - (required) model run digest, run stamp or run name

Model run can be identified by run digest, run stamp or run name. It is recommended to use digest because it is uniquely identifies model run.
Run stamp, if not explicitly specified as model run option, automatically generated as timestamp string, ex.: 2016_08_17_21_07_55_123. It is
also possible to use name, which is more human readable than digest, but if there are multiple runs with same name in database than result is
undefined.

Call examples:

curl -v -X DELETE http://localhost:4040/api/model/modelOne/run/Default-4
curl -v -X DELETE http://localhost:4040/api/model/_201208171604590148_/run/05403de52f30f59b050417561914fbb8
curl -v -X DELETE http://localhost:4040/api/model/modelOne/run/2019_01_17_19_59_52_998

curl -v -X DELETE http://localhost:4040/api/model/modelOne/unlink/run/Default-4

curl -v -X DELETE http://localhost:4040/api/model/modelOne/run/Default-4
* Trying ::1...
* TCP_NODELAY set
* Connected to localhost (::1) port 4040 (#0)
> DELETE /api/model/modelOne/run/Default-4 HTTP/1.1
> Host: localhost:4040
> User-Agent: curl/7.54.1
> Accept: */*
>
< HTTP/1.1 200 OK
< Content-Location: /api/model/modelOne/run/Default-4
< Date: Fri, 11 Jan 2019 02:25:48 GMT
< Content-Length: 0
<
* Connection #0 to host localhost left intact

DELETE model run

Delete multiple model runs from database, including output table values, input parameters and microdata.

Method:

POST /api/model/:model/delete-runs

This method is asynchronous: it starts runs delete return a response immediately. You need to check the results later by using GET list of model
runs or other methods to make sure model runs are deleted and no longer exist in the list of model runs.

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

JSON body request:

Array of model run digests, run stamps or run names, for example:

[
 "ae4546791da1b828a4fe0c0ca0935e7a",
 "2023_12_29_23_46_19_255",
 "First Task Run_modelOne_other",
 "Task Run with Suppressed Tables_modelOne_other"
]

Model run can be identified by run digest, run stamp or run name. It is recommended to use digest because it is uniquely identifies model run.
Run stamp, if not explicitly specified as model run option, automatically generated as timestamp string, ex.: 2016_08_17_21_07_55_123. It is
also possible to use name, which is more human readable than digest, but if there are multiple runs with same name in database than result is
undefined.

Call example:

curl -v -X POST -H "Content-Type: application/json" http://localhost:4040/api/model/modelOne/delete-runs -d @del_m1_runs.json

Note: Unnecessary use of -X or --request, POST is already inferred.
* Trying [::1]:4040...
* Connected to localhost (::1) port 4040
> POST /api/model/modelOne/delete-runs HTTP/1.1
> Host: localhost:4040
> User-Agent: curl/8.4.0
> Accept: */*
> Content-Type: application/json
> Content-Length: 172
>
< HTTP/1.1 200 OK
< Content-Location: /api/model/modelOne/delete-runs/4
< Content-Type: text/plain
< Date: Wed, 24 Jan 2024 04:02:54 GMT
< Content-Length: 0
<
* Connection #0 to host localhost left intact

POST delete model runs

Update parameter(s) value notes in model run.

This method merge (insert new or update existing) parameter(s) value notes in model run. Input data are json-encoded array of parameters,
similat to the Param array part of JSON return from GET model run including text in all languages method.

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model.

Model run can be identified by run digest, run stamp or run name. It is recommended to use digest because it is uniquely identifies model run.

Each input element of parameters value notes array must have parameter Name and can have optional Txt array with LangCode and Note

properties for each element. For example:

[
 {
 "Name": "ageSex",
 "Txt": [
 {
 "LangCode": "EN",
 "Note": "Age by Sex Default values"
 },
 {
 "LangCode": "FR",
 "Note": "Valeurs par défaut de l'âge par sexe"
 }
]
 },
 {
 "Name": "salaryAge",
 "Txt": [
 {
 "LangCode": "EN",
 "Note": "Salary by Age default values"
 },
 {
 "LangCode": "FR",
 "Note": "Salaire par âge valeurs par défaut"
 }
]
 }
]

LangCode must be one of model alguage codes or dialect of such, for example, it can be fr-CA or fr-FR if model has FR language. Note value
can be empty.

If parameter value notes already exist for such parameter Name and LngCode then it will be replaced with new Note value. If there is no such
parameter note then new value will be inserted.

This is a beta version and may change in the future.

Method:

PATCH /api/model/:model/run/:run/parameter-text

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

:run - (required) model run digest, run stamp or run name

Model run can be identified by run digest, run stamp or run name. It is recommended to use digest because it is uniquely identifies model run.
Run stamp, if not explicitly specified as model run option, automatically generated as timestamp string, ex.: 2016_08_17_21_07_55_123. It is
also possible to use name, which is more human readable than digest, but if there are multiple runs with same name in database than result is
undefined.

JSON arguments:

PATCH update run parameter(s) value notes

It is expected to be same JSON as return of GET model run including text in all languages method.

For example (test.json file):

[{
 "Name": "ageSex",
 "Txt": [{
 "LangCode": "EN",
 "Note": "new value notes Age by Sex"
 }, {
 "LangCode": "FR",
 "Note": "nouvelles notes de valeur Âge par sexe"
 }
]
 }, {
 "Name": "StartingSeed",
 "Txt": [{
 "LangCode": "EN",
 "Note": "new value notes Starting seed"
 }
]
 }, {
 "Name": "baseSalary",
 "Txt": [{
 "LangCode": "EN",
 "Note": "new value notes Base Salary"
 }
]
 }
]

Call examples:

curl -v -X PATCH -H "Content-Type: application/json" http://localhost:4040/api/model/modelOne/run/Default-4/parameter-text -d @test.json
curl -v -X PATCH -H "Content-Type: application/json" http://localhost:4040/api/model/_201208171604590148_/run/3356660729aaaaccf04f1699248c4355/parameter-text -d @test.js
on

Output example:

* Connected to localhost (::1) port 4040 (#0)
> PATCH /api/model/_201208171604590148_/run/3356660729aaaaccf04f1699248c4355/parameter-text HTTP/1.1
> Host: localhost:4040
> User-Agent: curl/7.55.1
> Accept: */*
> Content-Type: application/json
> Content-Length: 469
>
* upload completely sent off: 469 out of 469 bytes
< HTTP/1.1 200 OK
< Content-Location: /api/model/_201208171604590148_/run/3356660729aaaaccf04f1699248c4355/parameter-text
< Content-Type: text/plain
< Date: Tue, 26 Oct 2021 02:48:34 GMT
< Content-Length: 0
<
* Connection #0 to host localhost left intact

Create new or replace existing modeling task definition: including task text (description and notes) and list of task input sets (worksets).

It does delete existing and insert new rows into task_txt and task_set db tables. If task does not exist then new task created by inserting into
task_lst table.

Following parts can be submitted as JSON body (see example below):

model name

model digest

task name

task text as array of: language code, description, notes

task input worksets as array of workset names

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

Task is uniquely identified by name (inside the model). Different models can have tasks with same name, i.e. each model can have task with
name "My First Task".

If task name not specified or empty then new task created with unique name.

Task input worksets must already exist in database: all workset names must exist in workset_lst table.

This is a beta version and may change in the future.

Method:

PUT /api/task-new

For example:

curl -v -X PUT -H "Content-Type: application/json" http://localhost:4040/api/task-new -d @test.json

JSON argument:

It is expected to be similar JSON return of GET task including text in all languages method. It can include only following parts of GET results:

Task.ModelName

Task.ModelDigest

Task.Name

Task.Txt

Task.Set

For example (test.json file):

PUT create or replace modeling task

{
 "ModelName": "modelOne",
 "ModelDigest": "_201208171604590148_",
 "Name": "task-2",
 "Txt": [{
 "LangCode": "EN",
 "Descr": "Task Two for Model One",
 "Note": "Task Two: two set of input parameters"
 }, {
 "LangCode": "FR",
 "Descr": "(FR) Task Two for Model One",
 "Note": ""
 }
],
 "Set": [
 "modelOne_other"
]
}

JSON response:

{
 "Name":"auto_name_task_2020_05_01_15_25_38_208"
}

Create new or merge existing modeling task definition: including task text (description and notes) and list of task input sets (worksets).

It does update existing or insert new rows into task_txt and task_set db tables. If task does not exist then new task created by inserting into
task_lst table.

Following parts can be submitted as JSON body (see example below):

model name

model digest

task name

task text as array of: language code, description, notes

task input worksets as array of workset names

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

Task is uniquely identified by name (inside the model). Different models can have tasks with same name, i.e. each model can have task with
name "My First Task".

If task name not specified or empty then new task created with unique name.

Task input worksets must already exist in database: all workset names must exist in workset_lst table.

This is a beta version and may change in the future.

Method:

PATCH /api/task

For example:

curl -v -X PATCH -H "Content-Type: application/json" http://localhost:4040/api/task -d @test.json

JSON argument:

It is expected to be similar JSON return of GET task including text in all languages method. It can include only following parts of GET results:

Task.ModelName

Task.ModelDigest

Task.Name

Task.Txt

Task.Set

For example (test.json file):

PATCH create or update modeling task

{
 "ModelName": "modelOne",
 "ModelDigest": "_201208171604590148_",
 "Name": "task-2",
 "Txt": [{
 "LangCode": "EN",
 "Descr": "UPDATED Task Two for Model One",
 "Note": "UPDATED Task Two: two set of input parameters"
 }, {
 "LangCode": "FR",
 "Descr": "(FR) Task Two for Model One",
 "Note": "UPDATED notes"
 }
],
 "Set": [
 "Default"
]
}

JSON response:

{
 "Name":"auto_name_task_2020_05_01_15_25_38_208"
}

Example:

curl -v -X PATCH -H "Content-Type: application/json" http://localhost:4040/api/task -d @task_t2_def_merge.json

* Trying ::1...
* TCP_NODELAY set
* Connected to localhost (::1) port 4040 (#0)
> PATCH /api/task HTTP/1.1
> Host: localhost:4040
> User-Agent: curl/7.55.1
> Accept: */*
> Content-Type: application/json
> Content-Length: 364
>
* upload completely sent off: 364 out of 364 bytes
< HTTP/1.1 200 OK
< Content-Location: /api/model/_201208171604590148_/task/auto_name_task_2020_05_01_15_25_38_208
< Content-Type: application/json
< Date: Fri, 01 May 2020 19:25:38 GMT
< Content-Length: 50
<
{"Name":"auto_name_task_2020_05_01_15_25_38_208"}
* Connection #0 to host localhost left intact

Delete modeling task and task run history from database.

Model run results are not deleted and model input parameter values are not deleted. Only task and task run history deleted. Delete done only
from task_lst, task_txt, task_set, task_run_lst and task_run_set db tables.

Method:

DELETE /api/model/:model/task/:task

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

:task - (required) modeling task name

Task is uniquely identified by name (inside the model). Different models can have tasks with same name, i.e. each model can have task with
name "My First Task".

Call examples:

curl -v -X DELETE http://localhost:4040/api/model/modelOne/task/task-2
curl -v -X DELETE http://localhost:4040/api/model/_201208171604590148_/task/task-2

curl -v -X DELETE http://localhost:4040/api/model/modelOne/task/task-2
* Trying ::1...
* TCP_NODELAY set
* Connected to localhost (::1) port 4040 (#0)
> DELETE /api/model/modelOne/task/task-2 HTTP/1.1
> Host: localhost:4040
> User-Agent: curl/7.54.1
> Accept: */*
>
< HTTP/1.1 200 OK
< Content-Location: /api/model/modelOne/task/task-2
< Date: Sat, 12 Jan 2019 00:50:07 GMT
< Content-Length: 0
<
* Connection #0 to host anatolyv17om left intact

DELETE modeling task

Start new model run.

This is a beta version and may change in the future.

Method:

POST /api/run

For example:

curl -v -X POST -H "Content-Type: application/json" http://localhost:4040/api/run -d @run_modelOne.json

JSON request body: Request body is JSON of following Go structure

{
 ModelName string // model name to run
 ModelDigest string // model digest to run
 RunStamp string // run stamp, if empty then auto-generated as timestamp
 Dir string // working directory to run the model, if relative then must be relative to oms root directory
 Opts map[string]string // model run options, e.g.: -OpenM.SubValues 16
 Env map[string]string // environment variables to set
 Threads int // number of modelling threads
 IsMpi bool // if true then it use MPI to run the model
 Mpi struct {
 Np int // if non-zero then number of MPI processes
 IsNotOnRoot bool // if true then do no run modelling threads on MPI root process
 IsNotByJob bool // if true then do not allocate resources by job, use CPU, threads and memory as is
 }
 Template string // template file name to make run model command line
 Tables []string // if not empty then output tables or table groups to retain, by default retain all tables
 Microdata struct {
 IsToDb bool // if true then store entity microdata in database: -Microdata.ToDb true
 IsInternal bool // if true then allow to use internal attributes: -Microdata.UseInternal true
 Entity []struct { // list of entities and attributes: -Microdata.Person age,income -Microdata.Other All
 Name string // entity name
 Attr []string // list of microdata attributes, it is also can be All
 }
 }
 RunNotes []struct {
 LangCode string // model language code
 Note string // run notes
 }
}

Template is a name of template file inside of etc sub-directory to make model run command line. Template file is required only if you want to run
the model on MPI cluster, when Mpi.Np > 0 . If template file name not specified then by default it is: etc/mpiModelRun.template.txt .

JSON response example:

{
 "ModelName": "modelOne",
 "ModelDigest": "_201208171604590148_",
 "RunStamp": "2019_01_29_21_02_14_452",
 "SubmitStamp": "2019_01_29_21_02_14_448",
 "IsFinal": false,
 "UpdateDateTime": "2019-01-29 21:02:14.452",
 "RunName": "",
 "TaskRunName": ""
}

IsFinal: if true then model run failed to start.

RunStamp: model run stamp, use it to GET model run status and log or to PUT stop model run.

Model console output redirected to log file: models/log/modelName.RunStamp.console.log , for example: modelOne.2019_01_29_21_02_14_452.console.log .

Example 1:

Run modelOne.exe with 2 sub-values (sub-value is similar to Modgen "sub-sample"):

POST a request to run the model

{
 "ModelName": "modelOne",
 "Opts": {
 "OpenM.SubValues": "2"
 }
}

Important: Opts values must be a "quoted string". In above JSON number of sub-values is "2" and not 2 .

curl -v -X POST -H "Content-Type: application/json" http://localhost:4040/api/run -d @run_modelOne.json

* Trying ::1...
* TCP_NODELAY set
* Connected to localhost (::1) port 4040 (#0)
> POST /api/run HTTP/1.1
> Host: localhost:4040
> User-Agent: curl/7.54.1
> Accept: */*
> Content-Type: application/json
> Content-Length: 68
>
* upload completely sent off: 68 out of 68 bytes
< HTTP/1.1 200 OK
< Content-Location: /api/model/_201208171604590148_/run/2019_01_29_21_02_14_452
< Content-Type: application/json
< Date: Wed, 30 Jan 2019 02:02:14 GMT
< Content-Length: 188
<
{
 "ModelName": "modelOne",
 "ModelDigest": "_201208171604590148_",
 "RunStamp": "2019_01_29_21_02_14_452",
 "SubmitStamp": "2019_01_29_21_02_14_448",
 "IsFinal": false,
 "UpdateDateTime": "2019-01-29 21:02:14.452",
 "RunName": "",
 "TaskRunName": ""
}
* Connection #0 to host localhost left intact

Oms web-service execute following command:

./modelOne -OpenM.RunStamp 2019_01_29_21_02_14_452 -OpenM.LogToConsole true -OpenM.SubValues 2

As result modelOne executable started on server with 2 sub-values. Model console output redirected to log file
modelOne.2019_01_29_21_02_14_452.console.log :

2019-01-29 21:02:14.469 modelOne
2019-01-29 21:02:14.486 Run: 138
2019-01-29 21:02:14.486 Reading Parameters
2019-01-29 21:02:14.487 Running Simulation
2019-01-29 21:02:14.487 Writing Output Tables
2019-01-29 21:02:14.567 Running Simulation
2019-01-29 21:02:14.567 Writing Output Tables
2019-01-29 21:02:14.622 Done.

Example 2:

Run RiskPaths model in models/work directory:

{
 "ModelName": "RiskPaths",
 "Dir": "models/work",
 "Opts": {
 "OpenM.Database": "Database=../bin/RiskPaths.sqlite;OpenMode=ReadWrite;Timeout=86400;"
 },
 "RunNotes": [{
 "LangCode": "EN",
 "Note": "Model run notes.\n----------------\n\nThis is model run notes in English"
 }, {
 "LangCode": "FR",
 "Note": "(FR) Model run notes.\n---------------------\n\nJe suis désolé je ne parle pas français"
 }
]
}

Oms web-service execute following commands:

cd models/work
../bin/RiskPaths \
 -OpenM.RunStamp 2019_01_29_21_32_41_179 \
 -OpenM.LogToConsole true \
 -OpenM.Database Database=../bin/RiskPaths.sqlite;OpenMode=ReadWrite;Timeout=86400; \
 -EN.2019_01_29_21_32_41_179.run_notes.EN.md \
 -FR.2019_01_29_21_32_41_179.run_notes.EN.md

Example 3:

Run RiskPaths_mpi model executable on two nodes of small MPI cluster, 4 threads on each node, to calculate 16 sub-values:

{
 "ModelName": "RiskPaths",
 "Opts": {
 "OpenM.SubValues": "16"
 },
 "Threads": 4,
 "Mpi": {
 "Np": 2
 },
 "Template": "mpiSmallCluster.template.txt"
}

Oms web-service execute following commands:

mpirun -n 2 -wdir models/bin ./RiskPaths_mpi -OpenM.RunStamp 2019_01_29_21_32_10_577 -OpenM.LogToConsole true -OpenM.Threads 4 -OpenM.SubValues 16

Because Mpi.Np = 2 model is executed on MPI cluster. If we do not specify template file name mpiSmallCluster.template.txt then by default
etc/mpiModelRun.template.txt will be used.

Example 4:

Run OzProj model, which may required OM_OzProj environment variable:

{
 "ModelName": "OzProj",
 "RunStamp": "My-uniqueStamp-of-OzProj-run",
 "Env": {
 "OM_OzProj": "../../OzProj"
 },
 "Opts": {
 "OpenM.ProgressPercent": "25"
 }
}

Oms web-service execute following commands:

OM_OzProj=../../OzProj ./OzProj -OpenM.RunStamp My-uniqueStamp-of-OzProj-run -OpenM.LogToConsole true -OpenM.ProgressPercent 25

Because RunStamp explicitly specified model console output log file name is: OzProj.My-uniqueStamp-of-OzProj-run.console.log . It is strongly
recommended to use unique run stamps for each model run (modeling task run, if you running modeling task).

Get status of model run and view model console output.

This method allow get current model run and model stdout and stderr. It can be used to monitor modeling progress or it can be invoke later to see
final model run status and console output.

This is a beta version and may change in the future.

Method:

GET /api/run/log/model/:model/stamp/:stamp
GET /api/run/log/model/:model/stamp/:stamp/start/:start/count/:count

Call examples:

http://localhost:4040/api/run/log/model/modelOne/stamp/2016_08_17_21_07_55_123
http://localhost:4040/api/run/log/model/modelOne/stamp/My-own-run-uniqueStamp
http://localhost:4040/api/run/log/model/modelOne/stamp/My-own-run-uniqueStamp/start/0
http://localhost:4040/api/run/log/model/modelOne/stamp/My-own-run-uniqueStamp/start/0/count/100

Arguments as URL parameters:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

:stamp - (required) model run stamp or run submission stamp or modeling task run stamp

Model run identified by submission stamp or by run stamp. Submission stamp is automatically generated by server as timestamp string, e.g.:
2016_08_17_21_07_55_111. Run stamp can be either explicitly specified as part of request to run the model call or automatically generated as
timestamp string. By default oms service store in memory history of 1000 most recent model runs (it can be configured).

:start - (optional) start "page" line number from log output, zero-based.
:count - (optional) "page" size, number of log text lines to view, if count <= 0 then all lines selected.

Example:

{
 "ModelName": "modelOne",
 "ModelDigest": "_201208171604590148_",
 "RunStamp": "2019_01_29_20_03_58_681",
 "SubmitStamp": "2019_01_29_20_03_58_677",
 "IsFinal": true,
 "UpdateDateTime": "2019-01-29 20:03:58.818",
 "RunName": "",
 "TaskRunName": "",
 "Offset": 0,
 "Size": 6,
 "TotalSize": 6,
 "Lines": [
 "2019-01-29 20:03:58.694 modelOne",
 "2019-01-29 20:03:58.712 Run: 135",
 "2019-01-29 20:03:58.712 Reading Parameters",
 "2019-01-29 20:03:58.713 Running Simulation",
 "2019-01-29 20:03:58.713 Writing Output Tables",
 "2019-01-29 20:03:58.809 Done."
]
}

IsFinal: if true then model run completed.

GET state of current model run

Stop model run by killing the process.

This method allow to stop model run by sending kill signal to the model process (or to the leading process in case of MPI model run).

This is a beta version and may change in the future.

Method:

PUT /api/run/stop/model/:model/stamp/:stamp

Call examples:

http://localhost:4040/api/run/stop/model/modelOne/stamp/2016_08_17_21_07_55_123
http://localhost:4040/api/run/stop/model/modelOne/stamp/My-own-run-uniqueStamp

Arguments as URL parameters:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

:stamp - (required) model run stamp or modeling task run stamp

Model run identified by run stamp, which either explicitly specified as part of request to run the model call or automatically generated as
timestamp string, ex.: 2016_08_17_21_07_55_123.

Example:

curl -v -X PUT http://localhost:4040/api/run/stop/model/dd41bca43ea03484916be3088957f2ce/stamp/2022_06_07_16_25_30_105

* Trying 127.0.0.1:4040...
* Connected to localhost (127.0.0.1) port 4040 (#0)
> PUT /api/run/stop/model/dd41bca43ea03484916be3088957f2ce/stamp/2022_06_07_16_25_30_105 HTTP/1.1
> Host: localhost:4040
> User-Agent: curl/7.79.1
> Accept: */*
>
* Mark bundle as not supporting multiuse
< HTTP/1.1 200 OK
< Content-Location: /api/model/dd41bca43ea03484916be3088957f2ce/run/2022_06_07_16_25_30_105/true
< Date: Tue, 07 Jun 2022 20:25:52 GMT
< Content-Length: 0
<
* Connection #0 to host localhost left intact

PUT stop model run

GET download log file from download directory on the server.

This method only avaliable if server configured to create downloads for user.

This is a beta version and may change in the future.

Download can be initiated through UI or by direct API call:

POST initiate model download

POST initiate model run download

POST initiate workset download

For each download oms service does create a download log file, for example:

RiskPaths.run.102.ready.download.log RiskPaths model run results, download ready for user

RiskPaths.run.102.progress.download.log RiskPaths model run results, download preparation in progress

RiskPaths.run.102.error.download.log RiskPaths model run results, download preparation failed

Example of RiskPaths.run.102.ready.download.log :

2021-07-31 18:13:10.293 Download of: RiskPaths.run.102

Model Name : RiskPaths
Model Version : 3.0.0.0 2021-07-16 13:14:14.451
Model Digest : 0f71660ba32bc002282c995e4552a14a
Run Name : Default
Run Version : 102 2021-07-16 13:14:22.227
Run Digest : 4354632979ec90f48441ccdeb0ca803b
Folder : RiskPaths.run.102

2021-07-31 18:13:10.293 delete: RiskPaths.run.102.ready.download.log
2021-07-31 18:13:10.293 delete: RiskPaths.run.102.error.download.log
2021-07-31 18:13:10.293 delete: RiskPaths.run.102.zip
2021-07-31 18:13:10.293 delete: RiskPaths.run.102
2021-07-31 18:13:10.330 Model RiskPaths
2021-07-31 18:13:10.339 Model run 102 Default
2021-07-31 18:13:10.401 Packed C:\go_ws\models\home\out\download\RiskPaths.run.102.zip
2021-07-31 18:13:10.402 Done.

As result oms service does create:

download archive, for example: RiskPaths.run.102.zip

model run .csv files for parameters and output tables in RiskPaths.run.102 folder

model run .json metadata files

Method:

GET /api/download/log/file/:name

Arguments:

:name - (required) download log file name, for example: `RiskPaths.run.102.ready.download.log`

Call example from browser:

http://localhost:4040/api/download/log/file/RiskPaths.run.102.ready.download.log

Return example:

GET download log file

{
 "Status": "ready",
 "Kind": "run",
 "ModelDigest": "0f71660ba32bc002282c995e4552a14a",
 "RunDigest": "4354632979ec90f48441ccdeb0ca803b",
 "WorksetName": "",
 "IsFolder": true,
 "Folder": "RiskPaths.run.102",
 "IsZip": true,
 "ZipFileName": "RiskPaths.run.102.zip",
 "ZipModTime": 1627769590401,
 "ZipSize": 16525,
 "LogFileName": "RiskPaths.run.102.ready.download.log",
 "LogNsTime": 1627769590402950000,
 "Lines": [
 "2021-07-31 18:13:10.293 Download of: RiskPaths.run.102 ",
 "--------------- ",
 "Model Name : RiskPaths ",
 "Model Version : 3.0.0.0 2021-07-16 13:14:14.451 ",
 "Model Digest : 0f71660ba32bc002282c995e4552a14a ",
 "Run Name : Default ",
 "Run Version : 102 2021-07-16 13:14:22.227 ",
 "Run Digest : 4354632979ec90f48441ccdeb0ca803b ",
 "Folder : RiskPaths.run.102 ",
 "--------------- ",
 "2021-07-31 18:13:10.293 delete: RiskPaths.run.102.ready.download.log ",
 "2021-07-31 18:13:10.293 delete: RiskPaths.run.102.error.download.log ",
 "2021-07-31 18:13:10.293 delete: RiskPaths.run.102.zip ",
 "2021-07-31 18:13:10.293 delete: RiskPaths.run.102 ",
 "2021-07-31 18:13:10.330 Model RiskPaths ",
 "2021-07-31 18:13:10.339 Model run 102 Default ",
 "2021-07-31 18:13:10.401 Packed C:\\go_ws\\models\\home\\out\\download\\RiskPaths.run.102.zip ",
 "2021-07-31 18:13:10.402 Done. ",
 ""
]
}

GET all model downloads log files from download directory on the server.

This method only avaliable if server configured to create downloads for user.

This is a beta version and may change in the future.

Download can be initiated through UI or by direct API call:

POST initiate model download

POST initiate model run download

POST initiate model download

For each download oms service does create a download log file, for example:

RiskPaths.run.102.ready.download.log RiskPaths model run results, download ready for user

RiskPaths.run.102.progress.download.log RiskPaths model run results, download preparation in progress

RiskPaths.run.102.error.download.log RiskPaths model run results, download preparation failed

Example of RiskPaths.run.102.ready.download.log :

2021-07-31 18:13:10.293 Download of: RiskPaths.run.102

Model Name : RiskPaths
Model Version : 3.0.0.0 2021-07-16 13:14:14.451
Model Digest : 0f71660ba32bc002282c995e4552a14a
Run Name : Default
Run Version : 102 2021-07-16 13:14:22.227
Run Digest : 4354632979ec90f48441ccdeb0ca803b
Folder : RiskPaths.run.102

2021-07-31 18:13:10.293 delete: RiskPaths.run.102.ready.download.log
2021-07-31 18:13:10.293 delete: RiskPaths.run.102.error.download.log
2021-07-31 18:13:10.293 delete: RiskPaths.run.102.zip
2021-07-31 18:13:10.293 delete: RiskPaths.run.102
2021-07-31 18:13:10.330 Model RiskPaths
2021-07-31 18:13:10.339 Model run 102 Default
2021-07-31 18:13:10.401 Packed C:\go_ws\models\home\out\download\RiskPaths.run.102.zip
2021-07-31 18:13:10.402 Done.

As result oms service does create:

download archive, for example: RiskPaths.run.102.zip

model run .csv files for parameters and output tables in RiskPaths.run.102 folder

model run .json metadata files

Method:

GET /api/download/log/model/:model

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database then result is undefined.

Call examples from browser:

http://localhost:4040/api/download/log/model/RiskPaths
http://localhost:4040/api/download/log/model/0f71660ba32bc002282c995e4552a14a

Return example:

GET model download log files

[
 {
 "Status": "ready",
 "Kind": "model",
 "ModelDigest": "0f71660ba32bc002282c995e4552a14a",
 "RunDigest": "",
 "WorksetName": "",
 "IsFolder": true,
 "Folder": "RiskPaths",
 "IsZip": true,
 "ZipFileName": "RiskPaths.zip",
 "ZipModTime": 1628178307162,
 "ZipSize": 30323,
 "LogFileName": "RiskPaths.ready.download.log",
 "LogNsTime": 0,
 "Lines": [
 "2021-08-05 11:45:06.371 Download of: RiskPaths ",
 "--------------- ",
 "Model Name : RiskPaths ",
 "Model Version : 3.0.0.0 2021-08-02 14:16:34.584 ",
 "Model Digest : 0f71660ba32bc002282c995e4552a14a ",
 "Folder : RiskPaths ",
 "--------------- ",
 "2021-08-05 11:45:06.371 delete: RiskPaths.ready.download.log ",
 "2021-08-05 11:45:06.373 delete: RiskPaths.error.download.log ",
 "2021-08-05 11:45:06.373 delete: RiskPaths.zip ",
 "2021-08-05 11:45:06.378 delete: RiskPaths ",
 "2021-08-05 11:45:07.025 Model RiskPaths ",
 "2021-08-05 11:45:07.056 Model run 102 RiskPaths_Default ",
 "2021-08-05 11:45:07.129 Workset 101 Default ",
 "2021-08-05 11:45:07.162 Packed C:\\go_ws\\models\\home\\out\\download\\RiskPaths.zip ",
 "2021-08-05 11:45:07.163 Done. ",
 ""
]
 },
 {
 "Status": "ready",
 "Kind": "run",
 "ModelDigest": "0f71660ba32bc002282c995e4552a14a",
 "RunDigest": "4354632979ec90f48441ccdeb0ca803b",
 "WorksetName": "",
 "IsFolder": true,
 "Folder": "RiskPaths.run.102",
 "IsZip": true,
 "ZipFileName": "RiskPaths.run.102.zip",
 "ZipModTime": 1627769590401,
 "ZipSize": 16525,
 "LogFileName": "RiskPaths.run.102.ready.download.log",
 "LogNsTime": 0,
 "Lines": [
 "2021-07-31 18:13:10.293 Download of: RiskPaths.run.102 ",
 "--------------- ",
 "Model Name : RiskPaths ",
 "Model Version : 3.0.0.0 2021-07-16 13:14:14.451 ",
 "Model Digest : 0f71660ba32bc002282c995e4552a14a ",
 "Run Name : Default ",
 "Run Version : 102 2021-07-16 13:14:22.227 ",
 "Run Digest : 4354632979ec90f48441ccdeb0ca803b ",
 "Folder : RiskPaths.run.102 ",
 "--------------- ",
 "2021-07-31 18:13:10.293 delete: RiskPaths.run.102.ready.download.log ",
 "2021-07-31 18:13:10.293 delete: RiskPaths.run.102.error.download.log ",
 "2021-07-31 18:13:10.293 delete: RiskPaths.run.102.zip ",
 "2021-07-31 18:13:10.293 delete: RiskPaths.run.102 ",
 "2021-07-31 18:13:10.330 Model RiskPaths ",
 "2021-07-31 18:13:10.339 Model run 102 Default ",
 "2021-07-31 18:13:10.401 Packed C:\\go_ws\\models\\home\\out\\download\\RiskPaths.run.102.zip ",
 "2021-07-31 18:13:10.402 Done. ",
 ""
]
 },
 {
 "Status": "ready",
 "Kind": "workset",
 "ModelDigest": "0f71660ba32bc002282c995e4552a14a",
 "RunDigest": "",
 "WorksetName": "Default",
 "IsFolder": true,
 "Folder": "RiskPaths.set.Default",
 "IsZip": true,
 "ZipFileName": "RiskPaths.set.Default.zip",
 "ZipModTime": 1627770244509,
 "ZipSize": 3691,
 "LogFileName": "RiskPaths.set.Default.ready.download.log",
 "LogNsTime": 0,
 "Lines": [

 "Lines": [
 "2021-07-31 18:24:04.069 Download of: RiskPaths.set.Default ",
 "------------------ ",
 "Model Name : RiskPaths ",
 "Model Version : 3.0.0.0 2021-07-16 13:14:14.451 ",
 "Model Digest : 0f71660ba32bc002282c995e4552a14a ",
 "Scenario Name : Default ",
 "Scenario Version : 2021-07-30 01:58:34.496 ",
 "Folder : RiskPaths.set.Default ",
 "------------------ ",
 "2021-07-31 18:24:04.071 delete: RiskPaths.set.Default.ready.download.log ",
 "2021-07-31 18:24:04.071 delete: RiskPaths.set.Default.error.download.log ",
 "2021-07-31 18:24:04.071 delete: RiskPaths.set.Default.zip ",
 "2021-07-31 18:24:04.074 delete: RiskPaths.set.Default ",
 "2021-07-31 18:24:04.461 Model RiskPaths ",
 "2021-07-31 18:24:04.469 Workset 101 Default ",
 "2021-07-31 18:24:04.509 Packed C:\\go_ws\\models\\home\\out\\download\\RiskPaths.set.Default.zip ",
 "2021-07-31 18:24:04.510 Done. ",
 ""
]
 }
]

GET all downloads log files for from download directory on the server.

This method only avaliable if server configured to create downloads for user.

This is a beta version and may change in the future.

Download can be initiated through UI or by direct API call:

POST initiate model download

POST initiate model run download

POST initiate model download

For each download oms service does create a download log file, for example:

RiskPaths.run.102.ready.download.log RiskPaths model run results, download ready for user

RiskPaths.run.102.progress.download.log RiskPaths model run results, download preparation in progress

RiskPaths.run.102.error.download.log RiskPaths model run results, download preparation failed

Example of RiskPaths.run.102.ready.download.log :

2021-07-31 18:13:10.293 Download of: RiskPaths.run.102

Model Name : RiskPaths
Model Version : 3.0.0.0 2021-07-16 13:14:14.451
Model Digest : 0f71660ba32bc002282c995e4552a14a
Run Name : Default
Run Version : 102 2021-07-16 13:14:22.227
Run Digest : 4354632979ec90f48441ccdeb0ca803b
Folder : RiskPaths.run.102

2021-07-31 18:13:10.293 delete: RiskPaths.run.102.ready.download.log
2021-07-31 18:13:10.293 delete: RiskPaths.run.102.error.download.log
2021-07-31 18:13:10.293 delete: RiskPaths.run.102.zip
2021-07-31 18:13:10.293 delete: RiskPaths.run.102
2021-07-31 18:13:10.330 Model RiskPaths
2021-07-31 18:13:10.339 Model run 102 Default
2021-07-31 18:13:10.401 Packed C:\go_ws\models\home\out\download\RiskPaths.run.102.zip
2021-07-31 18:13:10.402 Done.

As result oms service does create:

download archive, for example: RiskPaths.run.102.zip

model run .csv files for parameters and output tables in RiskPaths.run.102 folder

model run .json metadata files

Method:

GET /api/download/log-all

Call example from browser:

http://localhost:4040/api/download/log-all

Return example:

GET all download log files

[
 {
 "Status": "ready",
 "Kind": "model",
 "ModelDigest": "c87bd08cc86da61332336384a491203b",
 "RunDigest": "",
 "WorksetName": "",
 "IsFolder": true,
 "Folder": "IDMM",
 "IsZip": true,
 "ZipFileName": "IDMM.zip",
 "ZipModTime": 1627790748053,
 "ZipSize": 29126,
 "LogFileName": "IDMM.ready.download.log",
 "LogNsTime": 0,
 "Lines": [
 "2021-08-01 00:05:47.551 Download of: IDMM ",
 "--------------- ",
 "Model Name : IDMM ",
 "Model Version : 2.0.0.0 2021-07-16 13:13:40.085 ",
 "Model Digest : c87bd08cc86da61332336384a491203b ",
 "Folder : IDMM ",
 "--------------- ",
 "2021-08-01 00:05:47.551 delete: IDMM.ready.download.log ",
 "2021-08-01 00:05:47.552 delete: IDMM.error.download.log ",
 "2021-08-01 00:05:47.553 delete: IDMM.zip ",
 "2021-08-01 00:05:47.553 delete: IDMM ",
 "2021-08-01 00:05:47.934 Model IDMM ",
 "2021-08-01 00:05:47.946 Model run 102 Default ",
 "2021-08-01 00:05:47.968 Model run 103 IDMM_Default_2021_07_31_21_40_28_624 ",
 "2021-08-01 00:05:47.990 Workset 101 Default ",
 "2021-08-01 00:05:48.053 Packed C:\\go_ws\\models\\home\\out\\download\\IDMM.zip ",
 "2021-08-01 00:05:48.054 Done. ",
 ""
]
 },
 {
 "Status": "ready",
 "Kind": "model",
 "ModelDigest": "b4f2100f8d308a5bd3bf3b470077d906",
 "RunDigest": "",
 "WorksetName": "",
 "IsFolder": true,
 "Folder": "NewTimeBased",
 "IsZip": true,
 "ZipFileName": "NewTimeBased.zip",
 "ZipModTime": 1627848086688,
 "ZipSize": 8199,
 "LogFileName": "NewTimeBased.ready.download.log",
 "LogNsTime": 0,
 "Lines": [
 "2021-08-01 16:01:26.574 Download of: NewTimeBased ",
 "--------------- ",
 "Model Name : NewTimeBased ",
 "Model Version : 1.0.1.0 2021-07-16 13:14:32.196 ",
 "Model Digest : b4f2100f8d308a5bd3bf3b470077d906 ",
 "Folder : NewTimeBased ",
 "--------------- ",
 "2021-08-01 16:01:26.574 delete: NewTimeBased.ready.download.log ",
 "2021-08-01 16:01:26.574 delete: NewTimeBased.error.download.log ",
 "2021-08-01 16:01:26.574 delete: NewTimeBased.zip ",
 "2021-08-01 16:01:26.574 delete: NewTimeBased ",
 "2021-08-01 16:01:26.610 Model NewTimeBased ",
 "2021-08-01 16:01:26.641 Model run 102 Default ",
 "2021-08-01 16:01:26.666 Workset 101 Default ",
 "2021-08-01 16:01:26.689 Packed C:\\go_ws\\models\\home\\out\\download\\NewTimeBased.zip ",
 "2021-08-01 16:01:26.693 Done. ",
 ""
]
 }
]

GET download files tree from download directory on the server.

This method only avaliable if server configured to create downloads for user.

This is a beta version and may change in the future.

Download can be initiated through UI or by direct API call:

POST initiate model download

POST initiate model run download

POST initiate model download

For each above method oms service will create:

download archive, for example: RiskPaths.run.102.zip

model run .csv files for parameters and output tables in RiskPaths.run.102 folder

model run .json metadata files

This method retruns file tree in download folder, for exmaple in RiskPaths.run.102 folder.

Method:

GET /api/download/file-tree/:folder

Arguments:

:folder - (required) download folder file name, for example: `RiskPaths.run.102`

Call example from browser:

http://localhost:4040/api/download/file-tree/RiskPaths.run.102

Return example:

[
 {
 "Path": "RiskPaths.run.102",
 "IsDir": true,
 "Size": 0,
 "ModTime": 1627769590376
 },
 {
 "Path": "RiskPaths.run.102/RiskPaths.run.102.Default.json",
 "IsDir": false,
 "Size": 1880,
 "ModTime": 1627769590376
 },
 {
 "Path": "RiskPaths.run.102/run.102.Default",
 "IsDir": true,
 "Size": 0,
 "ModTime": 1627769590374
 },
 {
 "Path": "RiskPaths.run.102/run.102.Default/AgeBaselineForm1.csv",
 "IsDir": false,
 "Size": 283,
 "ModTime": 1627769590340
 },
 {
 "Path": "RiskPaths.run.102/run.102.Default/AgeBaselinePreg1.csv",
 "IsDir": false,
 "Size": 265,
 "ModTime": 1627769590341
 },
 {
 "Path": "RiskPaths.run.102/run.102.Default/CanDie.csv",
 "IsDir": false,

GET download files tree

 "IsDir": false,
 "Size": 27,
 "ModTime": 1627769590344
 },
 {
 "Path": "RiskPaths.run.102/run.102.Default/ProbMort.csv",
 "IsDir": false,
 "Size": 1022,
 "ModTime": 1627769590347
 },
 {
 "Path": "RiskPaths.run.102/run.102.Default/SeparationDurationBaseline.csv",
 "IsDir": false,
 "Size": 133,
 "ModTime": 1627769590347
 },
 {
 "Path": "RiskPaths.run.102/run.102.Default/SimulationCases.csv",
 "IsDir": false,
 "Size": 26,
 "ModTime": 1627769590349
 },
 {
 "Path": "RiskPaths.run.102/run.102.Default/SimulationSeed.csv",
 "IsDir": false,
 "Size": 23,
 "ModTime": 1627769590350
 },
 {
 "Path": "RiskPaths.run.102/run.102.Default/T01_LifeExpectancy.acc-all.csv",
 "IsDir": false,
 "Size": 65,
 "ModTime": 1627769590356
 },
 {
 "Path": "RiskPaths.run.102/run.102.Default/T01_LifeExpectancy.acc.csv",
 "IsDir": false,
 "Size": 52,
 "ModTime": 1627769590352
 },
 {
 "Path": "RiskPaths.run.102/run.102.Default/T01_LifeExpectancy.csv",
 "IsDir": false,
 "Size": 55,
 "ModTime": 1627769590352
 },
 {
 "Path": "RiskPaths.run.102/run.102.Default/T02_TotalPopulationByYear.acc-all.csv",
 "IsDir": false,
 "Size": 2544,
 "ModTime": 1627769590361
 },
 {
 "Path": "RiskPaths.run.102/run.102.Default/T02_TotalPopulationByYear.acc.csv",
 "IsDir": false,
 "Size": 3040,
 "ModTime": 1627769590359
 },
 {
 "Path": "RiskPaths.run.102/run.102.Default/T02_TotalPopulationByYear.csv",
 "IsDir": false,
 "Size": 2833,
 "ModTime": 1627769590357
 },
 {
 "Path": "RiskPaths.run.102/run.102.Default/T03_FertilityByAge.acc-all.csv",
 "IsDir": false,
 "Size": 1665,
 "ModTime": 1627769590364
 },
 {
 "Path": "RiskPaths.run.102/run.102.Default/T03_FertilityByAge.acc.csv",
 "IsDir": false,
 "Size": 2080,
 "ModTime": 1627769590362
 },
 {
 "Path": "RiskPaths.run.102/run.102.Default/T03_FertilityByAge.csv",
 "IsDir": false,
 "Size": 1532,
 "ModTime": 1627769590362
 },
 {
 "Path": "RiskPaths.run.102/run.102.Default/T04_FertilityRatesByAgeGroup.acc-all.csv",
 "IsDir": false,
 "Size": 4583,
 "ModTime": 1627769590367
 },

 {
 "Path": "RiskPaths.run.102/run.102.Default/T04_FertilityRatesByAgeGroup.acc.csv",
 "IsDir": false,
 "Size": 6905,
 "ModTime": 1627769590366
 },
 {
 "Path": "RiskPaths.run.102/run.102.Default/T04_FertilityRatesByAgeGroup.csv",
 "IsDir": false,
 "Size": 3676,
 "ModTime": 1627769590365
 },
 {
 "Path": "RiskPaths.run.102/run.102.Default/T05_CohortFertility.acc-all.csv",
 "IsDir": false,
 "Size": 100,
 "ModTime": 1627769590369
 },
 {
 "Path": "RiskPaths.run.102/run.102.Default/T05_CohortFertility.acc.csv",
 "IsDir": false,
 "Size": 74,
 "ModTime": 1627769590368
 },
 {
 "Path": "RiskPaths.run.102/run.102.Default/T05_CohortFertility.csv",
 "IsDir": false,
 "Size": 70,
 "ModTime": 1627769590368
 },
 {
 "Path": "RiskPaths.run.102/run.102.Default/T06_BirthsByUnion.acc-all.csv",
 "IsDir": false,
 "Size": 218,
 "ModTime": 1627769590371
 },
 {
 "Path": "RiskPaths.run.102/run.102.Default/T06_BirthsByUnion.acc.csv",
 "IsDir": false,
 "Size": 234,
 "ModTime": 1627769590371
 },
 {
 "Path": "RiskPaths.run.102/run.102.Default/T06_BirthsByUnion.csv",
 "IsDir": false,
 "Size": 222,
 "ModTime": 1627769590370
 },
 {
 "Path": "RiskPaths.run.102/run.102.Default/T07_FirstUnionFormation.acc-all.csv",
 "IsDir": false,
 "Size": 604,
 "ModTime": 1627769590374
 },
 {
 "Path": "RiskPaths.run.102/run.102.Default/T07_FirstUnionFormation.acc.csv",
 "IsDir": false,
 "Size": 707,
 "ModTime": 1627769590374
 },
 {
 "Path": "RiskPaths.run.102/run.102.Default/T07_FirstUnionFormation.csv",
 "IsDir": false,
 "Size": 428,
 "ModTime": 1627769590373
 },
 {
 "Path": "RiskPaths.run.102/run.102.Default/UnionDurationBaseline.csv",
 "IsDir": false,
 "Size": 395,
 "ModTime": 1627769590350
 },
 {
 "Path": "RiskPaths.run.102/run.102.Default/UnionStatusPreg1.csv",
 "IsDir": false,
 "Size": 196,
 "ModTime": 1627769590352
 }
]

POST model download request: server will prepare entire model data for download.

This method only avaliable if server configured to create downloads for user.

This is a beta version and may change in the future.

As result of this call oms service will create:

download archive, for example: RiskPaths.zip

model run .csv files for parameters and output tables in RiskPaths folder

model run .json metadata files

Method:

POST /api/download/model/:model

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

Form body

Posted form can include optional JSON body:

{
 "NoAccumulatorsCsv": true,
 "NoMicrodata": true,
 "Utf8BomIntoCsv": true
}

Use "NoAccumulatorsCsv": true and "NoMicrodata": true options to produce download faster. By default this method create full Model.zip archive, which
allow you to copy model into desktop database by using dbcopy utilty or even transfer it to the other server.

If you want only to analyze model run output CSV files then it maybe better to download run results without accumulators (a.k.a. sub-samples or
sub-values) and include only output table expressions. For example, if you are only interested in output average value and don't want to analyze
32 sub-samples then use "NoAccumulatorsCsv": true option.

Also model run microdata can be huge and if you are not intersted in it then use "NoMicrodata": true option to suppress it.

Use "Utf8BomIntoCsv": true option to start CSV files with Byte Order Mark. Byte order mark may be neccessary for some programs (e.g. Microsoft
Excel) to correctly process UTF-8 files.

Call examples:

curl -v -X POST -H "Content-Type: application/json" http://localhost:4040/api/download/model/modelOne
curl -v -X POST -H "Content-Type: application/json" http://localhost:4040/api/download/model/c87bd08cc86da61332336384a491203b

curl -v -X POST -H "Content-Type: application/json" http://localhost:4040/api/download/model/modelOne -d @options.json

POST initiate entire model download

POST model run download request: server will prepare model run data for download.

This method only avaliable if server configured to create downloads for user.

This is a beta version and may change in the future.

As result of this call oms service will create:

download archive, for example: RiskPaths.run.102.zip

model run .csv files for parameters and output tables in RiskPaths.run.102 folder

model run .json metadata files

Method:

POST /api/download/model/:model/run/:run

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

:run - (required) model run digest, run stamp or run name

Model run can be identified by run digest, run stamp or run name. It is recommended to use digest because it is uniquely identifies model run.
Run stamp, if not explicitly specified as model run option, automatically generated as timestamp string, ex.: 2016_08_17_21_07_55_123. It is
also possible to use name, which is more human readable than digest, but if there are multiple runs with same name in database than result is
undefined.

Form body

Posted form can include optional JSON body:

{
 "NoAccumulatorsCsv": true,
 "NoMicrodata": true,
 "Utf8BomIntoCsv": true
}

Use "NoAccumulatorsCsv": true and "NoMicrodata": true options to produce download faster. By default this method create full ModelRun.zip archive,
which allow you to copy model into desktop database by using dbcopy utilty or even transfer it to the other server.

If you want only to analyze model run output CSV files then it maybe better to download run results without accumulators (a.k.a. sub-samples or
sub-values) and include only output table expressions. For example, if you are only interested in output average value and don't want to analyze
32 sub-samples then use "NoAccumulatorsCsv": true option.

Also model run microdata can be huge and if you are not intersted in it then use "NoMicrodata": true option to suppress it.

Use "Utf8BomIntoCsv": true option to start CSV files with Byte Order Mark. Byte order mark may be neccessary for some programs (e.g. Microsoft
Excel) to correctly process UTF-8 files.

Call examples:

curl -v -X POST -H "Content-Type: application/json" http://localhost:4040/api/download/model/modelOne/run/Default
curl -v -X POST -H "Content-Type: application/json" http://localhost:4040/api/download/model/c87bd08cc86da61332336384a491203b/run/Default
curl -v -X POST -H "Content-Type: application/json" http://localhost:4040/api/download/model/c87bd08cc86da61332336384a491203b/run/D3f26c4492bad08b9d6c8373719ff53e7

curl -v -X POST -H "Content-Type: application/json" http://localhost:4040/api/download/model/modelOne/run/Default -d @options.json

POST initiate model run download

POST model workset download request: server will prepare model workset data for download.

This method only avaliable if server configured to create downloads for user.

This is a beta version and may change in the future.

Workset is a set of model input parameters (a.k.a. "scenario" input). Workset can be used to run the model.

As result of this call oms service will create:

download archive, for example: RiskPaths.set.Default.zip

model workset .csv files for parameters and output tables in RiskPaths.set.Default folder

model workset .json metadata files

Method:

POST /api/download/model/:model/workset/:set

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

:set - (required) workset name

Workset is uniquely identified by name (inside the model). Different models can have worksets with same name, i.e. each model can have
workset with name "Default".

Form body

Posted form can include optional JSON body:

{
 "Utf8BomIntoCsv": true
}

Use "Utf8BomIntoCsv": true option to start CSV files with Byte Order Mark. Byte order mark may be neccessary for some programs (e.g. Microsoft
Excel) to correctly process UTF-8 files.

Call examples:

curl -v -X POST -H "Content-Type: application/json" http://localhost:4040/api/download/model/RiskPaths/workset/Default
curl -v -X POST -H "Content-Type: application/json" http://localhost:4040/api/download/model/c87bd08cc86da61332336384a491203b/workset/Default

curl -v -X POST -H "Content-Type: application/json" http://localhost:4040/api/download/model/RiskPaths/workset/Default -d @options.json

POST initiate model workset download

DELETE download files from the server.

This method only avaliable if server configured to allow downloads by user.

Download can be initiated through UI or by direct API call:

POST initiate model download

POST initiate model run download

POST initiate model download

For each above method oms service will create:

download archive, for example: RiskPaths.run.102.zip

model run .csv files for parameters and output tables in RiskPaths.run.102 folder

model run .json metadata files

Methods:

DELETE /api/download/delete/:folder
DELETE /api/download/start/delete/:folder

First method deletes download files from the server. Second method will initiate deleting of download files from the server. Actual delete
performed in background and results can be checked through log file.

Arguments:

:folder - (required) download folder file name, for example: `RiskPaths.run.102`

Call examples:

curl -v -X DELETE http://localhost:4040/api/download/delete/RiskPaths.run.102
curl -v -X DELETE http://localhost:4040/api/download/start/delete/RiskPaths.run.102

DELETE download files

DELETE all download files from the server.

This method only avaliable if server configured to allow downloads by user.

It does delete all files from server download folder.

Download can be initiated through UI or by direct API call:

POST initiate model download

POST initiate model run download

POST initiate model download

For each above method oms service will create:

download archive, for example: RiskPaths.run.102.zip

model run .csv files for parameters and output tables in RiskPaths.run.102 folder

model run .json metadata files

Methods:

DELETE /api/download/delete-all
DELETE /api/download/start/delete-all

First method deletes all files from server download folder. Second method will initiate deleting the files. Actual delete performed in background
and user may need to refresh page to verify the results.

Call examples:

curl -v -X DELETE http://localhost:4040/api/download/delete-all
curl -v -X DELETE http://localhost:4040/api/download/start/delete-all

DELETE all download files

GET upload log file from upload directory on the server.

This method only avaliable if server configured to create uploads for user.

This is a beta version and may change in the future.

Upload can be initiated through UI or by direct API call:

POST initiate model run upload

POST initiate workset upload

For each upload oms service does create a upload log file, for example:

RiskPaths.set.New-Data.ready.upload.log RiskPaths New-Data workset, upload completed and ready to use

RiskPaths.set.New-Data.progress.upload.log RiskPaths New-Data, upload in progress

RiskPaths.set.New-Data.error.upload.log RiskPaths New-Data, upload failed

Example of RiskPaths.set.New-Data.ready.upload.log :

2022-03-09 00:21:45.195 Upload of: RiskPaths.set.New-Data

Upload : RiskPaths.set.New-Data.zip
Model Name : RiskPaths
Model Version : 3.0.0.0 2022-03-07 23:37:41.202
Model Digest : d90e1e9a49a06d972ecf1d50e684c62b
Scenario Name : New-Data
Folder : RiskPaths.set.New-Data

2022-03-09 00:21:45.195 delete: RiskPaths.set.New-Data.ready.upload.log
2022-03-09 00:21:45.195 delete: RiskPaths.set.New-Data.error.upload.log
2022-03-09 00:21:45.195 delete: RiskPaths.set.New-Data
2022-03-09 00:21:45.195 dbcopy -m RiskPaths -dbcopy.IdOutputNames=false -dbcopy.SetName New-Data -dbcopy.To db -dbcopy.Zip -dbcopy.InputDir models\home\io\upload
2022-03-09 00:21:45.219 Model RiskPaths
2022-03-09 00:21:45.219 Unpack RiskPaths.set.New-Data.zip
2022-03-09 00:21:45.249 Workset New-Data into: 103 New-Data
2022-03-09 00:21:45.249 Parameters: 3
2022-03-09 00:21:45.277 Done.

As result of workset upload oms service does:

upload archive, for example: RiskPaths.set.New-Data.zip

extract workset .csv files with parameters into RiskPaths.set.New-Data folder

extract workset .json metadata file

create new or update existing New-Data workset in RiskPaths model database

Method:

GET /api/upload/log/file/:name

Arguments:

:name - (required) upload log file name, for example: `RiskPaths.set.New-Data.ready.upload.log`

Call example from browser:

http://localhost:4040/api/upload/log/file/RiskPaths.set.New-Data.ready.upload.log

Return example:

GET upload log file

{
 "Status": "ready",
 "Kind": "upload",
 "ModelDigest": "d90e1e9a49a06d972ecf1d50e684c62b",
 "RunDigest": "",
 "WorksetName": "New-Data",
 "IsFolder": true,
 "Folder": "RiskPaths.set.New-Data",
 "FolderModTime": 1646803541985,
 "IsZip": true,
 "ZipFileName": "RiskPaths.set.New-Data.zip",
 "ZipModTime": 1646803541965,
 "ZipSize": 1690,
 "LogFileName": "RiskPaths.set.New-Data.ready.upload.log",
 "LogModTime": 1646803542034,
 "Lines": [
 "2022-03-09 00:25:41.964 Upload of: RiskPaths.set.New-Data ",
 "------------------ ",
 "Upload : RiskPaths.set.New-Data.zip ",
 "Model Name : RiskPaths ",
 "Model Version : 3.0.0.0 2022-03-07 23:37:41.202 ",
 "Model Digest : d90e1e9a49a06d972ecf1d50e684c62b ",
 "Scenario Name : New-Data ",
 "Folder : RiskPaths.set.New-Data ",
 "------------------ ",
 "2022-03-09 00:25:41.965 delete: RiskPaths.set.New-Data.ready.upload.log ",
 "2022-03-09 00:25:41.965 delete: RiskPaths.set.New-Data.error.upload.log ",
 "2022-03-09 00:25:41.965 delete: RiskPaths.set.New-Data ",
 "2022-03-09 00:25:41.966 dbcopy -m RiskPaths -dbcopy.IdOutputNames=false -dbcopy.SetName New-Data -dbcopy.To db -dbcopy.Zip -dbcopy.InputDir models\\home\\io\\uplo
ad ",
 "2022-03-09 00:25:41.983 Model RiskPaths ",
 "2022-03-09 00:25:41.983 Unpack RiskPaths.set.New-Data.zip ",
 "2022-03-09 00:25:42.004 Workset New-Data into: 103 New-Data ",
 "2022-03-09 00:25:42.004 Parameters: 3 ",
 "2022-03-09 00:25:42.034 Done. ",
 ""
]
}

GET all model uploads log files from upload directory on the server.

This method only avaliable if server configured to create uploads for user.

This is a beta version and may change in the future.

Upload can be initiated through UI or by direct API call:

POST initiate model run upload

POST initiate workset upload

For each upload oms service does create a upload log file, for example:

RiskPaths.set.New-Data.ready.upload.log RiskPaths New-Data workset, upload completed and ready to use

RiskPaths.set.New-Data.progress.upload.log RiskPaths New-Data, upload in progress

RiskPaths.set.New-Data.error.upload.log RiskPaths New-Data, upload failed

Example of RiskPaths.set.New-Data.ready.upload.log :

2022-03-09 00:21:45.195 Upload of: RiskPaths.set.New-Data

Upload : RiskPaths.set.New-Data.zip
Model Name : RiskPaths
Model Version : 3.0.0.0 2022-03-07 23:37:41.202
Model Digest : d90e1e9a49a06d972ecf1d50e684c62b
Scenario Name : New-Data
Folder : RiskPaths.set.New-Data

2022-03-09 00:21:45.195 delete: RiskPaths.set.New-Data.ready.upload.log
2022-03-09 00:21:45.195 delete: RiskPaths.set.New-Data.error.upload.log
2022-03-09 00:21:45.195 delete: RiskPaths.set.New-Data
2022-03-09 00:21:45.195 dbcopy -m RiskPaths -dbcopy.IdOutputNames=false -dbcopy.SetName New-Data -dbcopy.To db -dbcopy.Zip -dbcopy.InputDir models\home\io\upload
2022-03-09 00:21:45.219 Model RiskPaths
2022-03-09 00:21:45.219 Unpack RiskPaths.set.New-Data.zip
2022-03-09 00:21:45.249 Workset New-Data into: 103 New-Data
2022-03-09 00:21:45.249 Parameters: 3
2022-03-09 00:21:45.277 Done.

As result of workset upload oms service does:

upload archive, for example: RiskPaths.set.New-Data.zip

extract workset .csv files with parameters into RiskPaths.set.New-Data folder

extract workset .json metadata file

create new or update existing New-Data workset in RiskPaths model database

Method:

GET /api/upload/log/model/:model

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database then result is undefined.

Call examples from browser:

http://localhost:4040/api/upload/log/model/RiskPaths
http://localhost:4040/api/upload/log/model/0f71660ba32bc002282c995e4552a14a

Return example:

GET all upload log files for the model

[
 {
 "Status": "ready",
 "Kind": "upload",
 "ModelDigest": "d90e1e9a49a06d972ecf1d50e684c62b",
 "RunDigest": "",
 "WorksetName": "New-Data",
 "IsFolder": true,
 "Folder": "RiskPaths.set.New-Data",
 "FolderModTime": 1646803541985,
 "IsZip": true,
 "ZipFileName": "RiskPaths.set.New-Data.zip",
 "ZipModTime": 1646803541965,
 "ZipSize": 1690,
 "LogFileName": "RiskPaths.set.New-Data.ready.upload.log",
 "LogModTime": 1646803542034,
 "Lines": [
 "2022-03-09 00:25:41.964 Upload of: RiskPaths.set.New-Data ",
 "------------------ ",
 "Upload : RiskPaths.set.New-Data.zip ",
 "Model Name : RiskPaths ",
 "Model Version : 3.0.0.0 2022-03-07 23:37:41.202 ",
 "Model Digest : d90e1e9a49a06d972ecf1d50e684c62b ",
 "Scenario Name : New-Data ",
 "Folder : RiskPaths.set.New-Data ",
 "------------------ ",
 "2022-03-09 00:25:41.965 delete: RiskPaths.set.New-Data.ready.upload.log ",
 "2022-03-09 00:25:41.965 delete: RiskPaths.set.New-Data.error.upload.log ",
 "2022-03-09 00:25:41.965 delete: RiskPaths.set.New-Data ",
 "2022-03-09 00:25:41.966 dbcopy -m RiskPaths -dbcopy.IdOutputNames=false -dbcopy.SetName New-Data -dbcopy.To db -dbcopy.Zip -dbcopy.InputDir models\\home\\io\\upl
oad ",
 "2022-03-09 00:25:41.983 Model RiskPaths ",
 "2022-03-09 00:25:41.983 Unpack RiskPaths.set.New-Data.zip ",
 "2022-03-09 00:25:42.004 Workset New-Data into: 103 New-Data ",
 "2022-03-09 00:25:42.004 Parameters: 3 ",
 "2022-03-09 00:25:42.034 Done. ",
 ""
]
 },
 {
 "Status": "ready",
 "Kind": "upload",
 "ModelDigest": "d90e1e9a49a06d972ecf1d50e684c62b",
 "RunDigest": "",
 "WorksetName": "New_Scenario_of_union_duration",
 "IsFolder": true,
 "Folder": "RiskPaths.set.New_Scenario_of_union_duration",
 "FolderModTime": 1646804668330,
 "IsZip": true,
 "ZipFileName": "RiskPaths.set.New_Scenario_of_union_duration.zip",
 "ZipModTime": 1646804668308,
 "ZipSize": 2460,
 "LogFileName": "RiskPaths.set.New_Scenario_of_union_duration.ready.upload.log",
 "LogModTime": 1646804668378,
 "Lines": [
 "2022-03-09 00:44:28.308 Upload of: RiskPaths.set.New_Scenario_of_union_duration ",
 "------------------ ",
 "Upload : RiskPaths.set.New_Scenario_of_union_duration.zip ",
 "Model Name : RiskPaths ",
 "Model Version : 3.0.0.0 2022-03-07 23:37:41.202 ",
 "Model Digest : d90e1e9a49a06d972ecf1d50e684c62b ",
 "Scenario Name : New_Scenario_of_union_duration ",
 "Folder : RiskPaths.set.New_Scenario_of_union_duration ",
 "------------------ ",
 "2022-03-09 00:44:28.308 delete: RiskPaths.set.New_Scenario_of_union_duration.ready.upload.log ",
 "2022-03-09 00:44:28.308 delete: RiskPaths.set.New_Scenario_of_union_duration.error.upload.log ",
 "2022-03-09 00:44:28.308 delete: RiskPaths.set.New_Scenario_of_union_duration ",
 "2022-03-09 00:44:28.308 dbcopy -m RiskPaths -dbcopy.IdOutputNames=false -dbcopy.SetName New_Scenario_of_union_duration -dbcopy.To db -dbcopy.Zip -dbcopy.InputD
ir models\\home\\io\\upload ",
 "2022-03-09 00:44:28.328 Model RiskPaths ",
 "2022-03-09 00:44:28.328 Unpack RiskPaths.set.New_Scenario_of_union_duration.zip ",
 "2022-03-09 00:44:28.341 Workset New_Scenario_of_union_duration into: 104 New_Scenario_of_union_duration ",
 "2022-03-09 00:44:28.341 Parameters: 3 ",
 "2022-03-09 00:44:28.378 Done. ",
 ""
]
 }
]

GET all uploads log files for from upload directory on the server.

This method only avaliable if server configured to create uploads for user.

This is a beta version and may change in the future.

Upload can be initiated through UI or by direct API call:

POST initiate model run upload

POST initiate workset upload

For each upload oms service does create a upload log file, for example:

RiskPaths.set.New-Data.ready.upload.log RiskPaths New-Data workset, upload completed and ready to use

RiskPaths.set.New-Data.progress.upload.log RiskPaths New-Data, upload in progress

RiskPaths.set.New-Data.error.upload.log RiskPaths New-Data, upload failed

Example of RiskPaths.set.New-Data.ready.upload.log :

2022-03-09 00:21:45.195 Upload of: RiskPaths.set.New-Data

Upload : RiskPaths.set.New-Data.zip
Model Name : RiskPaths
Model Version : 3.0.0.0 2022-03-07 23:37:41.202
Model Digest : d90e1e9a49a06d972ecf1d50e684c62b
Scenario Name : New-Data
Folder : RiskPaths.set.New-Data

2022-03-09 00:21:45.195 delete: RiskPaths.set.New-Data.ready.upload.log
2022-03-09 00:21:45.195 delete: RiskPaths.set.New-Data.error.upload.log
2022-03-09 00:21:45.195 delete: RiskPaths.set.New-Data
2022-03-09 00:21:45.195 dbcopy -m RiskPaths -dbcopy.IdOutputNames=false -dbcopy.SetName New-Data -dbcopy.To db -dbcopy.Zip -dbcopy.InputDir models\home\io\upload
2022-03-09 00:21:45.219 Model RiskPaths
2022-03-09 00:21:45.219 Unpack RiskPaths.set.New-Data.zip
2022-03-09 00:21:45.249 Workset New-Data into: 103 New-Data
2022-03-09 00:21:45.249 Parameters: 3
2022-03-09 00:21:45.277 Done.

As result of workset upload oms service does:

upload archive, for example: RiskPaths.set.New-Data.zip

extract workset .csv files with parameters into RiskPaths.set.New-Data folder

extract workset .json metadata file

create new or update existing New-Data workset in RiskPaths model database

Method:

GET /api/upload/log-all

Call example from browser:

http://localhost:4040/api/upload/log-all

Return example:

GET all upload log files

[
 {
 "Status": "ready",
 "Kind": "upload",
 "ModelDigest": "ec388f9e6221e63ac248818b04633515",
 "RunDigest": "",
 "WorksetName": "Default",
 "IsFolder": true,
 "Folder": "NewCaseBased.set.Default",
 "FolderModTime": 1646804960744,
 "IsZip": true,
 "ZipFileName": "NewCaseBased.set.Default.zip",
 "ZipModTime": 1646804960719,
 "ZipSize": 1574,
 "LogFileName": "NewCaseBased.set.Default.ready.upload.log",
 "LogModTime": 1646804960806,
 "Lines": [
 "2022-03-09 00:49:20.719 Upload of: NewCaseBased.set.Default ",
 "------------------ ",
 "Upload : NewCaseBased.set.Default.zip ",
 "Model Name : NewCaseBased ",
 "Model Version : 1.0.0.0 2022-03-07 23:36:46.085 ",
 "Model Digest : ec388f9e6221e63ac248818b04633515 ",
 "Scenario Name : Default ",
 "Folder : NewCaseBased.set.Default ",
 "------------------ ",
 "2022-03-09 00:49:20.719 delete: NewCaseBased.set.Default.ready.upload.log ",
 "2022-03-09 00:49:20.719 delete: NewCaseBased.set.Default.error.upload.log ",
 "2022-03-09 00:49:20.719 delete: NewCaseBased.set.Default ",
 "2022-03-09 00:49:20.719 dbcopy -m NewCaseBased -dbcopy.IdOutputNames=false -dbcopy.SetName Default -dbcopy.To db -dbcopy.Zip -dbcopy.InputDir models\\home\\io\\
upload ",
 "2022-03-09 00:49:20.742 Model NewCaseBased ",
 "2022-03-09 00:49:20.742 Unpack NewCaseBased.set.Default.zip ",
 "2022-03-09 00:49:20.767 Workset Default into: 101 Default ",
 "2022-03-09 00:49:20.767 Parameters: 3 ",
 "2022-03-09 00:49:20.806 Done. ",
 ""
]
 },
 {
 "Status": "ready",
 "Kind": "upload",
 "ModelDigest": "d90e1e9a49a06d972ecf1d50e684c62b",
 "RunDigest": "",
 "WorksetName": "New-Data",
 "IsFolder": true,
 "Folder": "RiskPaths.set.New-Data",
 "FolderModTime": 1646803541985,
 "IsZip": true,
 "ZipFileName": "RiskPaths.set.New-Data.zip",
 "ZipModTime": 1646803541965,
 "ZipSize": 1690,
 "LogFileName": "RiskPaths.set.New-Data.ready.upload.log",
 "LogModTime": 1646803542034,
 "Lines": [
 "2022-03-09 00:25:41.964 Upload of: RiskPaths.set.New-Data ",
 "------------------ ",
 "Upload : RiskPaths.set.New-Data.zip ",
 "Model Name : RiskPaths ",
 "Model Version : 3.0.0.0 2022-03-07 23:37:41.202 ",
 "Model Digest : d90e1e9a49a06d972ecf1d50e684c62b ",
 "Scenario Name : New-Data ",
 "Folder : RiskPaths.set.New-Data ",
 "------------------ ",
 "2022-03-09 00:25:41.965 delete: RiskPaths.set.New-Data.ready.upload.log ",
 "2022-03-09 00:25:41.965 delete: RiskPaths.set.New-Data.error.upload.log ",
 "2022-03-09 00:25:41.965 delete: RiskPaths.set.New-Data ",
 "2022-03-09 00:25:41.966 dbcopy -m RiskPaths -dbcopy.IdOutputNames=false -dbcopy.SetName New-Data -dbcopy.To db -dbcopy.Zip -dbcopy.InputDir models\\home\\io\\upl
oad ",
 "2022-03-09 00:25:41.983 Model RiskPaths ",
 "2022-03-09 00:25:41.983 Unpack RiskPaths.set.New-Data.zip ",
 "2022-03-09 00:25:42.004 Workset New-Data into: 103 New-Data ",
 "2022-03-09 00:25:42.004 Parameters: 3 ",
 "2022-03-09 00:25:42.034 Done. ",
 ""
]
 }
]

GET upload files tree from upload directory on the server.

This method only avaliable if server configured to create uploads for user.

This is a beta version and may change in the future.

Upload can be initiated through UI or by direct API call:

POST initiate model run upload

POST initiate workset upload

As result of workset upload oms service does:

upload archive, for example: RiskPaths.set.New-Data.zip

extract workset .csv files with parameters into RiskPaths.set.New-Data folder

extract workset .json metadata file

create new or update existing New-Data workset in RiskPaths model database

This method retruns file tree in upload folder, for exmaple in RiskPaths.set.New-Data folder.

Method:

GET /api/upload/file-tree/:folder

Arguments:

:folder - (required) upload folder file name, for example: RiskPaths.set.New-Data

Call example from browser:

http://localhost:4040/api/upload/file-tree/RiskPaths.set.New-Data

Return example:

GET upload files tree

[
 {
 "Path": "RiskPaths.set.New-Data",
 "IsDir": true,
 "Size": 0,
 "ModTime": 1646803541985
 },
 {
 "Path": "RiskPaths.set.New-Data/RiskPaths.set.New-Data.json",
 "IsDir": false,
 "Size": 518,
 "ModTime": 1646803541984
 },
 {
 "Path": "RiskPaths.set.New-Data/set.New-Data",
 "IsDir": true,
 "Size": 0,
 "ModTime": 1646803541986
 },
 {
 "Path": "RiskPaths.set.New-Data/set.New-Data/AgeBaselinePreg1.csv",
 "IsDir": false,
 "Size": 268,
 "ModTime": 1646803541985
 },
 {
 "Path": "RiskPaths.set.New-Data/set.New-Data/SimulationCases.csv",
 "IsDir": false,
 "Size": 29,
 "ModTime": 1646803541986
 },
 {
 "Path": "RiskPaths.set.New-Data/set.New-Data/UnionStatusPreg1.csv",
 "IsDir": false,
 "Size": 199,
 "ModTime": 1646803541986
 }
]

POST model run upload request: upload model run zip file on server and start copy it into database.

This method only avaliable if server configured to create uploads for user.

This is a beta version and may change in the future.

As result of model run upload oms service does:

upload archive, for example: RiskPaths.run.New-Run.zip

extract .csv files with all run parameters and output tables into RiskPaths.run.New-Run folder

extract model run metadata file: modelOne.run.New-Run.json

create new or update existing "New-Run" model run in RiskPaths model database

Model run .zip archive must contain .json metadata file, which is usually created by dbcopy utility. For example:

POST initiate model run upload

{
 "ModelName": "RiskPaths",
 "ModelDigest": "d90e1e9a49a06d972ecf1d50e684c62b",
 "Name": "RiskPaths_Default",
 "SubCount": 1,
 "SubStarted": 1,
 "SubCompleted": 1,
 "CreateDateTime": "2022-03-22 20:49:24.341",
 "Status": "s",
 "UpdateDateTime": "2022-03-22 20:49:25.017",
 "RunDigest": "feb022eed344533046de517bddea7d09",
 "ValueDigest": "0f454b3af0d30f9f0614a9ce23e5cbfd",
 "RunStamp": "2022_03_22_20_49_24_260",
 "Txt": [{
 "LangCode": "EN",
 "Descr": "scenario",
 "Note": ""
 }, {
 "LangCode": "FR",
 "Descr": "scenario",
 "Note": ""
 }
],
 "Opts": {
 "OpenM.LogFilePath": "RiskPaths.log",
 "OpenM.ProgressPercent": "25",
 "OpenM.RunId": "102",
 "OpenM.RunName": "RiskPaths_Default",
 "OpenM.RunStamp": "2022_03_22_20_49_24_260",
 "OpenM.SetId": "101",
 "OpenM.SetName": "Default"
 },
 "Param": [{
 "Name": "AgeBaselineForm1",
 "Txt": [],
 "SubCount": 1,
 "DefaultSubId": 0,
 "ValueDigest": "a9a4c2d9ef657aafd89bb098635f7098"
 }, {
 "Name": "AgeBaselinePreg1",

 }
],
 "Table": [{
 "Name": "T01_LifeExpectancy",
 "ValueDigest": "5db49f190e7e2e999f77e1a7f796e3bc"
 }, {
 "Name": "T02_TotalPopulationByYear",

 }
],
 "Progress": [{
 "SubId": 0,
 "CreateDateTime": "2022-03-22 20:49:24.399",
 "Status": "s",
 "UpdateDateTime": "2022-03-22 20:49:24.818",
 "Count": 100,
 "Value": 5000
 }
]
}

Method:

POST /api/upload/model/:model/run
POST /api/upload/model/:model/run/:run

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

:run - (optional) model run digest, run stamp or run name

Model run can be identified by run digest, run stamp or run name. It is recommended to use digest because it is uniquely identifies model run.

Run stamp, if not explicitly specified as model run option, automatically generated as timestamp string, ex.: 2016_08_17_21_07_55_123. It is
also possible to use name, which is more human readable than digest, but if there are multiple runs with same name in database than result is
undefined. This argument can committed because model run .zip archive must contain contain .json metadata file.

Call examples:

curl -v -X POST -F "filename=@modelOne.run.Default-4.zip" http://localhost:4040/api/upload/model/modelOne/run/Default-4
curl -v -X POST -F "filename=@modelOne.run.Default-4.zip" http://localhost:4040/api/upload/model/modelOne/run

POST model workset upload request: upload workset zip file on server and start copy it into database.

This method only avaliable if server configured to create uploads for user.

This is a beta version and may change in the future.

Workset is a set of model input parameters (a.k.a. "scenario" input). Workset can be used to run the model.

As result of workset upload oms service does:

upload archive, for example: RiskPaths.set.New-Data.zip

extract workset .csv files with parameters into RiskPaths.set.New-Data folder

extract workset .json metadata file

create new or update existing New-Data workset in RiskPaths model database

Workset .zip archive does not have to conatin workset .json metadata file, it can include only .csv files with parameter values. If workset .zip

created by dbcopy utility or as result of UI download then it always contain workset .json metadata file, for example:

{
 "ModelName": "RiskPaths",
 "ModelDigest":"d90e1e9a49a06d972ecf1d50e684c62b",
 "Name": "New-Data",
 "IsReadonly": false,
 "Txt": [{
 "LangCode": "EN",
 "Descr": "Model modified set of input parameters",
 "Note": ""
 }, {
 "LangCode": "FR",
 "Descr": "Modèle modifié ensemble de paramètres d'entrée",
 "Note": "Remarques sur l'ensemble d'entrées modifiées par le modèle"
 }
],
 "Param": [{
 "Name": "AgeBySex",
 "SubCount": 1,
 "Txt": [{
 "LangCode": "EN",
 "Note": "Age by Sex modified values"
 }
]
 }
]
}

Method:

POST /api/upload/model/:model/workset
POST /api/upload/model/:model/workset/:set

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

:set - (optional) workset name

Workset is uniquely identified by name (inside the model). Different models can have worksets with same name, i.e. each model can have
workset with name "Default". This argument is and can ommited if workset .zip archive contain .json file with workset metadata, which must
include name.

Multi-part form body

Posted multi-part form consists of two parts:

POST initiate workset upload

(optional) "workset-upload-options" part with JSON upload options;

(required) workset.zip file.

JSON upload options are:

{
 "NoDigestCheck": true
}

If NoDigestCheck is true then method calls dbcopy with -dbcopy.NoDigetCheck option. By default dbcopy imports workset only if ModelDigest from
source json metadata identical to destination model digest. If you are using NoDigestCheck then dbcopy do ignore source digest and rely on model
name only.

Call examples:

curl -v -X POST -F "filename=@modelOne.set.New.zip" http://localhost:4040/api/upload/model/modelOne/workset/New
curl -v -X POST -F "filename=@modelOne.set.Any.zip" http://localhost:4040/api/upload/model/modelOne/workset

curl -v -X POST -F "workset-upload-options=@options.json" -F "filename=@modelOne.set.Other.zip" http://localhost:4040/api/upload/model/zz_201208171604590148_/workset

DELETE upload files from the server.

This method only avaliable if server configured to allow uploads to the server by user.

Upload can be initiated through UI or by direct API call:

POST initiate model run upload

POST initiate workset upload

As result of workset upload oms service does:

upload archive, for example: RiskPaths.set.New-Data.zip

extract workset .csv files with parameters into RiskPaths.set.New-Data folder

extract workset .json metadata file

create new or update existing New-Data workset in RiskPaths model database

Methods:

DELETE /api/upload/delete/:folder
DELETE /api/upload/start/delete/:folder

First method deletes upload files from the server.

Second method will initiate deleting of upload files from the server. Actual delete performed in background and results can be checked through
log file.

Arguments:

:folder - (required) upload folder file name, for example: RiskPaths.set.New-Data

Call example:

curl -v -X DELETE http://localhost:4040/api/upload/delete/RiskPaths.set.New-Data
curl -v -X DELETE http://localhost:4040/api/upload/start/delete/RiskPaths.set.New-Data

DELETE upload files

DELETE all upload files from the server.

This method only avaliable if server configured to allow uploads to the server by user.

It does delete all files from server download folder.

Upload can be initiated through UI or by direct API call:

POST initiate model run upload

POST initiate workset upload

As result of workset upload oms service does:

upload archive, for example: RiskPaths.set.New-Data.zip

extract workset .csv files with parameters into RiskPaths.set.New-Data folder

extract workset .json metadata file

create new or update existing New-Data workset in RiskPaths model database

Methods:

DELETE /api/upload/delete-all
DELETE /api/upload/start/delete-all

First method deletes all files from server upload folder.

Second method will initiate deleting the files. Actual delete performed in background and results can be checked through log file.

Call example:

curl -v -X DELETE http://localhost:4040/api/upload/delete-all
curl -v -X DELETE http://localhost:4040/api/upload/start/delete-all

DELETE all upload files

Get persistent views for the model from user home directory on the server.

This method only avaliable if server configured to save a user data in home directory.

This is a beta version and may change in the future.

Method:

GET /api/user/view/model/:model

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database then result is undefined.

Call examples from browser:

http://localhost:4040/api/user/view/model/modelOne
http://localhost:4040/api/user/view/model/a5149e422b9df4a14be0a801ec195f19

Return example:

{
 "model": {
 "name": "modelOne",
 "parameterViews": [{
 "name": "ageSex",
 "view": {
 "rows": [],
 "cols": [{
 "name": "dim1",
 "values": ["M", "F"]
 }, {
 "name": "dim0",
 "values": ["10-20", "20-30", "30-40", "40+"]
 }
],
 "others": [],
 "isRowColControls": true,
 "rowColMode": 2
 }
 }, {
 "name": "salaryAge",
 "view": {
 "rows": [{
 "name": "dim0",
 "values": ["L", "M", "H"]
 }, {
 "name": "dim1",
 "values": ["10-20", "20-30", "30-40", "40+"]
 }
],
 "cols": [],
 "others": [],
 "isRowColControls": true,
 "rowColMode": 1
 }
 }
]
 }
}

GET user views for the model

Create new or replace existing persistent views for the model as JSON file at user home directory on the server.

This method only avaliable if server configured to save a user data in home directory.

It does update existing or save new JSON file with persistent model views in user home directory on the server.

This is a beta version and may change in the future.

Method:

PUT /api/user/view/model/:model

For example:

curl -v -X PUT -H "Content-Type: application/json" "http://localhost:4040/api/user/view/model/modelOne" -d @modelOne.view.json

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database then result is undefined.

JSON argument:

It is expected to be similar JSON return of GET user views for the model method.

For example (modelOne.view.json file):

{
 "model": {
 "name": "modelOne",
 "parameterViews": [{
 "name": "ageSex",
 "view": {
 "rows": [],
 "cols": [{
 "name": "dim1",
 "values": ["M", "F"]
 }, {
 "name": "dim0",
 "values": ["10-20", "20-30", "30-40", "40+"]
 }
],
 "others": [],
 "isRowColControls": true,
 "rowColMode": 2
 }
 }, {
 "name": "salaryAge",
 "view": {
 "rows": [{
 "name": "dim0",
 "values": ["L", "M", "H"]
 }, {
 "name": "dim1",
 "values": ["10-20", "20-30", "30-40", "40+"]
 }
],
 "cols": [],
 "others": [],
 "isRowColControls": true,
 "rowColMode": 1
 }
 }
]
 }
}

Example:

PUT user views for the model

curl -v -X PUT -H "Content-Type: application/json" "http://localhost:4040/api/user/view/model/modelOne" -d @modelOne.view.json

* Trying ::1...
* TCP_NODELAY set
* Trying 127.0.0.1...
* TCP_NODELAY set
* Connected to localhost (127.0.0.1) port 4040 (#0)
> PUT /api/user/view/model/modelOne HTTP/1.1
> Host: localhost:4040
> User-Agent: curl/7.55.1
> Accept: */*
> Content-Type: application/json
> Content-Length: 826
>
* upload completely sent off: 826 out of 826 bytes
< HTTP/1.1 200 OK
< Date: Tue, 20 Apr 2021 01:38:36 GMT
< Content-Length: 0
<
* Connection #0 to host localhost left intact

Delete persistent views for the model from user home directory on the server.

This method only avaliable if server configured to save a user data in home directory.

It does delete persistent user views JSON file from user home directory on the server. If such file does not exist then method does nothing and
return success.

This is a beta version and may change in the future.

Method:

DELETE /api/user/view/model/:model

For example:

curl -v -X DELETE http://localhost:4040/api/user/view/model/modelOne

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database then result is undefined.

Example:

curl -v -X DELETE http://localhost:4040/api/user/view/model/modelOne

* Trying ::1...
* TCP_NODELAY set
* Trying 127.0.0.1...
* TCP_NODELAY set
* Connected to localhost (127.0.0.1) port 4040 (#0)
> DELETE /api/user/view/model/modelOne HTTP/1.1
> Host: localhost:4040
> User-Agent: curl/7.55.1
> Accept: */*
>
< HTTP/1.1 200 OK
< Content-Location: /api/user/view/model/modelOne
< Content-Type: text/plain
< Date: Tue, 20 Apr 2021 01:41:22 GMT
< Content-Length: 0
<
* Connection #0 to host localhost left intact

DELETE user views for the model

GET web-service configuration.

This method return web-service configuration and environment variables which names started from OM_CFG_ prefix.

This is a beta version and may change in the future.

Method:

GET /api/service/config

Call examples:

http://localhost:4040/api/service/config

Example:

{
 "OmsName": "_4040",
 "DoubleFmt": "%.15g",
 "LoginUrl": "",
 "LogoutUrl": "",
 "AllowUserHome": true,
 "AllowDownload": true,
 "AllowUpload": true,
 "AllowMicrodata": true,
 "IsJobControl": true,
 "IsModelDoc": true,
 "IsDiskUse": true,
 "DiskUse": {
 "DiskScanMs": 11000,
 "Limit": 12884901888,
 "AllLimit": 85899345920
 },
 "Env": {
 "OM_CFG_INI_ALLOW": "true",
 "OM_CFG_INI_ANY_KEY": "true"
 },
 "ModelCatalog": {
 "ModelDir": "models/bin",
 "ModelLogDir": "models/log",
 "IsLogDirEnabled": true,
 "LastTimeStamp": ""
 },
 "RunCatalog": {
 "RunTemplates": [
 "run.Debug.template.txt"
],
 "DefaultMpiTemplate": "mpi.ModelRun.template.txt",
 "MpiTemplates": [
 "mpi.ModelRun.template.txt",
 "mpi.RiskPaths.template.txt"
],
 "Presets": [
 {
 "Name": "any_model.1.Use_Defaults",
 "Options": "{\r\n \"Text\": [{\r\n \"LangCode\": \"EN\",\r\n \"ShortLabel\": \"Default Options\",\r\n \"Descr\": \"Use default model run options\"\r\n }, {\r\n \"LangCode\":
 \"FR\",\r\n \"ShortLabel\": \"Options par défaut\",\r\n \"Descr\": \"Utiliser les options d'exécution du modèle par défaut\"\r\n }\r\n],\r\n \"subCount\": 1,\r\n \"threadCount\": 1,\r
\n \"workDir\": \"\",\r\n \"csvDir\": \"\",\r\n \"csvCodeId\": \"enumCode\",\r\n \"useIni\": false,\r\n \"iniAnyKey\": false,\r\n \"profile\": \"\",\r\n \"sparseOutput\": false,\r\n \"progressPerc
ent\": 1,\r\n \"progressStep\": 0.0,\r\n \"runTmpl\": \"\",\r\n \"mpiNpCount\": 0,\r\n \"mpiOnRoot\": false,\r\n \"mpiTmpl\": \"\"\r\n}\r\n"
 },
 {
 "Name": "any_model.2.Large_Run",
 "Options": "{\r\n \"Text\": [{\r\n \"LangCode\": \"EN\",\r\n \"ShortLabel\": \"Large Run\",\r\n \"Descr\": \"Large model run: use back-end MPI Cluster\"\r\n }, {\r\n \"Lan
gCode\": \"FR\",\r\n \"ShortLabel\": \"Grande Course\",\r\n \"Descr\": \"Grande exécution de modèle : utilisez le cluster MPI back-end\"\r\n }\r\n],\r\n \"threadCount\": 3,\r\n \"
mpiNpCount\": 5,\r\n \"mpiOnRoot\": false,\r\n \"mpiTmpl\": \"mpi.c-all4.template.txt\"\r\n}\r\n"
 }
]
 }
}

GET service configuration

GET web-service state.

This method return job service state: model runs queue, active runs and run history.

This is a beta version and may change in the future.

Method:

GET /api/service/state

Call examples:

http://localhost:4040/api/service/state

Example:

{
 "IsJobControl": true,
 "IsQueuePaused": false,
 "JobUpdateDateTime": "2022-09-13 19:51:57.436",
 "MpiRes": {
 "Cpu": 8,
 "Mem": 0
 },
 "ActiveTotalRes": {
 "Cpu": 8,
 "Mem": 0
 },
 "ActiveOwnRes": {
 "Cpu": 8,
 "Mem": 0
 },
 "QueueTotalRes": {
 "Cpu": 6,
 "Mem": 0
 },
 "QueueOwnRes": {
 "Cpu": 6,
 "Mem": 0
 },
 "MpiErrorRes": {
 "Cpu": 0,
 "Mem": 0
 },
 "LocalRes": {
 "Cpu": 4,
 "Mem": 0
 },
 "LocalActiveRes": {
 "Cpu": 0,
 "Mem": 0
 },
 "LocalQueueRes": {
 "Cpu": 0,
 "Mem": 0
 },
 "Queue": [
 {
 "SubmitStamp": "2022_09_13_19_51_25_588",
 "Pid": 0,
 "CmdPath": "",
 "ModelName": "RiskPaths",
 "ModelDigest": "d90e1e9a49a06d972ecf1d50e684c62b",
 "RunStamp": "",
 "Dir": "",
 "Opts": {
 "OpenM.BaseRunDigest": "66646f985fecfb1d59fd5ff81ee3b78a",
 "OpenM.LogRank": "true",
 "OpenM.MessageLanguage": "en-CA",
 "OpenM.NotOnRoot": "true",
 "OpenM.RunName": "RiskPaths_New-6-sub-values",
 "OpenM.SetName": "New_2022",
 "OpenM.SubValues": "6",
 "OpenM.Threads": "3"
 },
 "Env": {},
 "Threads": 3,
 "IsMpi": true,

GET job service state

 "IsMpi": true,
 "Mpi": {
 "Np": 3,
 "IsNotOnRoot": true,
 "IsNotByJob": true
 },
 "Template": "mpi.ModelRun.template.txt",
 "Tables": [
 "T02_TotalPopulationByYear",
 "TG03_Union_Tables",
 "TG02_Birth_Tables"
],
 "RunNotes": [],
 "Res": {
 "Cpu": 6,
 "Mem": 0
 },
 "IsOverLimit": false,
 "QueuePos": 1,
 "LogFileName": "",
 "LogPath": ""
 }
],
 "Active": [
 {
 "SubmitStamp": "2022_09_13_19_50_35_815",
 "Pid": 0,
 "CmdPath": "",
 "ModelName": "RiskPaths",
 "ModelDigest": "d90e1e9a49a06d972ecf1d50e684c62b",
 "RunStamp": "2022_09_13_19_51_54_081",
 "Dir": "",
 "Opts": {
 "OpenM.BaseRunDigest": "66646f985fecfb1d59fd5ff81ee3b78a",
 "OpenM.LogRank": "true",
 "OpenM.MessageLanguage": "en-CA",
 "OpenM.NotOnRoot": "true",
 "OpenM.RunName": "RiskPaths 8 subValues",
 "OpenM.SetName": "New_2022",
 "OpenM.SubValues": "8",
 "OpenM.Threads": "4"
 },
 "Env": {},
 "Threads": 4,
 "IsMpi": true,
 "Mpi": {
 "Np": 3,
 "IsNotOnRoot": true,
 "IsNotByJob": true
 },
 "Template": "mpi.ModelRun.template.txt",
 "Tables": [
 "T02_TotalPopulationByYear",
 "TG03_Union_Tables",
 "TG02_Birth_Tables"
],
 "RunNotes": [],
 "Res": {
 "Cpu": 8,
 "Mem": 0
 },
 "IsOverLimit": false,
 "QueuePos": 0,
 "LogFileName": "RiskPaths.2022_09_13_19_51_54_081.console.log",
 "LogPath": ""
 }
],
 "History": [
 {
 "SubmitStamp": "2022_09_06_19_09_01_408",
 "ModelName": "RiskPaths",
 "ModelDigest": "d90e1e9a49a06d972ecf1d50e684c62b",
 "RunStamp": "no-run-time-stamp",
 "JobStatus": "error",
 "RunTitle": "RiskPaths_descr_tables"
 },
 {
 "SubmitStamp": "2022_09_06_23_29_01_463",
 "ModelName": "RiskPaths",
 "ModelDigest": "d90e1e9a49a06d972ecf1d50e684c62b",
 "RunStamp": "2022_09_06_23_29_05_344",
 "JobStatus": "error",
 "RunTitle": "RiskPaths_New_2022-mpi-2-descr-note"
 },
 {
 "SubmitStamp": "2022_09_06_23_30_15_733",
 "ModelName": "RiskPaths",
 "ModelDigest": "d90e1e9a49a06d972ecf1d50e684c62b",
 "RunStamp": "2022_09_06_23_30_17_893",

 "RunStamp": "2022_09_06_23_30_17_893",
 "JobStatus": "success",
 "RunTitle": "RiskPaths_New_2022-mpi-2-descr-note-re-run"
 },
 {
 "SubmitStamp": "2022_09_06_23_36_48_977",
 "ModelName": "RiskPaths",
 "ModelDigest": "d90e1e9a49a06d972ecf1d50e684c62b",
 "RunStamp": "2022_09_06_23_38_38_040",
 "JobStatus": "success",
 "RunTitle": "RiskPaths next rate"
 },
 {
 "SubmitStamp": "2022_09_08_20_49_55_357",
 "ModelName": "RiskPaths",
 "ModelDigest": "d90e1e9a49a06d972ecf1d50e684c62b",
 "RunStamp": "2022_09_08_20_49_56_563",
 "JobStatus": "success",
 "RunTitle": "RiskPaths_descr_tables-2"
 }
],
 "ComputeState": [
 {
 "Name": "cpc-1",
 "State": "ready",
 "TotalRes": {
 "Cpu": 2,
 "Mem": 0
 },
 "UsedRes": {
 "Cpu": 2,
 "Mem": 0
 },
 "OwnRes": {
 "Cpu": 2,
 "Mem": 0
 },
 "ErrorCount": 0,
 "LastUsedTs": 1663113117436
 },
 {
 "Name": "cpc-2",
 "State": "ready",
 "TotalRes": {
 "Cpu": 2,
 "Mem": 0
 },
 "UsedRes": {
 "Cpu": 2,
 "Mem": 0
 },
 "OwnRes": {
 "Cpu": 2,
 "Mem": 0
 },
 "ErrorCount": 0,
 "LastUsedTs": 1663113117436
 },
 {
 "Name": "cpc-3",
 "State": "ready",
 "TotalRes": {
 "Cpu": 4,
 "Mem": 0
 },
 "UsedRes": {
 "Cpu": 4,
 "Mem": 0
 },
 "OwnRes": {
 "Cpu": 4,
 "Mem": 0
 },
 "ErrorCount": 0,
 "LastUsedTs": 1663113117436
 }
],
 "IsDiskUse": true,
 "IsDiskOver": false,
 "DiskScanMs": 11000,
 "Limit": 12884901888,
 "AllLimit": 85899345920
}

POST refresh disk space usage info.

This method can be used to refersh disk usage info on the server. Server periodically scan disk storage to GET disk usage state. It is a slow
background process and disk usage info may be updated only every 2-3 times per hour. By using this method you can force the server to scan
disk usage immediately.

Method:

POST /api/service/disk-use/refersh

Call example:

curl -v -X POST http://localhost:4040/api/service/disk-use/refersh

Example:

curl -v -X POST http://localhost:4040/api/service/disk-use/refresh

* Trying [::1]:4040...
* Connected to localhost (::1) port 4040
> POST /api/service/disk-use/refresh HTTP/1.1
> Host: localhost:4040
> User-Agent: curl/8.4.0
> Accept: */*
>
< HTTP/1.1 200 OK
< Content-Location: /api/service/disk-use/refresh/true
< Date: Sat, 10 Feb 2024 08:27:59 GMT
< Content-Length: 0
<
* Connection #0 to host localhost left intact

POST refresh disk space usage info

GET state of active model run job.

This method allow get state of model run job which is running now, results include:

model run request options, for example: run name, number of sub-values (sub-samples);

model run progress and sub-values progress information;

model run log content.

This is a beta version and may change in the future.

Method:

GET /api/service/job/active/:job

Arguments:

:job - (required) model run submission time stamp

Call examples:

http://localhost:4040/api/service/job/active/2022_09_13_21_28_38_409

Example:

{
 "JobStatus": "",
 "SubmitStamp": "2022_09_13_21_28_38_409",
 "Pid": 0,
 "CmdPath": "",
 "ModelName": "RiskPaths",
 "ModelDigest": "d90e1e9a49a06d972ecf1d50e684c62b",
 "RunStamp": "2022_09_13_21_30_27_952",
 "Dir": "",
 "Opts": {
 "EN.RunDescription": "Run desription in English",
 "FR.RunDescription": "Run desription in French",
 "OpenM.BaseRunDigest": "66646f985fecfb1d59fd5ff81ee3b78a",
 "OpenM.LogRank": "true",
 "OpenM.MessageLanguage": "en-CA",
 "OpenM.NotOnRoot": "true",
 "OpenM.RunName": "RiskPaths New 4 sub-values",
 "OpenM.SetName": "New_2022",
 "OpenM.SubValues": "4",
 "OpenM.Threads": "2"
 },
 "Env": {},
 "Threads": 2,
 "IsMpi": true,
 "Mpi": {
 "Np": 2,
 "IsNotOnRoot": true,
 "IsNotByJob": true
 },
 "Template": "mpi.ModelRun.template.txt",
 "Tables": [
 "T02_TotalPopulationByYear",
 "TG03_Union_Tables",
 "TG02_Birth_Tables"
],
 "RunNotes": [
 {
 "LangCode": "EN",
 "Note": "Run notes (English)"
 },
 {
 "LangCode": "FR",
 "Note": "Run notes (French)"
 }
],
 "Res": {
 "Cpu": 2,
 "Mem": 0
 },

GET state of active model run job

 },
 "IsOverLimit": false,
 "QueuePos": 0,
 "LogFileName": "RiskPaths.2022_09_13_21_30_27_952.console.log",
 "LogPath": "",
 "RunStatus": [
 {
 "ModelName": "RiskPaths",
 "ModelDigest": "d90e1e9a49a06d972ecf1d50e684c62b",
 "ModelVersion": "3.0.0.0",
 "ModelCreateDateTime": "2022-08-27 04:44:36.215",
 "Name": "RiskPaths New 4 sub-values",
 "SubCount": 4,
 "SubStarted": 4,
 "SubCompleted": 0,
 "CreateDateTime": "2022-09-13 21:30:28.188",
 "Status": "p",
 "UpdateDateTime": "2022-09-13 21:30:33.000",
 "RunDigest": "6d697389e6ca0d55b6615e02c1e453f6",
 "ValueDigest": "",
 "RunStamp": "2022_09_13_21_30_27_952",
 "Txt": [],
 "Opts": {},
 "Param": [],
 "Table": [],
 "Progress": [
 {
 "SubId": 0,
 "CreateDateTime": "2022-09-13 21:30:28.000",
 "Status": "p",
 "UpdateDateTime": "2022-09-13 21:30:33.000",
 "Count": 3,
 "Value": 92588
 },
 {
 "SubId": 1,
 "CreateDateTime": "2022-09-13 21:30:28.000",
 "Status": "p",
 "UpdateDateTime": "2022-09-13 21:30:32.000",
 "Count": 3,
 "Value": 92588
 }
]
 }
],
 "Lines": [
 "2022-09-13 21:30:28.010 RiskPaths",
 "2022-09-13 21:30:28.010 RiskPaths",
 "2022-09-13 21:30:28.030 [0] Reading C:\\go-ompp\\models\\log\\2022_09_13_21_30_27_952.run_notes.EN.md",
 "2022-09-13 21:30:28.030 [0] Reading C:\\go-ompp\\models\\log\\2022_09_13_21_30_27_952.run_notes.FR.md",
 "2022-09-13 21:30:28.101 [0] Model version : 3.0.0.0",
 "2022-09-13 21:30:28.101 [0] Model created : 2022-08-27 04:44:36.215",
 "2022-09-13 21:30:28.101 [0] Model digest : d90e1e9a49a06d972ecf1d50e684c62b",
 "2022-09-13 21:30:28.101 [0] OpenM++ version: 2022-05-05 003df091e5b05b7208562c626e7dd72b4dd5055e v1.9.9",
 "2022-09-13 21:30:28.101 [0] OpenM++ build : Windows 64 bit Release MPI",
 "2022-09-13 21:30:28.101 [0] Parallel run of 2 modeling processes, 2 thread(s) each",
 "2022-09-13 21:30:28.101 [0] OM_ROOT=C:\\go-ompp",
 "2022-09-13 21:30:28.101 [0] Model build : Windows 64 bit Release",
 "2022-09-13 21:30:28.101 [0] Prepare fixed and missing parameters",
 "2022-09-13 21:30:28.102 [0] Run: 2022_09_13_21_30_27_952",
 "2022-09-13 21:30:28.116 [1] Model version : 3.0.0.0",
 "2022-09-13 21:30:28.116 [1] Model created : 2022-08-27 04:44:36.215",
 "2022-09-13 21:30:28.116 [1] Model digest : d90e1e9a49a06d972ecf1d50e684c62b",
 "2022-09-13 21:30:28.116 [1] OpenM++ version: 2022-05-05 003df091e5b05b7208562c626e7dd72b4dd5055e v1.9.9",
 "2022-09-13 21:30:28.116 [1] OpenM++ build : Windows 64 bit Release MPI",
 "2022-09-13 21:30:28.116 [1] OM_ROOT=C:\\go-ompp",
 "2022-09-13 21:30:28.117 [1] Model build : Windows 64 bit Release",
 "2022-09-13 21:30:28.117 [1] Prepare fixed and missing parameters",
 "2022-09-13 21:30:28.117 [1] Run: 2022_09_13_21_30_27_952",
 "2022-09-13 21:30:28.219 [1] Run: 142 RiskPaths New 4 sub-values",
 "2022-09-13 21:30:28.219 [1] Get scenario parameters for process",
 "2022-09-13 21:30:28.220 [1] member=0 Bind scenario parameters",
 "2022-09-13 21:30:28.220 [1] member=0 Compute derived parameters",
 "2022-09-13 21:30:28.220 [1] member=1 Bind scenario parameters",
 "2022-09-13 21:30:28.221 [1] member=1 Compute derived parameters",
 "2022-09-13 21:30:28.221 [1] member=1 Prepare for simulation",
 "2022-09-13 21:30:28.221 [1] member=1 Simulation progress=0% cases=0",
 "2022-09-13 21:30:28.222 [1] member=0 Prepare for simulation",
 "2022-09-13 21:30:28.222 [1] member=0 Simulation progress=0% cases=0",
 "2022-09-13 21:30:29.687 [1] member=1 Simulation progress=1% cases=30863",
 "2022-09-13 21:30:29.849 [1] member=0 Simulation progress=1% cases=30863",
 "2022-09-13 21:30:31.153 [1] member=1 Simulation progress=2% cases=61725",
 "2022-09-13 21:30:31.483 [1] member=0 Simulation progress=2% cases=61725",
 "2022-09-13 21:30:32.618 [1] member=1 Simulation progress=3% cases=92588",
 "2022-09-13 21:30:33.139 [1] member=0 Simulation progress=3% cases=92588",
 "2022-09-13 21:30:34.089 [1] member=1 Simulation progress=4% cases=123450",
 "2022-09-13 21:30:34.781 [1] member=0 Simulation progress=4% cases=123450",
 "2022-09-13 21:30:35.550 [1] member=1 Simulation progress=5% cases=154313"

 "2022-09-13 21:30:35.550 [1] member=1 Simulation progress=5% cases=154313"
]
}

Example: empty response if model run job not found on server

{
 "JobStatus": "",
 "SubmitStamp": "2022_07_08_22_36_46_203",
 "Pid": 0,
 "CmdPath": "",
 "ModelName": "",
 "ModelDigest": "",
 "RunStamp": "",
 "Dir": "",
 "Opts": {},
 "Env": {},
 "Threads": 0,
 "IsMpi": false,
 "Mpi": {
 "Np": 0,
 "IsNotOnRoot": false,
 "IsNotByJob": false
 },
 "Template": "",
 "Tables": [],
 "RunNotes": [],
 "Res": {
 "Cpu": 0,
 "Mem": 0
 },
 "IsOverLimit": false,
 "QueuePos": 0,
 "LogFileName": "",
 "LogPath": "",
 "RunStatus": [],
 "Lines": []
}

GET state of model run job from queue.

This method allow get model run job request from the queue, results include:

model run request options, for example: run name, number of sub-values (sub-samples);

This is a beta version and may change in the future.

Method:

GET /api/service/job/queue/:job

Arguments:

:job - (required) model run submission time stamp

Call examples:

http://localhost:4040/api/service/job/queue/2022_09_13_21_28_38_409

Example:

GET state of model run job from queue

{
 "JobStatus": "",
 "SubmitStamp": "2022_09_13_21_28_38_409",
 "Pid": 0,
 "CmdPath": "",
 "ModelName": "RiskPaths",
 "ModelDigest": "d90e1e9a49a06d972ecf1d50e684c62b",
 "RunStamp": "",
 "Dir": "",
 "Opts": {
 "EN.RunDescription": "Run desription in English",
 "FR.RunDescription": "Run desription in French",
 "OpenM.BaseRunDigest": "66646f985fecfb1d59fd5ff81ee3b78a",
 "OpenM.LogRank": "true",
 "OpenM.MessageLanguage": "en-CA",
 "OpenM.NotOnRoot": "true",
 "OpenM.RunName": "RiskPaths New 4 sub-values",
 "OpenM.SetName": "New_2022",
 "OpenM.SubValues": "4",
 "OpenM.Threads": "2"
 },
 "Env": {},
 "Threads": 2,
 "IsMpi": true,
 "Mpi": {
 "Np": 2,
 "IsNotOnRoot": true,
 "IsNotByJob": true
 },
 "Template": "mpi.ModelRun.template.txt",
 "Tables": [
 "T02_TotalPopulationByYear",
 "TG03_Union_Tables",
 "TG02_Birth_Tables"
],
 "RunNotes": [
 {
 "LangCode": "EN",
 "Note": "Run notes (English)"
 },
 {
 "LangCode": "FR",
 "Note": "Run notes (French)"
 }
],
 "Res": {
 "Cpu": 2,
 "Mem": 0
 },
 "IsOverLimit": false,
 "QueuePos": 0,
 "LogFileName": "",
 "LogPath": "",
 "RunStatus": [],
 "Lines": []
}

Example: empty response if model run job not found on server

{
 "JobStatus": "",
 "SubmitStamp": "2022_09_12_21_18_36_413",
 "Pid": 0,
 "CmdPath": "",
 "ModelName": "",
 "ModelDigest": "",
 "RunStamp": "",
 "Dir": "",
 "Opts": {},
 "Env": {},
 "Threads": 0,
 "IsMpi": false,
 "Mpi": {
 "Np": 0,
 "IsNotOnRoot": false,
 "IsNotByJob": false
 },
 "Template": "",
 "Tables": [],
 "RunNotes": [],
 "Res": {
 "Cpu": 0,
 "Mem": 0
 },
 "IsOverLimit": false,
 "QueuePos": 0,
 "LogFileName": "",
 "LogPath": "",
 "RunStatus": [],
 "Lines": []
}

GET state of model run job from history.

This method allow get a history of model run job, results include:

model run request options, for example: run name, number of sub-values (sub-samples);

model run status (success or error) and sub-values progress information;

model run log content.

This is a beta version and may change in the future.

Method:

GET /api/service/job/history/:job

Arguments:

:job - (required) model run submission time stamp

Call examples:

http://localhost:4040/api/service/job/history/2022_09_13_21_28_38_409

Example:

{
 "JobStatus": "success",
 "SubmitStamp": "2022_09_13_21_28_38_409",
 "Pid": 0,
 "CmdPath": "",
 "ModelName": "RiskPaths",
 "ModelDigest": "d90e1e9a49a06d972ecf1d50e684c62b",
 "RunStamp": "2022_09_13_21_30_27_952",
 "Dir": "",
 "Opts": {
 "EN.RunDescription": "Run desription in English",
 "FR.RunDescription": "Run desription in French",
 "OpenM.BaseRunDigest": "66646f985fecfb1d59fd5ff81ee3b78a",
 "OpenM.LogRank": "true",
 "OpenM.MessageLanguage": "en-CA",
 "OpenM.NotOnRoot": "true",
 "OpenM.RunName": "RiskPaths New 4 sub-values",
 "OpenM.SetName": "New_2022",
 "OpenM.SubValues": "4",
 "OpenM.Threads": "2"
 },
 "Env": {},
 "Threads": 2,
 "IsMpi": true,
 "Mpi": {
 "Np": 2,
 "IsNotOnRoot": true,
 "IsNotByJob": true
 },
 "Template": "mpi.ModelRun.template.txt",
 "Tables": [
 "T02_TotalPopulationByYear",
 "TG03_Union_Tables",
 "TG02_Birth_Tables"
],
 "RunNotes": [
 {
 "LangCode": "EN",
 "Note": "Run notes (English)"
 },
 {
 "LangCode": "FR",
 "Note": "Run notes (French)"
 }
],
 "Res": {
 "Cpu": 2,
 "Mem": 0
 },

GET state of model run job from history

 },
 "IsOverLimit": false,
 "QueuePos": 0,
 "LogFileName": "RiskPaths.2022_09_13_21_30_27_952.console.log",
 "LogPath": "",
 "RunStatus": [
 {
 "ModelName": "RiskPaths",
 "ModelDigest": "d90e1e9a49a06d972ecf1d50e684c62b",
 "ModelVersion": "3.0.0.0",
 "ModelCreateDateTime": "2022-08-27 04:44:36.215",
 "Name": "RiskPaths New 4 sub-values",
 "SubCount": 4,
 "SubStarted": 4,
 "SubCompleted": 4,
 "CreateDateTime": "2022-09-13 21:30:28.188",
 "Status": "s",
 "UpdateDateTime": "2022-09-13 21:35:37.090",
 "RunDigest": "6d697389e6ca0d55b6615e02c1e453f6",
 "ValueDigest": "eabadea9394ae40012fe8b70d303966e",
 "RunStamp": "2022_09_13_21_30_27_952",
 "Txt": [],
 "Opts": {},
 "Param": [],
 "Table": [],
 "Progress": [
 {
 "SubId": 0,
 "CreateDateTime": "2022-09-13 21:30:28.000",
 "Status": "s",
 "UpdateDateTime": "2022-09-13 21:33:11.000",
 "Count": 100,
 "Value": 3086250
 },
 {
 "SubId": 1,
 "CreateDateTime": "2022-09-13 21:30:28.000",
 "Status": "s",
 "UpdateDateTime": "2022-09-13 21:32:54.000",
 "Count": 100,
 "Value": 3086250
 },
 {
 "SubId": 2,
 "CreateDateTime": "2022-09-13 21:32:54.000",
 "Status": "s",
 "UpdateDateTime": "2022-09-13 21:35:18.000",
 "Count": 100,
 "Value": 3086250
 },
 {
 "SubId": 3,
 "CreateDateTime": "2022-09-13 21:33:11.000",
 "Status": "s",
 "UpdateDateTime": "2022-09-13 21:35:36.000",
 "Count": 100,
 "Value": 3086250
 }
]
 }
],
 "Lines": [
 "2022-09-13 21:30:28.010 RiskPaths",
 "2022-09-13 21:30:28.010 RiskPaths",
 "2022-09-13 21:30:28.030 [0] Reading C:\\go-ompp\\models\\log\\2022_09_13_21_30_27_952.run_notes.EN.md",
 "2022-09-13 21:30:28.030 [0] Reading C:\\go-ompp\\models\\log\\2022_09_13_21_30_27_952.run_notes.FR.md",
 "2022-09-13 21:30:28.101 [0] Model version : 3.0.0.0",
 "2022-09-13 21:30:28.101 [0] Model created : 2022-08-27 04:44:36.215",
 "2022-09-13 21:30:28.101 [0] Model digest : d90e1e9a49a06d972ecf1d50e684c62b",
 "2022-09-13 21:30:28.101 [0] OpenM++ version: 2022-05-05 003df091e5b05b7208562c626e7dd72b4dd5055e v1.9.9",
 "2022-09-13 21:30:28.101 [0] OpenM++ build : Windows 64 bit Release MPI",
 "2022-09-13 21:30:28.101 [0] Parallel run of 2 modeling processes, 2 thread(s) each",
 "2022-09-13 21:30:28.101 [0] OM_ROOT=C:\\go-ompp",
 "2022-09-13 21:30:28.101 [0] Model build : Windows 64 bit Release",
 "2022-09-13 21:30:28.101 [0] Prepare fixed and missing parameters",
 "2022-09-13 21:30:28.102 [0] Run: 2022_09_13_21_30_27_952",
 "2022-09-13 21:30:28.116 [1] Model version : 3.0.0.0",
 "2022-09-13 21:30:28.116 [1] Model created : 2022-08-27 04:44:36.215",
 "2022-09-13 21:30:28.116 [1] Model digest : d90e1e9a49a06d972ecf1d50e684c62b",
 "2022-09-13 21:30:28.116 [1] OpenM++ version: 2022-05-05 003df091e5b05b7208562c626e7dd72b4dd5055e v1.9.9",
 "2022-09-13 21:30:28.116 [1] OpenM++ build : Windows 64 bit Release MPI",
 "2022-09-13 21:30:28.116 [1] OM_ROOT=C:\\go-ompp",
 "2022-09-13 21:30:28.117 [1] Model build : Windows 64 bit Release",
 "2022-09-13 21:30:28.117 [1] Prepare fixed and missing parameters",
 "2022-09-13 21:30:28.117 [1] Run: 2022_09_13_21_30_27_952",
 "2022-09-13 21:30:28.219 [1] Run: 142 RiskPaths New 4 sub-values",
 "2022-09-13 21:30:28.219 [1] Get scenario parameters for process",
 "2022-09-13 21:30:28.220 [1] member=0 Bind scenario parameters",

 "2022-09-13 21:30:28.220 [1] member=0 Bind scenario parameters",
 "2022-09-13 21:30:28.220 [1] member=0 Compute derived parameters",
 "2022-09-13 21:30:28.220 [1] member=1 Bind scenario parameters",
 "2022-09-13 21:30:28.221 [1] member=1 Compute derived parameters",
 "2022-09-13 21:30:28.221 [1] member=1 Prepare for simulation",
 "2022-09-13 21:30:28.221 [1] member=1 Simulation progress=0% cases=0",
 "2022-09-13 21:30:28.222 [1] member=0 Prepare for simulation",
 "2022-09-13 21:30:28.222 [1] member=0 Simulation progress=0% cases=0",

 skip

 "2022-09-13 21:35:37.058 [0] Writing into aggregated output tables, run: 142",
 "2022-09-13 21:35:37.090 [0] Digest output tables, run: 142",
 "2022-09-13 21:35:38.251 [0] Done.",
 "2022-09-13 21:35:38.251 [1] Done."
]
}

Example: empty response if model run job not found on server

{
 "JobStatus": "",
 "SubmitStamp": "2022_07_05_19_55_38_626",
 "Pid": 0,
 "CmdPath": "",
 "ModelName": "",
 "ModelDigest": "",
 "RunStamp": "",
 "Dir": "",
 "Opts": {},
 "Env": {},
 "Threads": 0,
 "IsMpi": false,
 "Mpi": {
 "Np": 0,
 "IsNotOnRoot": false,
 "IsNotByJob": false
 },
 "Template": "",
 "Tables": [],
 "RunNotes": [],
 "Res": {
 "Cpu": 0,
 "Mem": 0
 },
 "IsOverLimit": false,
 "QueuePos": 0,
 "LogFileName": "",
 "LogPath": "",
 "RunStatus": [],
 "Lines": []
}

PUT model run job into other queue position.

This method is moving model run job request into other queue position, for example: move it to the top of the queue.

Only MPI cluster jobs queue can be re-ordered, using this on localhost queue does not actually change job position.

User can re-order only his own queue, other users queues are not affected. It is also impossible to move the job in front of other users job: if
other user submitted model run before then it will be processed first.

This is a beta version and may change in the future.

Method:

PUT /api/service/job/move/:pos/:job

Arguments:

:pos - (required) new position in the queue.

Zero position is a top of the queue, if pos is negative it is treated as zero. If pos is greater then queue length it is terated as last position.

:job - (required) model run submission time stamp

Call examples:

curl -v -X PUT http://localhost:4040/api/service/job/move/99/2022_09_13_21_45_29_375

Example 1:

Move model run job 2022_09_13_21_45_29_375 to the top of the queue:

curl -v -X PUT http://localhost:4040/api/service/job/move/0/2022_09_13_21_45_29_375

* Trying 127.0.0.1:4040...
* Connected to localhost (127.0.0.1) port 4040 (#0)
> PUT /api/service/job/move/0/2022_09_13_21_45_29_375 HTTP/1.1
> Host: localhost:4040
> User-Agent: curl/7.83.1
> Accept: */*
>
* Mark bundle as not supporting multiuse
< HTTP/1.1 200 OK
< Content-Location: service/job/move/true/0/2022_09_13_21_45_29_375
< Content-Type: text/plain
< Date: Wed, 14 Sep 2022 01:48:02 GMT
< Content-Length: 0
<
* Connection #0 to host localhost left intact

Example 2:

Move model run job 2022_09_13_21_45_29_375 to the bottom of the queue using position 99999999 :

PUT model run job into other queue position

curl -v -X PUT http://localhost:4040/api/service/job/move/99999999/2022_09_13_21_45_29_375

* Trying 127.0.0.1:4040...
* Connected to localhost (127.0.0.1) port 4040 (#0)
> PUT /api/service/job/move/99999999/2022_09_13_21_45_29_375 HTTP/1.1
> Host: localhost:4040
> User-Agent: curl/7.83.1
> Accept: */*
>
* Mark bundle as not supporting multiuse
< HTTP/1.1 200 OK
< Content-Location: service/job/move/true/99999999/2022_09_13_21_45_29_375
< Content-Type: text/plain
< Date: Wed, 14 Sep 2022 01:50:22 GMT
< Content-Length: 0
<
* Connection #0 to host localhost left intact

DELETE state of model run job from history.

This method delete a history record of model run job. It does NOT delete actual model run data, output tables and run parameters are NOT
deleted from database. Only history record of model run job is deleted.

It is a convenient method for deleting a history of failed model runs.

This is a beta version and may change in the future.

Method:

DELETE /api/service/job/delete/history/:job

Arguments:

:job - (required) model run submission time stamp

Call example:

curl -v -X DELETE http://localhost:4040/api/service/job/delete/history/2022_09_13_23_20_50_995

* Trying 127.0.0.1:4040...
* Connected to localhost (127.0.0.1) port 4040 (#0)
> DELETE /api/service/job/delete/history/2022_09_13_23_20_50_995 HTTP/1.1
> Host: localhost:4040
> User-Agent: curl/7.83.1
> Accept: */*
>
* Mark bundle as not supporting multiuse
< HTTP/1.1 200 OK
< Content-Location: /api/service/job/delete/history/2022_09_13_23_20_50_995
< Date: Wed, 14 Sep 2022 03:24:17 GMT
< Content-Length: 0
<
* Connection #0 to host localhost left intact
`

DELETE state of model run job from history

On start oms web-service scan models directory tree (by default it models/bin directory and sub-directories) to collect all models metadata from
*.sqlite database files. If we want to add, remove or overwrite model.sqlite database file(s) then it is necessary:

close model.sqlite file(s) by POST a request to close models catalog

refresh list of models by POST a request to refresh models catalog

This is a beta version and may change in the future.

Method:

POST /api/admin/all-models/refresh

For example:

curl -v -X POST http://localhost:4040/api/admin/all-models/refresh

* Trying ::1...
* TCP_NODELAY set
* Trying 127.0.0.1...
* TCP_NODELAY set
* Connected to localhost (127.0.0.1) port 4040 (#0)
> POST /api/admin/all-models/refresh HTTP/1.1
> Host: localhost:4040
> User-Agent: curl/7.54.1
> Accept: */*
>
< HTTP/1.1 200 OK
< Content-Location: /api/admin/all-models/refresh/models/bin
< Date: Tue, 18 March 2019 01:02:27 GMT
< Content-Length: 0
<
* Connection #0 to host localhost left intact

POST a request to refresh models catalog

On start oms web-service scan models directory tree (by default it models/bin directory and sub-directories) to collect all models metadata from
*.sqlite database files. If we want to add, remove or overwrite model.sqlite database file(s) then it is necessary:

close model.sqlite file(s) by POST a request to close models catalog

refresh list of models by POST a request to refresh models catalog

This is a beta version and may change in the future.

Method:

POST /api/admin/all-models/close

For example:

curl -v -X POST http://localhost:4040/api/admin/all-models/close

* Trying ::1...
* TCP_NODELAY set
* Trying 127.0.0.1...
* TCP_NODELAY set
* Connected to localhost (127.0.0.1) port 4040 (#0)
> POST /api/admin/all-models/close HTTP/1.1
> Host: localhost:4040
> User-Agent: curl/7.54.1
> Accept: */*
>
< HTTP/1.1 200 OK
< Content-Location: /api/admin/all-models/close/models/bin
< Date: Tue, 18 March 2019 01:00:56 GMT
< Content-Length: 0
<
* Connection #0 to host localhost left intact

POST a request to close models catalog

User can close model database connection, for example, to cleanup database file and reduce storage space. After database connection is closed
model would not be available until it is opened again by POST a request to open database file or POST a request to refresh models catalog .

Method:

POST /api/admin/model/:model/close

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use
model name, which is more human readable than digest, but if there are multiple models with same name in database then result is undefined.

Call examples:

curl -v -X POST http://localhost:4040/api/admin/model/RiskPaths/close
curl -v -X POST http://localhost:4040/api/admin/model/d90e1e9a49a06d972ecf1d50e684c62b/close

For example:

curl -v -X POST http://localhost:4040/api/admin/model/d90e1e9a49a06d972ecf1d50e684c62b/close

* Trying [::1]:4040...
* Connected to localhost (::1) port 4040
> POST /api/admin/model/d90e1e9a49a06d972ecf1d50e684c62b/close HTTP/1.1
> Host: localhost:4040
> User-Agent: curl/8.4.0
> Accept: */*
>
< HTTP/1.1 200 OK
< Content-Location: /api/admin/model/d90e1e9a49a06d972ecf1d50e684c62b/close
< Content-Type: text/plain
< Date: Sat, 09 Mar 2024 04:43:35 GMT
< Content-Length: 0
<
* Connection #0 to host localhost left intact

POST a request to close model database

User can open a connection to database file in models/bin directory or sub-directories. There is also a method to open all database files in
models/bin tree: POST a request to refresh models catalog .

Method:

POST /api/admin/db-file-open/:path

Arguments:

:path - (required) path to model database file

Path must be relative to models/bin folder. If there any subfolders in the path then / slashes must be replaced with * stars.

Call examples:

curl -v -X POST http://localhost:4040/api/admin/db-file-open/RiskPaths.sqlite
curl -v -X POST http://localhost:4040/api/admin/db-file-open/OncoSimX*v3.6.5.2*OncoSimX-allcancers.sqlite

For example:

curl -v -X POST http://localhost:4040/api/admin/db-file-open/RiskPaths.sqlite

* Trying [::1]:4040...
* Connected to localhost (::1) port 4040
> POST /api/admin/db-file-open/RiskPaths.sqlite HTTP/1.1
> Host: localhost:4040
> User-Agent: curl/8.4.0
> Accept: */*
>
< HTTP/1.1 200 OK
< Content-Location: /api/admin/db-file-open/RiskPaths.sqlite
< Content-Type: text/plain
< Date: Sat, 09 Mar 2024 05:01:54 GMT
< Content-Length: 0
<
* Connection #0 to host localhost left intact

POST a request to open database file

User can reduce database file size by invoking database cleanup script.

Method:

POST /api/admin/db-cleanup/:path
POST /api/admin/db-cleanup/:path/name/:name
POST /api/admin/db-cleanup/:path/name/:name/digest/:digest

Arguments:

:path - (required) path to model database file
:name - (optional) model name
:digest - (optional) model digest

Path must be relative to models/bin folder. If there any sub-folders in the path then / slashes must be replaced with * stars.

Path, model name and model digest are passed as an arguments to the database cleanup script, for example: Linux script to cleanup database
file.

Call examples:

curl -v -X POST http://localhost:4040/api/admin/db-cleanup/RiskPaths.sqlite

curl -v -X POST http://localhost:4040/api/admin/db-cleanup/OncoSimX*v3.6.5.2*OncoSimX-allcancers.sqlite/name/OncoSimX-AllCancers

curl -v -X POST http://localhost:4040/api/admin/db-cleanup/RiskPaths.sqlite/name/RiskPaths/digest/d90e1e9a49a06d972ecf1d50e684c62b

For example:

curl -v -X POST http://localhost:4040/api/admin/db-cleanup/RiskPaths.sqlite

* Trying [::1]:4040...
* Connected to localhost (::1) port 4040
> POST /api/admin/db-cleanup/RiskPaths.sqlite HTTP/1.1
> Host: localhost:4040
> User-Agent: curl/8.4.0
> Accept: */*
>
< HTTP/1.1 200 OK
< Content-Type: application/json
< Date: Sat, 09 Mar 2024 05:15:49 GMT
< Content-Length: 82
<
{"LogFileName":"db-cleanup.2024_03_09_00_15_49_684.RiskPaths.sqlite.console.txt"}

POST a request to cleanup database file

https://github.com/openmpp/go/blob/master/etc/db-cleanup_linux.sh

User can reduce database file size by invoking database cleanup script. Console output from cleanup script captured into the log file. This
method allow to get the list of database cleanup log files. Use GET database cleanup log file method to get the content of the log file by name.

Method:

GET /api/admin/db-cleanup/log-all

Example:

curl http://localhost:4040/api/admin/db-cleanup/log-all

[{
 "DbName": "OncoSimX-allcancers.sqlite",
 "LogStamp": "2024_03_05_01_08_24_223",
 "LogFileName": "db-cleanup.2024_03_05_01_08_24_223.OncoSimX-allcancers.sqlite.console.txt"
 }, {
 "DbName": "modelOne.sqlite",
 "LogStamp": "2024_03_05_01_31_56_780",
 "LogFileName": "db-cleanup.2024_03_05_01_31_56_780.modelOne.sqlite.console.txt"
 }, {
 "DbName": "RiskPaths.sqlite",
 "LogStamp": "2024_03_09_00_15_39_343",
 "LogFileName": "db-cleanup.2024_03_09_00_15_39_343.RiskPaths.sqlite.console.txt"
 }, {
 "DbName": "RiskPaths.sqlite",
 "LogStamp": "2024_03_09_00_15_49_684",
 "LogFileName": "db-cleanup.2024_03_09_00_15_49_684.RiskPaths.sqlite.console.txt"
 }
]

GET the list of database cleanup log(s)

User can reduce database file size by invoking database cleanup script. Console output from cleanup script captured into the log file. This
method allow to get the content of database cleanup log file by name. Use GET the list of database cleanup log(s) method to obtain log file
names.

Method:

GET /api/admin/db-cleanup/log/:name

Arguments:

:name - (required) database cleanup log file name.

Example:

curl http://localhost:4040/api/admin/db-cleanup/log/db-cleanup.2024_03_09_00_15_49_684.RiskPaths.sqlite.console.txt

{
 "DbName": "RiskPaths.sqlite",
 "LogStamp": "2024_03_09_00_29_10_038",
 "LogFileName": "db-cleanup.2024_03_09_00_29_10_038.RiskPaths.sqlite.console.txt",
 "Size": 729,
 "ModTs": 1709962150344,
 "Lines": [
 "2024-03-09 00:29:10.038 etc/db-cleanup_linux.sh models/bin/RiskPaths.sqlite",
 "Model db : RiskPaths.sqlite",
 "Model : RiskPaths",
 "OM_ROOT : /home/anatoly/ompp-main",
 "/usr/bin/sqlite3",
 "Source model run status count:",
 "s|1",
 "Update source input scenario: set read-only",
 "Source input scenario count:",
 "1",
 "2024-03-09 00:29:10.259 Model RiskPaths",
 "2024-03-09 00:29:10.296 Model run from 102 RiskPaths_Default to 101",
 "2024-03-09 00:29:10.296 Parameters: 9",
 "2024-03-09 00:29:10.315 Tables: 7",
 "2024-03-09 00:29:10.329 Workset Default from id 101 to 102",
 "2024-03-09 00:29:10.329 Parameters: 9",
 "2024-03-09 00:29:10.341 Done.",
 "Results model run status:",
 "s|1",
 "Results input scenario count:",
 "1",
 "Done: models/bin/RiskPaths.sqlite",
 "2024-03-09 00:29:10.348 Done."
]
}

GET database cleanup log file(s)

POST a request to pause or to resume model runs queue processing.

This is a beta version and may change in the future.

Method:

POST /api/admin/jobs-pause/:pause

Arguments:

:pause - (required) boolean value to pause or resume model runs queue processing.

It must be one of: 1, t, T, TRUE, true, True, 0, f, F, FALSE, false, False. Any other value returns an error.

Call examples:

curl -v -X POST http://localhost:4040/api/admin/jobs-pause/true
curl -v -X POST http://localhost:4040/api/admin/jobs-pause/1
curl -v -X POST http://localhost:4040/api/admin/jobs-pause/0
curl -v -X POST http://localhost:4040/api/admin/jobs-pause/false

Example:

curl -v -X POST http://localhost:4040/api/admin/jobs-pause/1

* Trying 127.0.0.1:4040...
* Connected to localhost (127.0.0.1) port 4040 (#0)
> POST /api/admin/jobs-pause/1 HTTP/1.1
> Host: localhost:4040
> User-Agent: curl/7.83.1
> Accept: */*
>
* Mark bundle as not supporting multiuse
< HTTP/1.1 200 OK
< Content-Location: /api/admin/jobs-pause/true
< Content-Type: text/plain
< Date: Fri, 22 Jul 2022 03:32:49 GMT
< Content-Length: 0
<
* Connection #0 to host localhost left intact

POST a request to pause model run queue

POST a request to pause or to resume model runs queue processing for all oms instances

This method is pausing or resuming jobs queue processing for all oms web-service instances.

For example if there are 3 web-services: localhost:5050 , localhost:4040 , localhost:3030 are sharing the same job queue then:

curl -v -X POST http://localhost:4040/api/admin-all/jobs-pause/TRUE

would pause jobs from all 3 web-services, not only from localhost:4040 .

This is a beta version and may change in the future.

Method:

POST /admin-all/jobs-pause/:pause

Arguments:

:pause - (required) boolean value to pause or resume model runs queue processing.

It must be one of: 1, t, T, TRUE, true, True, 0, f, F, FALSE, false, False. Any other value returns an error.

Call examples:

curl -v -X POST http://localhost:4040/api/admin-all/jobs-pause/true
curl -v -X POST http://localhost:4040/api/admin-all/jobs-pause/1
curl -v -X POST http://localhost:4040/api/admin-all/jobs-pause/0
curl -v -X POST http://localhost:4040/api/admin-all/jobs-pause/false

Example:

curl -v -X POST http://localhost:4040/api/admin-all/jobs-pause/true

* Trying 127.0.0.1:4040...
* Connected to localhost (127.0.0.1) port 4040 (#0)
> POST /api/admin-all/jobs-pause/true HTTP/1.1
> Host: localhost:4040
> User-Agent: curl/8.0.1
> Accept: */*
>
< HTTP/1.1 200 OK
< Content-Location: /api/admin-all/jobs-pause/true
< Content-Type: text/plain
< Date: Fri, 04 Aug 2023 00:01:31 GMT
< Content-Length: 0
<
* Connection #0 to host localhost left intact

POST a request to pause all model runs queue

PUT a request to shutdown web-service.

This method shutdown web-service. It is expected to close connection and does not return any response, as result client (ex.: browser AJAX)
would return an error.

This is a beta version and may change in the future.

Method:

PUT /shutdown

Example:

curl -v -X PUT http://localhost:4040/shutdown

* Trying ::1...
* TCP_NODELAY set
* Trying 127.0.0.1...
* TCP_NODELAY set
* Connected to localhost (127.0.0.1) port 4040 (#0)
> PUT /shutdown HTTP/1.1
> Host: localhost:4040
> User-Agent: curl/7.55.1
> Accept: */*
>
< HTTP/1.1 200 OK
< Date: Tue, 14 Apr 2020 01:33:18 GMT
< Content-Length: 18
< Content-Type: text/plain; charset=utf-8
< Connection: close
<
Shutdown completed* Closing connection 0

PUT a request to shutdown web-service

	Table of contents
	Getting Started
	Model development in OpenM++
	Using OpenM++
	Model Development Topics
	OpenM++ web-service: API and cloud setup
	Using OpenM++ from Python and R
	Docker
	OpenM++ Development
	OpenM++ Design, Roadmap and Status
	OpenM++ web-service API

	Home
	Quick links
	Contents
	Introduction to OpenM++
	Getting started
	Model development
	Model use
	Model API and how to run models in cloud
	Model scripting
	Docker
	Features
	OpenM++ development
	OpenM++ design
	OpenM++ source code
	Contact Us

	Windows: Quick Start for Model Users
	Where is OpenM++
	Prerequisites
	Run on Windows computer
	Run on multiple computers over network, in HPC cluster or cloud
	Run models using Docker container

	Windows: Quick Start for Model Developers
	Step by Step
	OpenM++ Models: desktop? clusters? MPI?

	Build on Windows
	Build debug version of the model
	Build cluster version of the model to run on multiple computers over network
	Using older versions of Visual Studio

	Linux: Quick Start for Model Users
	Where is OpenM++
	Run on Linux computer
	Run on multiple computers over network, in HPC cluster or cloud
	Run models using Docker container

	Linux: Quick Start for Model Developers
	Where is OpenM++
	Build on Linux
	Build on Ubuntu 20.04

	Build debug version of the model
	Build release version of the model
	Rebuild all test models
	OM_ROOT: How to separate model folder and openM++ release folder
	Build cluster version of the model to run on multiple computers over network

	MacOS: Quick Start for Model Users
	Where is OpenM++
	Run openM++ models from terminal command line

	MacOS: Quick Start for Model Developers
	Where is OpenM++
	Prerequisites
	MacOS security issue

	Build debug version of the model from terminal command line
	Build release version of the model from terminal command line
	Rebuild all test models
	OM_ROOT: How to separate model folder and openM++ release folder
	Build openM++ sample model using Xcode
	Install VSCode

	Model Run: How to Run the Model
	OpenM++ model run overview
	Sub-values: sub-samples, members, replicas
	Default run: simplest
	Desktop run: model run on single computer
	Restart run: finish model run after previous failure
	Task run: multiple sets of input data
	Dynamic task run: wait for input data

	Cluster run: model run on multiple computers
	Cluster task: run modeling task on multiple computers

	MIT License, Copyright and Contribution
	OpenM++ is a Free and Open Source Software
	OpenM++ License
	Copyright Holders for OpenM++
	Contribute to OpenM++
	Usage of other software in OpenM++
	Build Files

	Model Code: Programming a model
	Topic contents
	Coding a model
	The OpenM++ language
	The C++ language in model code
	Model symbols in OpenM++ and C++
	Model functions in OpenM++ and C++

	Code folder and source files
	Doc folder and documentation files
	Source file content
	Default scenario
	Model build
	Step 1: OpenM++ build
	Step 2: C++ build

	Hiding syntactic islands

	Windows: Create and Debug Models
	Where is OpenM++
	Before you begin
	Create New Model
	Create multiple input sets of parameters (multiple scenarios)
	Debug your Model
	Model run options
	Debug Model with microdata files
	Debug model run-time errors
	Debug model c++ code
	Use AddressSanitizer to catch memory violation bugs

	Linux: Create and Debug Models
	What do you need
	Before you begin
	Create new Model
	Create multiple input sets of parameters (multiple scenarios)
	Use AddressSanitizer to catch memory violation bugs
	Debug your Model using Visual Studio Code
	View Doxygen comments on hover your Model code in Visual Studio Code
	Model run options

	MacOS: Create and Debug Models
	What do you need
	Prerequisites
	MacOS security issue

	Create new Model
	Create multiple input sets of parameters (multiple scenarios)
	Use AddressSanitizer to catch memory violation bugs
	How to use Visual Studio Code
	Build openM++ models using VSCode
	Debug openM++ model using VSCode
	Start model UI on MacOS from VSCode
	View Doxygen comments on hover your Model code in Visual Studio Code
	Model run options

	MacOS: Create and Debug Models using Xcode
	What do you need
	Prerequisites
	Create Xcode project for new Model
	Debug openM++ Model using Xcode
	Start model UI on MacOS from Xcode

	Modgen: Convert case-based model to openM++
	Overview
	Clone existing openM++ model
	Rename model directory and solution
	Replace sample model .mpp modules with your model .mpp files
	Replace sample model parameter data with your model *.dat files
	Open Visual Studio solution and build the model
	Run the model and verify simulation results

	Modgen: Convert time-based model to openM++
	Overview
	Clone existing openM++ model
	Rename model directory and solution
	Replace sample model .mpp modules with your model .mpp files
	Replace sample model parameter data with your model *.dat files
	Open Visual Studio solution and build the model
	Run the model and verify simulation results

	Modgen: Convert Modgen models and usage of C++ in openM++ code
	This page is under construction
	Microdata files, gpoEventQueue, StartCase(), SignalCase()
	Use of ternary operator may require cast to underlying type
	Assignments from one attribute to another may require cast to underlying type.
	Use of min and max may need to be changed to specify the underlying type.
	Arguments to print-style functions need to be cast to explicit types.
	Non-standard Microsoft functions and types must be replaced with standard.

	Model Localization: Translation of model messages
	Related topics
	Topic contents
	Quick Start
	How model finds translated message
	Model developer: How to mark strings for translation in model code

	How To: Set Model Parameters and Get Results
	Overview
	Sub-values: sub-samples, members, replicas
	Model output tables: sub-values, accumulators and expressions
	Model parameters: sub-values (optional)

	Parameters: Re-use same parameters values as in previous model run
	Parameter: Value as command line argument
	Parameter: Sub-values [0, N-1] as command line argument
	Parameter: Value inside of ini.file
	Parameters: Csv files
	Parameters: Csv files with multiple sub-values
	Output Tables: Suppress output tables
	Use dbcopy: Export entire model into text files
	Use dbcopy: Export entire model into csv files
	Use dbcopy: Export set of input parameters into text files
	Use dbcopy: Export model run results into text files
	Use dbcopy: Import parameters from csv files into database
	Use dbcopy: Import parameters, description and notes from text files into database

	Model Run: How model finds input parameters
	Model run cycle overview
	Sub-values: sub-samples, members, replicas
	Model output tables: sub-values, accumulators and expressions
	Model parameters: sub-values (optional)

	How model finds input parameters: Parameters search order
	Model run options
	Set of model input parameters in database (workset or scenario) and "base" model run
	How model finds input parameters: Default
	How model finds input parameters: Input set name or Id
	How model finds input parameters: re-use parameters from previous model run (base run)
	How model finds input parameters: Value as command line argument
	How model finds input parameters: iota sub-values command line argument
	How model finds input parameters: Value inside of ini.file
	How model finds input parameters: Value in model profile
	How model finds input parameters: Csv file
	Csv file with multiple sub-values

	How model finds input parameters: Import value from upstream model
	How model finds input parameters: Value from previous model run (base run)
	Create set of input parameters based on previous model run
	How to specify model base run

	Parameter sub-values from database

	Model Output Expressions
	Sub-values: sub-samples, members, replicas
	Model output tables: sub-values, accumulators and expressions

	Sub-values (accumulators) output tables
	Aggregated output values
	Examples of aggregation expressions
	SQL implementation details

	Model Run Options and ini-file
	Overview
	OpenM++ database connection
	Model development options
	OpenM++ ini-file run options

	OpenM++ Compiler (omc) Run Options
	Related topics
	Topic contents
	Overview
	Omc ini-file options

	OpenM++ ini-file format
	Related topics
	OpenM++ ini-file format

	UI: How to start user interface
	How to use openM++ UI
	Start openM++ UI
	Use model runs queue
	Start openM++ UI from model source directory
	Start model UI on Windows from Visual Studio
	Start model UI on Linux from Visual Studio Code
	Start model UI on MacOS from Xcode

	UI: openM++ user interface
	Related topics
	Topic contents
	Introduction and Background
	Terminology and Concepts
	Screenshot: Chart
	Screenshot: Heat map
	Screenshot: Ad hoc measures
	Screenshot: Model runs
	Screenshot: Create new scenario or edit existing scenario
	Screenshot: Create new scenario
	Screenshot: Select existing scenario to edit
	Screenshot: Edit parameter
	Screenshot: Run the model
	Screenshot: Compare model runs
	Screenshot: Compare run parameters
	Screenshot: Download model data
	Screenshot: Upload scenario
	Screenshot: Download parameter
	Screenshot: Upload parameter
	Screenshot: Session state and settings

	UI: Create new or edit scenario
	UI: Upload input scenario or parameters
	UI: Run the Model
	Model run output tables selection:
	Example of advanced options to run the model on back-end computational cluster:
	Model run jobs: queue and status:

	UI: Compare model run results
	UI: Disk space usage and cleanup
	UI Localization: Translation of openM++
	Quick Start
	Example of translated messages file
	How to modify UI main page to include to support new language

	Censor Event Time
	Related topics
	Topic contents
	Introduction and Background
	Syntax and Use
	Modgen issues

	Create Import Set
	Topic contents
	Introduction and overview
	Windows Quick Start
	Verify installation of create_import_set (Windows)

	Linux or MacOS Quick Start
	Verify installation of create_import_set (Linux, MacOS)

	Arguments and Options
	-i imports file
	-u upstream model name
	-r upstream run name
	-d downstream model name

	Worked Example
	Technical Requirements

	Derived Tables
	Related topics
	Topic contents
	Introduction and outline

	Entity Attributes in C++
	Topic contents
	Introduction
	Ternary operator
	Attribute assignment
	min, max, and clamp

	Entity Function Hooks
	Related topics
	Topic contents
	Introduction and Motivation
	Syntax and Use
	Disambiguating Hook Order

	Entity Member Packing
	Related topics
	Topic contents
	Introduction and Background
	Syntax and Use

	Entity Tables
	Related topics
	Topic contents
	Introduction and concepts
	Increments
	Accumulators
	Shorthand
	Increment Validity
	Non-numeric floating point values
	Non-numeric values in OpenM++
	Increments and accumulators
	Invalid table increments
	Disabling table increment errors

	Operators

	Events
	Related topics
	Topic contents
	Introduction and concepts
	Event implement function
	Event time function
	Return value
	Attributes affecting event time

	Event scheduling
	Self-scheduling events
	Tied events
	The flow of time
	Event loops

	Event Trace
	Related topics
	Topic contents
	Introduction and outline
	Quick start
	1. Build model with event trace capability
	2. Modify model ini file with event trace options
	3. Run model using event trace

	Worked example 1
	Find entities with a specific event
	Report on specific entities
	Report detailed history for a given entity
	Probe a time window

	Worked example 2
	Attributes with event context
	Attributes without event context
	Find entities using an attribute
	Using the case_seed attribute

	Worked example 3
	Links and multiple entity types
	Multilinks
	Expanding the selected entities

	Worked example 4
	General information
	Event trace columns
	Event trace messages
	Event trace options
	Event trace options - format
	Event trace options - filters
	Event trace options - events
	Event trace options - attributes
	Event trace options - table increments

	Trace file options
	Trace file API

	External Names
	Related topics
	Topic contents
	Default name
	Explicit name
	Identifying missing explicit names
	Heuristic name
	Name restrictions
	All generated names

	Generated Model Documentation
	Related topics
	Topic contents
	Introduction and outline
	Symbol Reference - User Edition
	Symbol Reference - Developer Edition
	Customizing the Symbol Reference
	Navigation Aid Topics

	Illustrative Model Align1
	Related topics
	Topic contents
	Introduction and description
	Experiment #1
	Experiment #2
	Remarks
	Model code
	Model input

	Local Random Streams
	Related topics
	Topic contents
	Background and overview
	Syntax and use
	Activation
	Entity key
	RNG use in entity initialization
	RNG use before simulation
	Memory use
	Internals

	Illustrative example
	Summary
	IDMM overview
	Base run
	Variant run
	Base-Variant coherence
	IDMM differences

	Memory Use
	Related topics
	Topic contents
	Introduction and Background
	Bag of Tricks
	Exploit the resource use report
	Suppress table groups
	Change time type to float
	Use value_out with flash tables
	Enable entity packing
	Use mutable real type
	Prefer range and classification to int
	Use bitset instead of bool array
	Purge available entity list

	Microdata Output
	Related topics
	Topic contents
	Introduction
	Topic outline
	Quick start
	1. Build model with microdata output capability
	2. Modify model ini file with microdata output options
	3. Run model using microdata output

	Worked example 1a
	Worked example 1b
	Worked example 1c
	Worked example 2a
	Worked example 2b
	Worked example 2c
	Worked example 3
	Worked example 4
	Example 4 sections
	Summary
	Build steps
	Run steps

	Microdata extraction
	Downstream analysis
	Microdata output modes
	Database mode
	Text mode
	Text mode csv file names

	Microdata output control
	Microdata output control sections
	Enabling microdata and controlling warnings
	Weight-enabled models
	Internal attributes
	Attributes with many enumerators

	Run-time settings
	Build-time settings
	Writing microdata from model code
	The microdata key

	Model Code
	Topic contents
	Coding a model
	The OpenM++ language
	The C++ language in model code
	Model symbols in OpenM++ and C++
	Model functions in OpenM++ and C++

	Code folder and source files
	Doc folder and documentation files
	Source file content
	Default scenario
	Model build
	Step 1: OpenM++ build
	Step 2: C++ build

	Hiding syntactic islands

	Model Documentation
	Related topics
	Topic contents
	Introduction and outline
	Use cases
	Model users
	Model developers
	Content developers

	The two components of model documentation
	Building model documentation
	Using model documentation
	Exploring internals using doxygen

	Model Languages
	Related topics
	Topic contents
	Introduction and outline
	The languages statement

	Model Localization
	Related topics
	Topic contents
	Quick Start
	How model finds translated message
	Model developer: How to mark strings for translation in model code

	Model Metrics Report
	Related topics
	Topic contents
	Introduction
	Code input
	Code output
	Model input
	Model output
	Model Symbols
	Published Symbols
	Maintained dependencies

	Model Resource Use
	Related topics
	Topic contents
	Introduction and Background
	Entities
	Multilink
	Entity table
	Set
	Event

	Syntax and Use
	Illustrated Reference
	General
	Resource use summary
	Entity instances
	Entity members
	Entity multilinks
	Entity events
	Entity sets
	Entity tables
	Entity member detail
	Derived tables

	Appendix

	Model Symbols
	Related topics
	Topic contents
	Introduction and outline
	Doxygen brief descriptions for model symbols
	Background on doxygen
	RiskPaths example
	Examples of doxygen brief descriptions

	Parameter and Table Display and Content
	Related topics
	Topic contents
	Parameter groups
	Table groups
	Dual UI
	Model trim down
	Derived parameters as tables
	Summary
	Exposition and example

	Population Size and Scaling
	Related topics
	Topic contents
	Introduction
	Population size and scaling - case-based
	Population size and scaling - time-based

	Symbol Labels and Notes
	Related topics
	Topic contents
	Introduction and outline
	Symbol labels
	Symbol labels: introduction
	Symbol labels: inline with declaration, e.g. //EN
	Symbol labels: //LABEL
	Symbol labels: //LABEL with two-part name
	Symbol labels: //LABEL with two-part name (explicit short name)
	Symbol labels: //LABEL with two-part name (Modgen scheme)
	Symbol labels: LABEL text file

	Symbol notes
	Symbol notes: /*NOTE in model code
	Symbol notes: NOTE markdown file
	Symbol notes: The special model symbol
	Symbol notes: Modgen formatting indicators

	Identifying missing symbol documentation

	Tables
	Related topics
	Topic contents
	Introduction and outline
	Run-level results
	Overriding run-level results

	Test Models
	Topic contents
	Introduction and overview
	Windows Quick Start
	1. Verify installation of test_models (Windows)
	2. Display test_models options (Windows)
	3. Run test_models on the RiskPaths model (Windows)

	Linux or MacOS Quick Start
	1. Verify installation of test_models (Linux, MacOS)
	2. Display test_models options (Linux, MacOS)
	3. Run test_models on the RiskPaths model (Linux, MacOS)

	Concepts
	Run version
	Run flavour
	Output comparison
	Build options
	Run options

	Arguments and Options
	Syntax
	Models
	Actions
	Verbosity
	Build
	Run
	Comparison
	Informational
	EventTrace
	Deprecated

	Control - Files
	Output - Report
	Output - Files
	test_models folder
	table outputs
	event trace

	Example 1 Preparing the default run
	Example 2 A new OpenM++ release
	Example 3 A model code change
	Example 4 When results differ
	Example 5 Exercising a model in Debug
	Example 6 A performance comparison
	Example 7 Using event trace output

	Time-like and Event-like Attributes
	Related topics
	Topic contents
	Time-like and event-like attributes
	Potential issues
	Protection against potential issues
	Disabling protection

	Use Modules
	Related topics
	Topic contents
	Subtopic 1

	Weighted Tabulation
	Related topics
	Topic contents
	Introduction and Background
	Syntax and Use
	Limitations
	Modgen issues
	case-based models (Modgen)
	time-based models (Modgen)

	File-based Parameter Values
	Related topics
	Topic contents
	Introduction
	How to use CSV or TSV files for input parameters values
	CSV (or TSV) file with dimension(s) and parameter value(s)
	CSV (or TSV) file with dimension(s) and multiple parameter sub-values
	CSV or TSV files with IDs as dimension(s) items
	CSV or TSV file with parameter values only

	Oms: openM++ web-service
	What is openM++ web-service
	How to start openM++ web-service
	Oms as "pure" web-service vs "full" web-UI

	How to use oms: arguments of web-service methods
	:model - model digest or model name
	:run - model run or model task run
	:lang - language code
	:set - set of input data (a.k.a. workset)
	:task - modelling task
	:profile - set of key-value options

	Results of web-service methods
	Run status

	Oms web-service configuration
	Get and use oms web-service configuration
	Oms run options
	Example of oms.ini

	Oms directory structure: user home and jobs directories
	User home directory
	Model run jobs directory structure

	Oms: openM++ web-service API
	Web-service methods arguments
	GET Model Metadata
	GET model list
	GET model list including text (description and notes)
	GET model definition metadata
	GET model metadata including text (description and notes)
	GET model metadata including text in all languages

	GET Model Extras
	GET model languages
	GET model language-specific strings
	GET model profile
	GET list of profiles

	GET Model Run results metadata
	GET list of model runs
	GET list of model runs including text (description and notes)
	GET status of model run
	GET status of model run list
	GET status of first model run
	GET status of last model run
	GET status of last completed model run
	GET model run metadata and status
	GET model run including text (description and notes)
	GET model run including text in all languages

	GET Model Workset metadata: set of input parameters
	GET list of model worksets
	GET list of model worksets including text (description and notes)
	GET workset status
	GET model default workset status
	GET workset including text (description and notes)
	GET workset including text in all languages

	Read Parameters, Output Tables or Microdata values
	Read parameter values from workset
	Read parameter values from workset (enum id's)
	Read parameter values from model run
	Read parameter values from model run (enum id's)
	Read output table values from model run
	Read output table values from model run (enum id's)
	Read output table calculated values from model run
	Read output table calculated values from model run (enum id's)
	Read output table values and compare model runs
	Read output table values and compare model runs (enun id's)
	Read microdata values from model run
	Read microdata values from model run (enum id's)
	Read aggregated microdata from model run
	Read aggregated microdata from model run (enum id's)
	Read microdata run comparison
	Read microdata run comparison (enum id's)

	GET Parameters, Output Tables or Microdata values
	GET parameter values from workset
	GET parameter values from model run
	GET output table expression(s) from model run
	GET output table calculated expression(s) from model run
	GET output table values and compare model runs
	GET output table accumulator(s) from model run
	GET output table all accumulators from model run
	GET microdata values from model run
	GET aggregated microdata from model run
	GET microdata run comparison

	GET Parameters, Output Tables or Microdata values as CSV
	GET csv parameter values from workset
	GET csv parameter values from workset (enum id's)
	GET csv parameter values from model run
	GET csv parameter values from model run (enum id's)
	GET csv output table expressions from model run
	GET csv output table expressions from model run (enum id's)
	GET csv calculated table expressions from model run
	GET csv calculated table expressions from model run (enum id's)
	GET csv model runs comparison table expressions
	GET csv model runs comparison table expressions (enum id's)
	GET csv output table accumulators from model run
	GET csv output table accumulators from model run (enum id's)
	GET csv output table all accumulators from model run
	GET csv output table all accumulators from model run (enum id's)
	GET csv microdata values from model run
	GET csv microdata values from model run (enum id's)
	GET csv aggregated microdata from model run
	GET csv aggregated microdata from model run (enum id's)
	GET csv microdata run comparison
	GET csv microdata run comparison (enum id's)

	GET Modeling Task metadata and task run history
	GET list of modeling tasks
	GET list of modeling tasks including text (description and notes)
	GET modeling task input worksets
	GET modeling task run history
	GET status of modeling task run
	GET status of modeling task run list
	GET status of modeling task first run
	GET status of modeling task last run
	GET status of modeling task last completed run
	GET modeling task including text (description and notes)
	GET modeling task text in all languages

	Update Model Profile: set of key-value options
	PATCH create or replace profile
	DELETE profile
	POST create or replace profile option
	DELETE profile option

	Update Model Workset: set of input parameters
	POST update workset read-only status
	PUT create new workset
	PUT create or replace workset
	PATCH create or merge workset
	DELETE workset
	POST delete multiple worksets
	DELETE parameter from workset
	PATCH update workset parameter values
	PATCH update workset parameter values (enum id's)
	PATCH update workset parameter(s) value notes
	PUT copy parameter from model run into workset
	PATCH merge parameter from model run into workset
	PUT copy parameter from workset to another
	PATCH merge parameter from workset to another

	Update Model Runs
	PATCH update model run text (description and notes)
	DELETE model run
	POST delete model runs
	PATCH update run parameter(s) value notes

	Update Modeling Tasks
	PUT create or replace modeling task
	PATCH create or update modeling task
	DELETE modeling task

	Run Models: run models and monitor progress
	POST a request to run the model
	GET state of current model run
	PUT stop model run

	Download model, model run results or input parameters
	GET download log file
	GET all download log files for the model
	GET all download log files
	GET download files tree
	POST initiate model download
	POST initiate model run download
	POST initiate model workset download
	DELETE download files
	DELETE all download files

	Upload model runs or worksets
	GET upload log file
	GET all upload log files for the model
	GET all upload log files
	GET upload files tree
	POST initiate model run upload
	POST initiate workset upload
	DELETE upload files
	DELETE all upload files

	User: manage user settings and data
	GET user views for the model
	PUT user views for the model
	DELETE user views for the model

	Model run jobs and service state
	GET service configuration
	GET job service state
	GET disk usage state
	POST refresh disk space usage info
	GET state of active model run job
	GET state of model run job from queue
	GET state of model run job from history
	PUT model run job into other queue position
	DELETE state of model run job from history

	Administrative: manage web-service state
	POST a request to refresh models catalog
	POST a request to close models catalog
	POST a request to close model database
	POST a request to open database file
	POST a request to cleanup database file
	GET the list of database cleanup logs
	GET database cleanup log file
	POST a request to pause model run queue
	POST a request to pause all queues of model runs
	PUT a request to shutdown web-service

	Oms: How to prepare model input parameters
	Overview
	Workset: set of model input parameters (a.k.a. "scenario")
	Base run

	Start Oms: OpenM++ JSON web-service
	Get list of published models
	Get list of model worksets (set of input parameters, a.k.a. "scenarios")
	Model default set of input parameters
	Model run results and run input parameters
	Use model profile to supply parameter values
	Simple way to create new workset (input set of parameters)
	Advanced way to create new workset (input set of parameters) based on previous model run
	Create or modify modeling task

	Oms: Cloud and model runs queue
	Model runs queue and computational resources (servers, nodes, clusters)
	Model run queue on local computer
	LAN: front-end server and back-end cluster of servers

	Cloud auto scaling: automatically start and stop servers
	Cloud disks usage: limit storage space usage
	Google cloud: front-end server and and auto scale of multiple back-end servers
	Azure cloud: front-end server and and auto scale of multiple back-end servers

	Linux cluster in cloud

	Use R to save output table into CSV file
	Use R to save output table into CSV file
	R script

	Use R to save output table into Excel
	Use R to save output table into Excel
	R script

	Run model from R: simple loop in cloud
	OpenM++ integration with R: run model and save results in CSV file
	R script

	Run RiskPaths model from R: advanced run in cloud
	OpenM++ integration with R: run RiskPaths model on cloud grid
	R script

	Run RiskPaths model in cloud from local PC
	OpenM++ integration with R: use local PC RStudio to run RiskPaths model on cloud grid
	R script

	Run model from R and save results in CSV file
	OpenM++ integration with R: run RiskPaths model on cloud grid
	R script

	Run model from R: simple loop over model parameter
	OpenM++ integration with R
	R script

	Run RiskPaths model from R: advanced parameters scaling
	OpenM++ integration with R: using RiskPaths model
	R script

	Run model from Python: simple loop over model parameter
	OpenM++ integration with Python
	How to run the script
	Python script

	Run RiskPaths model from Python: advanced parameters scaling
	OpenM++ integration with Python: using RiskPaths model
	How to run the script
	Python script

	Windows: Use Docker to get latest version of OpenM++
	Why Docker?
	Where to find openM++ Docker images
	How to use openmpp/openmpp-run:windows-20H2 to run your models
	How to use openmpp/openmpp-build:windows-20H2 to build openM++ and models
	Docker for Windows installation

	Linux: Use Docker to get latest version of OpenM++
	Why Docker?
	Where to find openM++ Docker images
	User name, user ID, group ID, home directory
	How to use openmpp/openmpp-run:debian to run your models
	How to use openmpp/openmpp-build:debian to build openM++ and models
	How to use openmpp/openmpp-build:debian to update openM++ documentation

	RedHat 8: Use Docker to get latest version of OpenM++
	Why Docker?
	Where to find openM++ Docker images
	User name and home directory
	How to use openmpp/openmpp-run:redhat-8 to run your models
	How to use openmpp/openmpp-build:redhat-8 to build openM++ and models

	Quick Start for OpenM++ Developers
	Where is OpenM++
	Build on Linux
	Build on Windows
	Build on MacOS
	Build R package
	Build Go utilities
	Build UI

	Setup Development Environment
	OpenM++ Requirements
	Check c++17 capabilities
	Bison and Flex
	Install MPI
	Test MPI
	Install R
	Install Go
	Install node.js

	2018, June: OpenM++ HPC cluster: Test Lab
	Obsolete
	Where is OpenM++ and HPC cluster Test Lab
	Login to OpenM++ HPC cluster
	Check your Environment
	Setup Your Environment
	Build and Run OpenM++

	Development Notes: Defines, UTF-8, Databases, etc.
	OpenM++ development notes
	Git layout of main repository
	OpenM++ logs and trace
	Defines for OpenM++
	Defines and other changes for VC++
	OpenM++ data library notes
	OpenM++ database notes
	OpenM++ data library notes: SQLite
	OpenM++ message passing library notes
	OpenM++ and UTF-8 strings
	Model digest, parameter digest, output table digest, etc.

	2012, December: OpenM++ Design
	About this document
	What is OpenM++
	OpenM++ Design Basics
	OpenM++ Architecture
	Layer 1: OpenM++ presentation layer
	Component 1.1: OpenM++ IDE
	Component 1.2: OpenM++ output result viewers and model analysis tools
	Component 1.3: OpenM++ cloud and web capabilities

	Layer 2: OpenM++ controller layer
	Component 2.1: OpenM++ compiler
	Component 2.2: OpenM++ controller for MPI cluster
	Component 2.3: Modgen compatibility convertors
	Component 2.4: OpenM++ SQL loaders
	Component 2.5: OpenM++ output convertors

	Layer 3: OpenM++ algorithms and data layer
	Component 3.1: OpenM++ modeling library
	Component 3.2: OpenM++ model data storage (model database)
	Component 3.3: OpenM++ data library
	Component 3.4: OpenM++ execution library
	Component 3.5: OpenM++ presentation library(s)

	2012, December: OpenM++ Model Architecture, December 2012
	About this document
	OpenM++ model use cases
	OpenM++ model run cycle
	OpenM++ modeling library
	OpenM++ model data storage (model database)
	OpenM++ data library

	2012, December: Roadmap, Phase 1
	OpenM++ Roadmap (phase1)
	Overall phase1 steps
	Detailed phase1 roadmap

	2013, May: Prototype version
	OpenM++ Prototype Version: May 2013

	2013, September: Alpha version
	OpenM++ Alpha version: September 2013

	2014, March: Project Status, Phase 1 completed
	Current Project Status
	What Next
	Current List of small tasks
	Task: Modgen .dat files compatibility converter
	Task: Exploratory subsamples suite for OpenM++ models

	2016, December: Task List
	Soft simulation failure
	Write fixed model parameters in database
	Write only selected output tables in database

	2017, January: Design Notes. Subsample As Parameter problem. Completed
	Status: completed
	Problem Scope
	Example of the problem
	Solution overview

	Oms: openM++ web-service
	What is openM++ web-service
	How to start openM++ web-service
	Oms as "pure" web-service vs "full" web-UI

	How to use oms: arguments of web-service methods
	:model - model digest or model name
	:run - model run or model task run
	:lang - language code
	:set - set of input data (a.k.a. workset)
	:task - modelling task
	:profile - set of key-value options

	Results of web-service methods
	Run status

	Oms web-service configuration
	Get and use oms web-service configuration
	Oms run options
	Example of oms.ini

	Oms directory structure: user home and jobs directories
	User home directory
	Model run jobs directory structure

	Oms: openM++ web-service API
	Web-service methods arguments
	GET Model Metadata
	GET model list
	GET model list including text (description and notes)
	GET model definition metadata
	GET model metadata including text (description and notes)
	GET model metadata including text in all languages

	GET Model Extras
	GET model languages
	GET model language-specific strings
	GET model profile
	GET list of profiles

	GET Model Run results metadata
	GET list of model runs
	GET list of model runs including text (description and notes)
	GET status of model run
	GET status of model run list
	GET status of first model run
	GET status of last model run
	GET status of last completed model run
	GET model run metadata and status
	GET model run including text (description and notes)
	GET model run including text in all languages

	GET Model Workset metadata: set of input parameters
	GET list of model worksets
	GET list of model worksets including text (description and notes)
	GET workset status
	GET model default workset status
	GET workset including text (description and notes)
	GET workset including text in all languages

	Read Parameters, Output Tables or Microdata values
	Read parameter values from workset
	Read parameter values from workset (enum id's)
	Read parameter values from model run
	Read parameter values from model run (enum id's)
	Read output table values from model run
	Read output table values from model run (enum id's)
	Read output table calculated values from model run
	Read output table calculated values from model run (enum id's)
	Read output table values and compare model runs
	Read output table values and compare model runs (enun id's)
	Read microdata values from model run
	Read microdata values from model run (enum id's)
	Read aggregated microdata from model run
	Read aggregated microdata from model run (enum id's)
	Read microdata run comparison
	Read microdata run comparison (enum id's)

	GET Parameters, Output Tables or Microdata values
	GET parameter values from workset
	GET parameter values from model run
	GET output table expression(s) from model run
	GET output table calculated expression(s) from model run
	GET output table values and compare model runs
	GET output table accumulator(s) from model run
	GET output table all accumulators from model run
	GET microdata values from model run
	GET aggregated microdata from model run
	GET microdata run comparison

	GET Parameters, Output Tables or Microdata values as CSV
	GET csv parameter values from workset
	GET csv parameter values from workset (enum id's)
	GET csv parameter values from model run
	GET csv parameter values from model run (enum id's)
	GET csv output table expressions from model run
	GET csv output table expressions from model run (enum id's)
	GET csv calculated table expressions from model run
	GET csv calculated table expressions from model run (enum id's)
	GET csv model runs comparison table expressions
	GET csv model runs comparison table expressions (enum id's)
	GET csv output table accumulators from model run
	GET csv output table accumulators from model run (enum id's)
	GET csv output table all accumulators from model run
	GET csv output table all accumulators from model run (enum id's)
	GET csv microdata values from model run
	GET csv microdata values from model run (enum id's)
	GET csv aggregated microdata from model run
	GET csv aggregated microdata from model run (enum id's)
	GET csv microdata run comparison
	GET csv microdata run comparison (enum id's)

	GET Modeling Task metadata and task run history
	GET list of modeling tasks
	GET list of modeling tasks including text (description and notes)
	GET modeling task input worksets
	GET modeling task run history
	GET status of modeling task run
	GET status of modeling task run list
	GET status of modeling task first run
	GET status of modeling task last run
	GET status of modeling task last completed run
	GET modeling task including text (description and notes)
	GET modeling task text in all languages

	Update Model Profile: set of key-value options
	PATCH create or replace profile
	DELETE profile
	POST create or replace profile option
	DELETE profile option

	Update Model Workset: set of input parameters
	POST update workset read-only status
	PUT create new workset
	PUT create or replace workset
	PATCH create or merge workset
	DELETE workset
	POST delete multiple worksets
	DELETE parameter from workset
	PATCH update workset parameter values
	PATCH update workset parameter values (enum id's)
	PATCH update workset parameter(s) value notes
	PUT copy parameter from model run into workset
	PATCH merge parameter from model run into workset
	PUT copy parameter from workset to another
	PATCH merge parameter from workset to another

	Update Model Runs
	PATCH update model run text (description and notes)
	DELETE model run
	POST delete model runs
	PATCH update run parameter(s) value notes

	Update Modeling Tasks
	PUT create or replace modeling task
	PATCH create or update modeling task
	DELETE modeling task

	Run Models: run models and monitor progress
	POST a request to run the model
	GET state of current model run
	PUT stop model run

	Download model, model run results or input parameters
	GET download log file
	GET all download log files for the model
	GET all download log files
	GET download files tree
	POST initiate model download
	POST initiate model run download
	POST initiate model workset download
	DELETE download files
	DELETE all download files

	Upload model runs or worksets
	GET upload log file
	GET all upload log files for the model
	GET all upload log files
	GET upload files tree
	POST initiate model run upload
	POST initiate workset upload
	DELETE upload files
	DELETE all upload files

	User: manage user settings and data
	GET user views for the model
	PUT user views for the model
	DELETE user views for the model

	Model run jobs and service state
	GET service configuration
	GET job service state
	GET disk usage state
	POST refresh disk space usage info
	GET state of active model run job
	GET state of model run job from queue
	GET state of model run job from history
	PUT model run job into other queue position
	DELETE state of model run job from history

	Administrative: manage web-service state
	POST a request to refresh models catalog
	POST a request to close models catalog
	POST a request to close model database
	POST a request to open database file
	POST a request to cleanup database file
	GET the list of database cleanup logs
	GET database cleanup log file
	POST a request to pause model run queue
	POST a request to pause all queues of model runs
	PUT a request to shutdown web-service

	GET model list
	GET model list including text (description and notes)
	GET model definition metadata
	GET model metadata including text (description and notes)
	GET model metadata including text in all languages
	GET model languages
	GET model language-specific strings
	GET model profile
	GET list of profiles
	GET list of model runs
	GET list of model runs including text (description and notes)
	GET status of model run
	GET status of model run list
	GET status of first model run
	GET status of last model run
	GET status of last completed model run
	GET model run metadata and status
	GET model run including text (description and notes)
	GET model run including text in all languages
	GET list of model worksets
	GET list of model worksets including text (description and notes)
	GET workset status
	GET model default workset status
	GET workset including text (description and notes)
	GET workset including text in all languages
	Read parameter values from workset
	Read parameter values from workset (enum id's)
	Read parameter values from model run
	Read parameter values from model run (enum id's)
	Read output table values from model run
	Read output table values from model run (enum id's)
	Read output table calculated values from model run
	Read output table calculated values from model run (enum id's)
	Read output table values and compare model runs
	Read output table values and compare model runs (enun id's)
	Read microdata values from model run
	Read microdata values from model run (enum id's)
	Read aggregated microdata from model run
	Read aggregated microdata from model run (enum id's)
	Read microdata run comparison
	Read microdata run comparison (enum id's)
	GET parameter values from workset
	GET parameter values from model run
	GET output table expression(s) from model run
	GET output table calculated expression(s) from model run
	GET output table values and compare model runs
	GET output table accumulator(s) from model run
	GET output table all accumulators from model run
	GET microdata values from model run
	GET aggregated microdata from model run
	GET microdata run comparison
	GET csv parameter values from workset
	GET csv parameter values from workset (enum id's)
	GET csv parameter values from model run
	GET csv parameter values from model run (enum id's)
	GET csv output table expressions from model run
	GET csv output table expressions from model run (enum id's)
	GET csv output table accumulators from model run
	GET csv output table accumulators from model run (enum id's)
	GET csv output table all accumulators from model run
	GET csv output table all accumulators from model run (enum id's)
	GET csv calculated table expressions from model run
	GET csv calculated table expressions from model run (enum id's)
	GET csv model runs comparison table expressions
	GET csv model runs comparison table expressions (enum id's)
	GET csv microdata values from model run
	GET csv microdata values from model run (enum id's)
	GET csv aggregated microdata from model run
	GET csv aggregated microdata from model run (enum id's)
	GET csv microdata run comparison
	GET csv microdata run comparison (enum id's)
	GET list of modeling tasks
	GET list of modeling tasks including text (description and notes)
	GET modeling task input worksets
	GET modeling task run history
	GET status of modeling task run
	GET status of modeling task run list
	GET status of modeling task first run
	GET status of modeling task last run
	GET status of modeling task last completed run
	GET modeling task including text (description and notes)
	GET modeling task text in all languages
	PATCH create or replace profile
	DELETE profile
	POST create or replace profile option
	DELETE profile option
	POST update workset read-only status
	PUT create new workset
	PUT create or replace workset
	PATCH create or merge workset
	DELETE workset
	POST delete multiple worksets
	DELETE parameter from workset
	PATCH update workset parameter values
	PATCH update workset parameter values (enum id's)
	PATCH update workset parameter(s) value notes
	PUT copy parameter from model run into workset
	PATCH merge parameter from model run into workset
	PUT copy parameter from workset to another
	PATCH merge parameter from workset to another
	PATCH update model run text (description and notes)
	DELETE model run
	POST delete model runs
	PATCH update run parameter(s) value notes
	PUT create or replace modeling task
	PATCH create or update modeling task
	DELETE modeling task
	POST a request to run the model
	GET state of current model run
	PUT stop model run
	GET download log file
	GET model download log files
	GET all download log files
	GET download files tree
	POST initiate entire model download
	POST initiate model run download
	POST initiate model workset download
	DELETE download files
	DELETE all download files
	GET upload log file
	GET all upload log files for the model
	GET all upload log files
	GET upload files tree
	POST initiate model run upload
	POST initiate workset upload
	DELETE upload files
	DELETE all upload files
	GET user views for the model
	PUT user views for the model
	DELETE user views for the model
	GET service configuration
	GET job service state
	POST refresh disk space usage info
	GET state of active model run job
	GET state of model run job from queue
	GET state of model run job from history
	PUT model run job into other queue position
	DELETE state of model run job from history
	POST a request to refresh models catalog
	POST a request to close models catalog
	POST a request to close model database
	POST a request to open database file
	POST a request to cleanup database file
	GET the list of database cleanup log(s)
	GET database cleanup log file(s)
	POST a request to pause model run queue
	POST a request to pause all model runs queue
	PUT a request to shutdown web-service

